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Relativistic configuration-interaction calculation of Kα transition energies in berylliumlike iron
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We perform relativistic configuration-interaction calculations of the energy levels of the low-lying and core-
excited states of berylliumlike iron, Fe22+. The results include the QED contributions calculated by two different
methods, the model QED operator approach and the screening-potential approach. The uncertainties of theoretical
energies are estimated systematically. The predicted wavelengths of the Kα transitions in berylliumlike iron
improve previous theoretical results and compare favorably with the experimental data.
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I. INTRODUCTION

Highly charged iron produces some of the brightest x-ray
emission lines from hot astrophysical objects, such as compact
x-ray binaries, galaxy clusters, and stellar coronae. The Kα

spectral features of iron have been detected in the spectra of
nearly all classes of cosmic x-ray sources, because of their
high transition rate, low intergalactic absorption, as well as
the high relative abundance of iron in the universe. Moreover,
iron has been found an important element for the diagnostics
of hot laboratory plasma, notably in magnetic nuclear fusion
and tokamaks. Since the Fe Kα line typically contains the
contributions from different charge states, its analysis provides
useful information about the equilibrium and nonequilibrium
charge-state distributions of ions as well as about the electron
and ion temperatures in the plasma.

In view of this importance of the Fe Kα line for astrophysics
and laboratory diagnostics, accurate theoretical predictions
are needed for the reliable identification and interpretation of
experimental spectral data. The simplest ion contributing to the
Kα line is the heliumlike ion. Ab initio QED calculations are
available for these ions [1], whose accuracy is significantly
higher than the present experimental precision. For more
complicated ions, however, no full-scale QED calculations of
Kα transitions have yet been performed, and one has to rely
on some kind of relativistic calculations complemented by an
approximate treatment of QED effects.

In our previous investigation [2], we performed a relativistic
configuration-interaction calculation of the Kα transitions in
lithiumlike ions, including iron. In that work, the QED effects
were taken into account within the one-electron screening-
potential approximation. Theoretical results obtained in there
agreed well with the recent experimental data [3], the theo-
retical precision being slightly better than the experimental
one.

In the present study, we apply this approach to a more com-
plicated system, the berylliumlike iron. For this ion, we cal-
culate the energy levels of 5 lowest-lying and 18 core-excited
states. When combined with the data available for the helium-
and lithiumlike ions, accurate theoretical results cover almost
all experimentally observed Fe Kα transitions in the region
between 1.850 and 1.880 Å [4].

The paper is organized as follows. In the next section, we
give a brief outline of our computation method with emphasis

on new features as compared to the previous investigations.
Section III then presents the results of our calculations and
compares them with the previous theoretical and experimental
data. Relativistic units � = c = 1 and charge units e2/4π = α

are used throughout this paper.

II. METHOD OF CALCULATION

We perform our calculations of the energy levels in two
steps. On the first step, we solve the Dirac-Coulomb-Breit
eigenvalue problem by means of the configuration-interaction
(CI) method. On the second step, we calculate the QED
correction, which is then added to to the CI energy. The nuclear
recoil effect is small when compared to the total theoretical
uncertainty and thus is taken into account by means of the
reduced mass prefactor (i.e., nonrelativistically and neglecting
the mass polarization).

A. Dirac-Coulomb-Breit energy

In relativistic quantum mechanics, the energy of an atom E

is given by the eigenvalue of the Dirac-Coulomb-Breit (DCB)
Hamiltonian HDCB,

HDCB � = E �, (1)

where � ≡ �(PJM) is the N -electron wave function with
given parity P , total angular momentum J , and angular
momentum projection M . The DCB Hamiltonian is conven-
tionally defined by

HDCB =
∑

i

hD(i) +
∑
i<j

[VC(i,j ) + VB(i,j )], (2)

where the indices i,j = 1, . . . ,N numerate the electrons, hD

is the one-particle Dirac-Coulomb Hamiltonian, and VC and
VB are the Coulomb and the frequency-independent Breit
parts of the electron-electron interaction; see, e.g., [5] for
details. It is assumed that HDCB acts in the space of the wave
functions constructed from the positive-energy eigenfunctions
of some one-particle Dirac Hamiltonian (the so-called no-pair
approximation).

In the CI method, the eigenfunctions �(PJM) of Eq. (1)
are represented by a (finite) sum of the configuration-state
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functions (CSFs) with the same P , J , and M ,

�(PJM) =
∑

r

cr�(γrPJM), (3)

where γr denotes the set of additional quantum numbers
that determine the CSF. The CSFs are constructed as linear
combinations of antisymmetrized products of one-electron
orbitals ψn. In the present work, the one-electron orbitals ψn

are solutions of the frozen-core Dirac-Fock equation.
The energy of the system is given by one of the roots of the

secular equation

det{〈γrPJM|HDCB|γsPJM〉 − Er δrs} = 0, (4)

where “det” denotes the determinant of the matrix. The
elements of the Hamiltonian matrix are represented as linear
combinations of one- and two-particle radial integrals (see,
e.g., [5]),

〈γrPJM|HDCB|γsPJM〉 =
∑
ab

drs(ab) I (ab)

+α
∑

k

∑
abcd

v(k)
rs (abcd) Rk(abcd). (5)

Here, a, b, c, and d numerate the one-electron orbitals, drs

and v(k)
rs are the angular coefficients [6–9], I (ab) are the

one-electron radial integrals, and Rk(abcd) are the relativistic
generalization of Slater radial integrals [10].

Our implementation of the CI method has been described
in the previous papers [2,11,12]. We shall therefore discuss
here only those issues that are new to the present calculation.
The first difficulty arises in the calculation of the core-excited
states, whose energies are well above the autoionization
threshold, i.e., above the continuum of the valence-excited
states. For a large basis set we are using here, the atomic
states of interest turn out to be very far away from the lowest
eigenvalue of the Hamiltonian matrix. The numerical approach
we were using previously for determining the eigenvalues
of a large matrix (the implementation of the Davidson
algorithm by Stathopoulos and Froese Fischer [13]) was
suitable for the computation of just the lowest (highest) matrix
eigenvalues. In the present work, we use the Jacobi-Davidson
algorithm as implemented within the JDQZ package [14,15].
The JDQZ package, although significantly slower than the one
by Stathopoulos and Froese Fischer, was able to provide us
with eigenvalues and the corresponding eigenvectors around
an arbitrary energy target far from the lowest eigenvalue.

Another new feature of the present calculations is the
identification of computed levels in terms of the nonrelativistic
LS coupling scheme. In our relativistic CI calculations we use
the jj coupling scheme, which is natural in the relativistic case.
In order to compare the computed levels with experiments and
previous nonrelativistic calculations, we had to identify our
calculated levels within the LS coupling scheme. In the case of
the core-exited states of berylliumlike ions such identification
is not straightforward (as it was in the case of lithiumlike ions),
because of the large number and high density of levels. In order
to identify the levels, we calculated the expectation values of
the squares of the orbital momentum operator L2 and the spin
operator S2 with the eigenfunctions of the DCB Hamiltonian.
The matrix elements of the L2 and S2 operators are obtained

as

〈γrPJM| L2|γsPJM〉 =
∑
ab

drs(ab) I (L)(ab)

+
∑
abcd

v(1)
rs (abcd) R(L)(abcd) (6)

and

〈γrPJM|S2|γsPJM〉 = 3

4

∑
a

drs(aa)

+
∑
abcd

v(1)
rs (abcd) R(S)(abcd), (7)

where the angular coefficients drs(ab) and v(k)
rs (abcd) are

the same as in Eq. (5) and the radial integrals I (L)(ab) and
R(L,S)(abcd) are presented in the Appendix.

An essential part of the present calculation is the systematic
estimation of the uncertainties of the obtained theoretical
predictions. For each atomic state of interest, we perform our
CI calculations with many (typically, about 20) different sets
of configuration-state functions. From these computations, we
then deduce an estimate of how well our CI results were
converged, by analyzing the successive increments of the
results obtained with the basis set being increased in various
directions.

B. QED effects

The QED effects are calculated in the present work by
means of two different approaches. By comparing the results
from these approaches, we estimate the uncertainty of our
treatment. The first method is based on summing up the self-
energy and vacuum-polarization QED corrections calculated
for each one-electron orbital in an effective screening potential.
The total QED correction for a given many-electron state is ob-
tained by adding the QED contributions from all one-electron
orbitals, weighted by their fractional occupation numbers as
obtained from the eigenvectors of the CI calculation,

δEQED =
∑

a

qa[〈a|	SE(εa)|a〉 + 〈a|VVP|a〉]. (8)

Here, the index a runs over all one-electron orbitals contribut-
ing to the given many-electron state, qa is the occupation
number of the one-electron orbital, 	SE is the self-energy
operator, εa is the Dirac energy of the one-electron state a, and
VVP is the vacuum polarization potential. This approximate
treatment of QED corrections was used in our previous work
on lithiumlike ions [2] and similarly also by other authors, in
particular, for berylliumlike ions by Chen and Cheng [16].

Our second method of evaluating the QED effects is based
on the model QED operator hQED formulated recently by
Shabaev et al. [17] and implemented in the QEDMOD Fortran
package [18]. The QEDMOD package is a tool that efficiently
calculates matrix elements of hQED with the (bound-state)
one-electron wave functions. In the present work, we add
the model QED operator to the DCB Hamiltonian, essentially
modifying the one-electron integrals I (a,b) of Eq. (5) in our
CI code by

I (ab) → I (ab) + δκa,κb
〈a|hQED|b〉, (9)
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TABLE I. Contributions to the Dirac-Coulomb-Breit energy for
the 1s2s2p2 3P0 state of berylliumlike iron, Fe22+, for infinite nuclear
mass, in atomic units. SD denotes the contribution of single and
double excitations, and T denotes the contribution of the triple
excitations. L is the maximal value of the orbital angular momentum
quantum number of the configuration-state functions.

L δ E

Coulomb, SD

1 −567.743 35
2 −0.024 67
3 −0.003 51
4 −0.000 82
5. . . ∞ −0.000 58a

Breit, SD

1 0.044 60
2 −0.000 99
3 −0.000 17
4 −0.000 05
5. . . ∞ −0.000 07a

Coulomb, T

1 −0.000 05
Total −567.729 66 (90)

aextrapolation.

where κa denotes the relativistic angular quantum number
of the state a. If either a or b is a continuum state [i.e.,
max(εa,εb) > m], the matrix element of hQED is assumed to be
zero. The QED correction to the energy level is then identified
by taking the difference of the CI eigenvalues with and without
the hQED operator. A comparison of the results of these two
approaches for evaluation of QED correction is presented in
the next section.

III. RESULTS AND DISCUSSION

In Table I we present an example of our CI calculation
of the Dirac-Coulomb-Breit energy for the 1s2s2p2 3P0 state
of berylliumlike iron. The various contributions in this table
are obtained by analyzing the results of calculations with
17 different sets of basis functions. These basis sets are
obtained by varying the number of partial waves included (i.e.,
the largest value of the orbital momentum l of one-electron
orbitals), the size of the basis for each partial wave, and by
including or omitting the Breit interaction. By extending the
basis set and taking the differences of the results, we identify
the contributions of individual partial waves and check the

stability of the results for each partial wave with regard to
the number of basis functions. The analysis is supplemented
by estimating the tail of the expansion by polynomial least-
squares fitting of the increments in 1/l.

The contribution of the triple excitations was found to be
very small in all cases relevant for the present work. We
thus perform the main part of our calculations with single
and double excitations only, and estimate the contribution
of the triple excitations separately within a smaller basis.
The partial-wave expansion was truncated at l = 4, with the
contribution of the higher-l multipoles being estimated by
extrapolation. The typical size of the basis set was of about
N = 30 000 functions. The results presented in Table I are
well converged with respect to the number of partial waves
as well as to the number of the basis functions. For higher
excited states, however, the convergence of the partial-wave
expansion becomes slower and, more importantly, the stability
of the results with regard to the number of basis functions drops
down. The latter problem is associated with the interaction of
the reference core-excited state with the continuum of valence-
exited states, which is difficult to describe accurately. For each
atomic state of interest, we perform a separate analysis of the
convergence with different sets of basis functions and estimate
the uncertainty of the theoretical result based on this analysis.

In Table II we present results for the QED correction for
selected states of berylliumlike iron. As described above, the
calculation is performed by two different methods, namely,
the model QED potential approach (QEDMOD) and the direct
calculation of QED corrections in a screening potential. In
the latter case, we use two different screening potentials,
the core-Hartree (CH) potential and the localized Dirac-Fock
(LDF) potential. The definition of these potentials is the
same as in our previous works [2,12]. Indeed, we observe
fair agreement between the QED corrections obtained by
the different methods. In the case of core-excited states, the
difference between the results remains well within the 1%
range. For the ground and valence-excited states, the deviation
is noticeably larger, on the level of 2%. This is explained by a
relatively large effect of screening of one 1s electron by another
1s electron, which is not well described by approximate
methods.

As a final result for the QED correction we take the
value obtained by the model QED operator approach. The
uncertainty of this value was estimated by taking the maximal
difference between the three results. For the ground and the
3,1P1 valence-excited states, our calculation can be compared
with the previous investigation by Chen and Cheng [16], in
which the screening-potential approach with the Kohn-Sham

TABLE II. QED corrections for berylliumlike iron, Fe22+, in atomic units. “QEDMOD” denotes the results obtained with the model QED
potential, “LDF” labels the results obtained with the localized Dirac-Fock potential, “CH” denotes results obtained with the core-Hartree
potential, and “Final QED” denotes the final result for the QED correction with uncertainty.

Method 1s22s2 1S0 1s22s2p 3P o
1 1s22s2p 1P o

1 1s2s22p 3P o
1 1s2s2p2 3P0 1s2s2p2 5P3

QEDMOD 0.312 25 0.296 24 0.296 60 0.176 80 0.160 77 0.161 02
LDF 0.315 30 0.294 26 0.295 02 0.176 90 0.160 28 0.161 67
CH 0.309 17 0.293 90 0.294 68 0.176 44 0.160 03 0.161 45

Final QED 0.312 2 (30) 0.296 2 (23) 0.296 6 (19) 0.176 8 (4) 0.160 8 (8) 0.161 0 (7)
Ref. [16] 0.308 9 0.292 9 0.293 7
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TABLE III. Energy levels of berylliumlike iron Fe22+, in rydbergs, 1 Ry = 109 737.315 685 39 (55) cm−1. Separately listed are the
Dirac-Coulomb energy, the Breit correction, and the QED correction. The total energies are presented for the ground state, whereas for all other
states, the energies relative to the ground state are given. The theoretical contributions are presented multiplied by the reduced mass prefactor
μ/m, 1 − μ/m = 0.00000981.

Term J Coulomb Breit QED Total NISTa Other theoryb Experiment

1s22s2 1S 0 −1625.6818 0.5181 0.6245 −1624.539 (6) −1624.547
1s22s2p 3P o 0 3.1650 0.0424 −0.0325 3.175 (9) 3.173

1 3.4632 0.0247 −0.0320 3.456 (9) 3.455 3.455 3.4550 (2)c

2 4.3382 −0.0077 −0.0298 4.301 (9) 4.299
1s22s2p 1P o 1 6.8856 0.0039 −0.0313 6.858 (9) 6.856 6.858 6.8561 (5)c

1s2s22p 3P o 1 485.6460 −0.4349 −0.2709 484.940 (19) 484.786 484.934 (5)d

1s2s22p 1P o 1 487.9367 −0.4578 −0.2688 487.210 (23) 487.200 487.208 (5)d

1s2s2p2 5P 1 486.7934 −0.3794 −0.3051 486.109 (7)
2 487.3533 −0.3851 −0.3035 486.665 (7)
3 487.9174 −0.4802 −0.3025 487.135 (7) 487.200

1s2s2p2 3P 0 490.1470 −0.4315 −0.3030 489.413 (7) 489.414
1 490.4131 −0.4291 −0.3029 489.681 (6)
2 491.4503 −0.4509 −0.3004 490.699 (7)

1s2s2p2 3D 1 490.8672 −0.3908 −0.3026 490.174 (7) 490.260
2 490.5592 −0.4403 −0.3034 489.816 (8) 489.815
3 490.9252 −0.5124 −0.3025 490.110 (8) 490.134

1s2s2p2 3S 1 492.0479 −0.3831 −0.3038 491.361 (9) 491.401
1s2s2p2 1D 2 492.7697 −0.3958 −0.3019 492.072 (7) 492.053
1s2s2p2 3P 0 492.1343 −0.3658 −0.3052 491.463 (8)

1 493.1155 −0.4072 −0.3022 492.406 (9)
2 493.6276 −0.4056 −0.3006 492.921 (8)

1s2s2p2 1P 1 494.4470 −0.4880 −0.3025 493.656 (10) 493.743
1s2s2p2 1S 0 494.8880 −0.3519 −0.2994 494.237 (11) 494.381

aNIST Atomic Spectra Database [21] and Shirai et al. [22].
bChen and Cheng [16].
cDenne et al. [23].
dRudolph et al. [3].

screening potential was used. We observe that their results are
smaller and slightly outside of our error bars.

From our analysis, we conclude that the uncertainty of the
theoretical predictions for the ground and the valence-excited
states of berylliumlike iron mainly arises from the uncertainty
of the QED treatment. A more rigorous QED calculation,
similar to that for lithiumlike ions [19,20], would improve
the theoretical accuracy for these states. In contrast, for most
of the core-excited states, the theoretical uncertainty comes
both from the QED effect and from the Dirac-Coulomb-Breit
energy.

Table III presents the calculated energy levels of berylli-
umlike iron. For the ground 1s22s21S state, the total energy
is listed, whereas the relative energies (with respect to the
ground state) are given for the excited states. Our results are
compared with the NIST compilation based on experimental
and theoretical data [21,22], with the relativistic CI calculation
by Chen and Cheng [16], as well as with the experimental
results [3,23]. The estimated fractional accuracy of our theo-
retical energies of the core-excited states is of about 2 × 10−5.
The overall agreement with the NIST compilation data is quite
good, although we observe significant deviations up to ten
times our estimated uncertainty for a number of core-excited
states. Notably, this is the case for the 1s2s22p 3P o

1 state, where
excellent agreement is found with the recent measurement [3],
well within the given error bars.

Finally, our theoretical results for the wavelengths of the
Kα transition lines of berylliumlike iron are presented in
Table IV, together with the experimental results [3,4,24], the
previous calculation by the 1/Z perturbation theory [25], as
well as the NIST spectral line compilation. The labeling of
the transition lines was taken from Ref. [4]. As seen from
this table, different transition lines are often very close to
each other, so that small shifts in the theoretical predictions
might cause changes in the line ordering. In particular, our
calculations lead to reassignment (interchange) of the E3 and
E4 lines as well as the E8 and E9 lines, respectively. The
overall agreement of our calculations with the experimental
results is very good, our results being more accurate than the
older astronomical measurements [4,24] but several times less
precise when compared with the latest laboratory data [3].

IV. CONCLUSION

In summary, we performed relativistic CI calculations
of the energy levels of the ground, 4 valence-excited and
18 core-excited states in berylliumlike iron, Fe22+. Dirac-
Coulomb-Breit energies from extended CI calculations were
combined with separately computed QED corrections. The
QED corrections were obtained by two approximate methods,
the model QED operator approach and the screening-potential
approach. From the comparison of these two approaches we
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TABLE IV. Transition line wavelengths of berylliumlike iron Fe22+, in Å. Line labeling is from Ref. [4].

Line Transition Present work Experiment Other theoryd NISTe

1s22s2p 3P1 − 1s2s2p2 3S1 1.86771 (3) 1.86835
E2 1s22s2p 3P2 − 1s2s2p2 1D2 1.86823 (2) 1.86795
E4 1s22s2p 1P1 − 1s2s2p2 1S0 1.86973 (3) 1.86975 1.8692
E3 1s22s2 1S0 − 1s2s22p 1P o

1 1.87038 (9) 1.87035 (8)a 1.8705
1.87035 (11)b

1.87039 (2)c

E5 1s22s2p 3P2 − 1s2s2p2 3S1 1.87095 (3) 1.87155 1.8708
1s22s2p 1P1 − 1s2s2p2 1P1 1.87196 (3) 1.8714

E6 1s22s2p 3P1 − 1s2s2p2 3D1 1.87227 (2) 1.87246 (35)a 1.87255 1.8724
1.87226 (23)b

E7 1s22s2p 3P0 − 1s2s2p2 3P1 1.87308 (2) 1.87246 (35)a 1.87285
E9 1s22s2p 3P2 − 1s2s2p2 3P2 1.87350 (2) 1.87347 (35)a 1.87385
E8 1s22s2p 3P1 − 1s2s2p2 3D2 1.87365 (2) 1.87347 (35)a 1.87355 1.8736

1.87347 (15)b

E10 1s22s2p 1P1 − 1s2s2p2 3P2 1.87479 (2) 1.87470
E11 1s22s2p 3P2 − 1s2s2p2 3D1 1.87552 (2) 1.87575 1.8752
E12 1s22s2p 3P2 − 1s2s2p2 3D3 1.87577 (3) 1.87574 (20)a 1.87585 1.8757

1.87552 (12)b

E13 1s22s2p 3P2 − 1s2s2p2 3D2 1.87691 (2) 1.87675
E14 1s22s2p 3P2 − 1s2s2p2 3P1 1.87743 (2) 1.87715
E15 1s22s2p 1P1 − 1s2s2p2 1D2 1.87807 (2) 1.87812 (20)a 1.87814 1.8781

1.87798 (14)b

E16 1s22s2 1S0 − 1s2s22p 3P o
1 1.87913 (7) 1.87933 (30)a 1.8797

1.87957 (25)b

1.87916 (2)c

E17 1s22s2p 3P2 − 1s2s2p2 5P3 1.88733 (2) 1.88690 (35)b 1.88745

aBeiersdorfer et al. [4].
bSeely et al. [24], with a 0.16 mÅ shift according to Ref. [4].
cRudolph et al. [3].
dShlyaptseva et al. [25].
eNIST Atomic Spectra Database [21] and Shirai et al. [22].

were able to estimate the uncertainty of the overall QED
shift. The uncertainty of the Dirac-Coulomb-Breit energies
was estimated on the basis of an analysis of the convergence
of the CI results with respect to the number of terms of the
partial-wave expansion and the number of the one-electron
basis functions. The results obtained for the wavelengths of the
Kα transitions improve the previous theoretical calculations
and compare favorably with the experimental data.
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APPENDIX: RADIAL INTEGRALS FOR L2 AND S2

The radial integrals for the matrix elements of the L2

operator are

I (L)(ab) = δκa,κb

[
la (la + 1)

∫ ∞

0
dr r2 ga(r) gb(r)

+ la (la + 1)
∫ ∞

0
dr r2 fa(r) fb(r)

]
(A1)

and

R
(L)
abcd = (−1)la+lb+jc+jd 2 �jajbjcjd

R(L)
ac R(L)

bd , (A2)

with

R(L)
ac = δla,lc

[
(la)

{
la 1/2 jc

ja 1 la

} ∫ ∞

0
dr r2 ga(r) gc(r)

−(la)

{
la 1/2 jc

ja 1 la

} ∫ ∞

0
dr r2 fa(r) fc(r)

]
.

(A3)

The radial integrals for the S2 operators are written in a
similar form,

R
(S)
abcd = (−1)la+lb+ja+jb 2 �jajbjcjd

R(S)
ac R(S)

bd , (A4)

with

R(S)
ac = δla,lc

[
(1/2)

{
1/2 la jc

ja 1 1/2

} ∫ ∞

0
dr r2 ga(r) gc(r)

−(1/2)

{
1/2 la jc

ja 1 1/2

} ∫ ∞

0
dr r2 fa(r) fc(r)

]
.

(A5)

022509-5



V. A. YEROKHIN, A. SURZHYKOV, AND S. FRITZSCHE PHYSICAL REVIEW A 90, 022509 (2014)

The notations are as follows: �ab... = [(2a + 1)(2b +
a) . . .]1/2, (l) = [l(l + 1)(2l + 1)]1/2, κa is the relativistic
momentum quantum number of the state a, ja = |κa| − 1/2,

la = |κa + 1/2| − 1/2, la = 2ja − la , and ga(r) and fa(r) are
the upper and the lower radial components of the one-electron
Dirac wave function.
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