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Revised values for the nuclear quadrupole moments of 33S and 35S
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High-level quantum-chemical calculations are reported for the sulfur electric-field gradients of the CS and
SiS molecules. Highly accurate values are obtained in these calculations by using coupled-cluster methods for
the treatment of electron correlation together with large atomic-orbital basis sets and by taking into account
relativistic effects. The computational results for the sulfur electric-field gradient are used to determine revised
values for the 33S and 35S quadrupole moments, thereby taking advantage of available accurate values for the
sulfur quadrupole couplings of CS and SiS from the analysis of rotational spectra. The derived values of −69.4(4)
and 48.3(3) mb for 33S and 35S, respectively, are slightly larger in absolute values than the currently accepted
values of −67.8(13) and 47.1(9) mb and, most importantly, have significantly reduced uncertainties.
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I. INTRODUCTION

The electric quadrupole moment of a nucleus provides in-
formation about its charge distribution, i.e., its shape [1]. Thus,
along with the mass and the charge number, the quadrupole
moment is a parameter often used for the characterization
of a nuclide. Nuclear quadrupole moments also play an
important role for a variety of spectroscopic techniques, as
interactions with a corresponding electric-field gradient can
lead to splittings in the spectra. These so-called nuclear
quadrupole couplings are, for example, seen in rotational,
NMR, and Mössbauer spectra [2–6]. As the values of the
nuclear quadrupole moments thus are of general importance,
there exist tabulations compiling the best values available. The
most recent one has been published in 2008 by Pyykkö [7].

Experimental values for the nuclear quadrupole moments
are probably best determined by converting measured val-
ues for the nuclear quadrupole couplings into a value for
the quadrupole moment, thereby using accurately computed
nuclear electric-field gradients. This combined experimental
and theoretical approach is the basis for most of the values
reported in Ref. [7].

Among the stable isotopes of sulfur, only 33S and 35S have
a nonvanishing quadrupole moment. The currently accepted
values of −67.8(13) and 47.1(9) mb stem from the work
of Sundholm and Olsen [8]. The values are based on an
analysis of the measured quadrupole coupling of 33S− in
its 2P3/2 state [9] and extensive multiconfigurational self-
consistent-field (MCSCF) calculations for the corresponding
electric-field gradient. The accuracy of the reported values is
clearly limited by the error bars attached to the experimental
quadrupole coupling for 33S− [9] which are with 2% rather
large. The quadrupole moment value for 35S was subsequently
obtained via the known ratio of the 33S and 35S quadrupole
moments [10].

While Sundholm and Olsen carried out a “state-of-the-art”
analysis of the sulfur quadrupole moment, one should note
that new, more refined sulfur quadrupole-coupling constants
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have been reported in the literature afterwards. Noteworthy
are in this context the experimental studies of CS and SiS by
Müller and co-workers [11–13]. For both diatomic systems,
the 33S quadrupole-coupling constants could be determined
with a rather small error bar (i.e., less than 0.1%). In addition,
it was possible to obtain equilibrium values for the quadrupole
coupling via a Dunham analysis [14]. The availability of
these highly accurate values for the sulfur quadrupole-coupling
constants of CS and SiS clearly suggests a redetermination of
the sulfur quadrupole moment with the aim of significantly
reducing the uncertainties in the available values.

We will report in the following such a reanalysis based
on highly accurate quantum-chemical calculations for the
sulfur electric-field gradient of CS and SiS. However, unlike
Sundholm and Olsen, we will use coupled-cluster theory [15]
in our calculations for the treatment of electron correlation
in combination with a systematic enlargement of the atomic-
orbital basis set towards the basis-set limit. In addition, we
will also account for relativistic effects which, however, are
expected to be small.

II. COMPUTATIONAL DETAILS

A value for the sulfur quadrupole moment eQ can be
determined from the experimental equilibrium 33S quadrupole-
coupling constants χ of CS and SiS via

eQ = �
χ

q
(1)

and computed values for the electric-field gradient q at the sul-
fur nucleus. Note that in the case of diatomic molecules, χ and
q refer to the zz component of both the quadrupole-coupling
and electric-field gradient tensors. The experimental values for
χ are taken from Refs. [11] and [12] and are 13.0265(68) MHz
for CS and 11.07684(148) MHz for SiS, respectively. These
are equilibrium values and thus no vibrational effects need
to be accounted for in the following. However, the zero-point
vibrational corrections to χ were also determined in Refs. [11]
and [12]. The corresponding values are −199.73(1.95) kHz
for CS [12] and −124.64(0.31) kHz for SiS [11] and their
analysis can provide further support for the accuracy of the
33S quadrupole moment values to be derived in the following.

1050-2947/2014/90(2)/022507(6) 022507-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.90.022507
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The calculations reported in the present work are all
concerned with the electric-field gradient at the sulfur nucleus
in CS and SiS which is computed as a first-order property with

q̂K = 1(r − RK )2 − 3(r − RK )(r − RK )T

|r − RK |5 (2)

as the corresponding property operator [16]. In Eq. (2), r and
RK are the position of the electron and the considered nucleus,
respectively. The first-order property is then computed using
analytic-derivative theory [17] as a first derivative of the
energy.

To ensure an adequate treatment of electron-correlation
effects, the calculations presented in the following are all
based on coupled-cluster (CC) theory [15,18,19]. The standard
choice is here the CC singles, doubles (CCSD) scheme [20]
augmented by a perturbative treatment of triple excitations, i.e.,
CCSD(T) [21]. This scheme is applicable together with rather
large basis sets and has been shown to provide high-accuracy
results. However, in the present work it is necessary to account
also for higher-order effects not covered by CCSD(T), i.e., the
difference between a rigorous treatment of triple excitations
at the CC singles, doubles, triples (CCSDT) level [22,23] and
CCSD(T) and in particular for contributions due to quadruple
excitations. For this reason, additional computations were
performed at the CCSDT as well as at the CC singles, doubles,
triples, quadruples (CCSDTQ) level [24]. As the CCSDTQ
treatment of quadruple excitations is rather expensive, we also
carried out CCSDT(Q) and CCSDT(Q)� calculations [25,26]
in which the quadruple excitations are treated perturbatively
on top of CCSDT. These schemes have been formulated in
analogy to CCSD(T) and its CCSD(T)� variant [27,28] which
both provide a perturbative treatment of triple excitations.

As the calculations beyond the CCSD(T) level are rather
expensive and cannot be carried out with large basis sets,
the CCSDT, CCSDTQ, CCSDT(Q), and CCSDT(Q)� cal-
culations with smaller basis sets were used to obtain the
corresponding differences to be added to the results of
the large-basis CCSD(T) computations. In contrast to the
all-electron CCSD(T) calculations, these corrections were
obtained within the frozen-core (fc) approximation with the
1s carbon and the 1s, 2s, and 2p sulfur and silicon shells
excluded in the correlation treatment. We consider in the
following corrections (a) due to full treatment of triple
excitations [difference between CCSDT and CCSD(T)], (b)
due to quadruple excitations based on a perturbative treatment
[difference between CCSDT(Q) and CCSDT], and (c) due to
a full treatment of quadruples [difference between CCSDTQ
and CCSDT(Q)].

To ensure that the results for the sulfur electric-field
gradients are close to the basis-set limit, the calculations were
carried out with a series of basis sets obtained by augmenting
uncontracted versions of standard basis sets with additional
steep core functions. We followed here a strategy which was
already used with success in our previous computational stud-
ies of copper and bromine electric-field gradients [29,30]. Our
starting points were the uncontracted versions of Dunning’s
core-polarized cc-pCVXZ sets [31,32]. However, to eliminate
linear dependencies, the core-correlating s and p functions
need to be skipped. We refer to these basis sets as BAS-3 to

BAS-5 depending on X. X equal T thus corresponds to BAS-3,
X equal 4 to BAS-4, and X equal 5 to BAS-5. The sets BAS-6
to BAS-12 are then obtained by appending additional steep
functions to BAS-5. For BAS-6 to BAS-9 this was done by
adding in each step one set of p, d, and f functions with
the exponents obtained by multiplying the largest exponent
among the basis functions with same angular momentum by
three. The sets BAS-10 to BAS-12 were obtained in the same
way by augmenting the BAS-9 set with additional steep s, p,
d, f , g, and h functions. The basis sets BAS-5+ to BAS-12+
also contain additional diffuse functions taken from Refs. [33]
and [34]. The calculations at levels higher than CCSD(T) were
carried out with the standard cc-pCVXZ basis sets (X=T and
Q) [31,32].

Since the accurate determination of electric-field gradients
requires consideration of relativistic effects, [35,36] two
different scalar-relativistic treatments were used. The first
one was direct perturbation theory (DPT) [37] and its choice
was motivated by the fact that we are dealing in the case
of CS and SiS with systems containing rather light elements
only. We employed the lowest-order scheme, i.e., second-order
DPT (DPT2), and evaluated the scalar-relativistic corrections
to the sulfur electric-field gradients analytically as described
in Ref. [38]. The second scheme used in the present work
was the spin-free exact two-component approach in its one-
electron variant (SFX2C-1e) [39–43] and we used our recent
implementation of analytic derivatives [43] for the evaluation
of the electric-field gradients. The scalar-relativistic treatments
otherwise employed the same methods and basis sets as the
nonrelativistic calculations; i.e., they were performed at the
CCSD(T) level using the uncontracted BAS-n and BAS-n+
basis sets.

In the case of CS and SiS, spin-orbit (SO) effects on
the electric-field gradients can be assumed to be small.
Nevertheless, we estimated their magnitude using fourth-order
DPT [44]. The SO corrections to the electric-field gradients
were here obtained in a numerical manner at the Hartree-Fock
(HF) level as described in Ref. [45].

As there have been indications [35] that Gaunt corrections
provide a nonnegligible contribution to computed electric-
field gradients, additional calculations were performed at the
Dirac-Hartree-Fock (DHF) level with and without the Gaunt
term [46] included in the Hamiltonian. These calculations
were performed with the BAS-5 set using the kinetic-balance
condition for obtaining the corresponding basis for the small
component.

All quantum-chemical calculations for the equilibrium
value of the sulfur electric-field gradients were carried out
at the theoretical best-estimate equilibrium geometries of CS
and SiS, obtained as described in Ref. [47]. The distances used
are 1.53484 Å for CS and 1.92957 Å for SiS, respectively.

Finally, zero-point vibrational corrections were computed
for the sulfur electric-field gradients of CS and SiS. The cor-
rections were not needed for the analysis of the experimental
equilibrium quadrupole couplings, but they enabled an analysis
of the experimentally determined vibrational corrections to
the quadrupole couplings and thus provide a consistency
check for the derived value of the sulfur quadrupole moment.
Two schemes were used to obtain the vibrational corrections.
The first one is second-order vibrational perturbation theory
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(VPT2) [48,49]. The vibrational corrections for the properties
are here determined in a perturbative manner based on the
quadratic and cubic force fields as well as the corresponding
property derivatives. The second scheme employed allowed
a more rigorous treatment and comprises a variational so-
lution of the vibrational problem using a discrete variable
representation (DVR) [50–53]. We used 13 quadrature points
(within a Gauss-Hermite quadrature) for the representation of
the potential curves of CS and SiS and solved the vibrational
problem in a basis consisting of 13 harmonic-oscillator func-
tions. The zero-point vibrational corrections were determined
at the CCSD(T) levels of theory with the potential and property
curves as well as the corresponding force fields and property
derivatives taken from calculations using the BAS-5 basis set.

All quantum-chemical calculations were performed with a
local version of the CFOUR program package [54] except for the
CCSDTQ, CCSDT(Q), and CCSDT(Q)� calculations which
were carried out with the MRCC program [55] interfaced to
CFOUR and the DHF calculations which were performed using
the DIRAC program suite [56].

III. RESULTS AND DISCUSSION

An accurate value can only be derived for the 33S
quadrupole moment if the error in the used experimental
quadrupole coupling is sufficiently small and if the required
electric-field gradient is computed with sufficient accuracy. In
the present case, the errors in the experimental quadrupole
couplings [11,12] are so small that they will only lead to
uncertainties of about 0.04 (CS) and 0.01 mb (SiS) in the
quadrupole moment. More critical, however, are remaining
errors in the computations of the electric-field gradient: for
an accuracy of about 1 mb in the quadrupole moment, the
accuracy in the electric-field gradient calculations should
be around 0.01 a.u.; for an accuracy of about 0.1 mb, the
electric-field gradient should be accurate to about 0.001 a.u. As
it is a challenge to reach such an accuracy in the computations,
we start in the following with a detailed analysis of our results
from the electric-field gradient calculations, thereby focusing
on basis-set convergence, higher-order correlation effects, as

well as the importance of relativistic contributions. After this,
we will report our analysis concerning a revision of the value
for the sulfur quadrupole moment.

Table I summarizes the results concerning the basis-
set convergence in our nonrelativistic (nrl) and relativistic
CCSD(T) electric-field gradient calculations. Convergence to
about 0.01 a.u. is reached with the BAS-5 set; convergence to
about 0.001, however, is only achieved with the BAS-9 basis.
Further extension of the basis up to BAS-12 essentially leaves
the computed results unchanged. The effect of additional
diffuse functions monitored through the use of the BAS-n+
sets is also negligible. The best nonrelativistic CCSD(T) value
for the sulfur electric-field gradients thus is −0.7969 a.u. in the
case of CS and −0.6733 a.u. in the case of SiS. The remaining
basis-set error is estimated to about 0.0001 a.u.

These best CCSD(T) values need to be adjusted in a
second step for higher-order correlation effects not covered
by the CCSD(T) treatment. Table II gathers the corresponding
results which have been obtained at the CCSDT, CCSDT(Q),
CCSDT(Q)�, and CCSDTQ levels of theory. Due to the high
cost of these additional calculations, they were performed
with much smaller basis sets than the CCSD(T) calculations
in Table I and thus we use the results in Table II just
for obtaining corrections that can be addded to our best
CCSD(T) values. Turning first to the CCSDT results, we
note that CCSDT/cc-pCVQZ calculations with only the 1s

orbitals frozen indicate that the effect of a rigorous instead
of a perturbative treatment of triple excitations amounts to
+0.0147 a.u. in the case of CS and to +0.0056 a.u. in
the case of SiS, respectively. The variation in the different
CCSDT results in Table II [in comparison to CCSD(T)]
indicates that the remaining error is probably of the order
0.001 to 0.002 a.u. for both molecules. The contributions due
to quadruple excitations amount to about −0.0065 a.u. for CS
and −0.0084 a.u. for SiS, respectively, when computed at the
CCSDT(Q)/cc-pCVTZ level with the 1s shells kept frozen.
CCSDT(Q) calculations with all inner-shell orbitals frozen
indicate that the use of a quadruple-zeta instead of a triple-zeta
basis slightly increases the quadruple corrections. This effect

TABLE I. Computed sulfur electric-field gradients (in a.u.) of CS and SiS as obtained
in nonrelativistic and relativistic CCSD(T) calculations using the BAS-n and BAS-n+ basis
sets.

CS SiS

nrl SFX2C-1e DPT2 nrl SFX2C-1e DPT2

BAS-3 −0.8098 −0.8167 −0.8167 −0.6832 −0.6861 −0.6860
BAS-4 −0.8106 −0.8177 −0.8177 −0.6816 −0.6848 −0.6847
BAS-5 −0.7981 −0.8053 −0.8053 −0.6745 −0.6778 −0.6778
BAS-9 −0.7971 −0.8044 −0.8044 −0.6733 −0.6767 −0.6767
BAS-10 −0.7967 −0.8041 −0.8042 −0.6732 −0.6767 −0.6767
BAS-11 −0.7968 −0.8041 −0.8041 −0.6732 −0.6767 −0.6766
BAS-12 −0.7968 −0.8042 −0.8042 −0.6732 −0.6767 −0.6767

BAS-5+ −0.7983 −0.8055 −0.8055 −0.6746 −0.6779 −0.6778
BAS-9+ −0.7973 −0.8046 −0.8046 −0.6734 −0.6768 −0.6768
BAS-10+ −0.7969 −0.8043 −0.8043 −0.6733 −0.6768 −0.6767
BAS-11+ −0.7970 −0.8043 −0.8043 −0.6733 −0.6768 −0.6767
BAS-12+ −0.7969 −0.8044 −0.8044 −0.6733 −0.6768 −0.6768
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TABLE II. Contributions of higher excitations to the sul-
fur electric-field gradients (in a.u.) of CS and SiS as obtained
in CCSD(T), CCSDT, CCSDT(Q), CCSDT(Q)�, and CCSDTQ
calculations.

frozen core 1s frozen

cc-pCVTZ cc-pCVQZ cc-pCVTZ cc-pCVQZ

(a) CS
CCSD(T) −0.8140 −0.8213 −0.8112 −0.8151
CCSDT −0.7998 −0.8061 −0.7974 −0.8004
CCSDT(Q) −0.8068 −0.8141 −0.8039
CCSDT(Q)� −0.8088 −0.8160 −0.8060
CCSDTQ −0.8064

(b) SiS
CCSD(T) −0.6865 −0.6916 −0.6805 −0.6821
CCSDT −0.6818 −0.6857 −0.6760 −0.6765
CCSDT(Q) −0.6898 −0.6945 −0.6844
CCSDT(Q)� −0.6904 −0.6949 −0.6849
CCSDTQ −0.6898

is estimated to about −0.0010 a.u. for CS and −0.0008 a.u. for
SiS, respectively, so that our best estimates for the perturbative
contributions due to quadruple excitations are −0.0075 and
−0.0092 a.u., respectively. Frozen-core CCSDTQ/cc-pCVTZ
computations furthermore indicate that a rigorous treatment
of quadruples leads to results that are more or less identical
to those from CCSDT(Q) computations. Interestingly, the
performance of the CCSDT(Q)� scheme is somewhat inferior
than the one of CCSDT(Q) when compared to CCSDTQ. To
give error estimates for the contributions due to quadruple
excitations is not straightforward. It seems that remaining
basis-set effects are here a significant error source and we
estimate the remaining error to be of the order of 0.001 to 0.002
a.u. for both CS and SiS. Contributions due to even higher than
quadruple excitations are expected to be negligible and have
not been further investigated.

The SFX2C-1e and DPT2 calculations, see Table I, indi-
cate that scalar-relativistic effects are, as expected, not too
pronounced in the case of CS and SiS. The corresponding
contributions are −0.0075 and −0.0035 for CS and SiS,
respectively, when computed at the CCSD(T) level with the
large BAS-n basis sets. The results obtained at the SFX2C-1e

and DPT2 level agree very well; i.e., the discrepancies are
0.0001 a.u. or less. This agreement is an indication that
the chosen schemes provide a nearly quantitative treatment
of the scalar-relativistic effects. SO effects, however, are
assumed to be negligible and DPT4 computations at the
HF/BAS-5 level confirm our expectations. The corresponding
corrections are 0.00007 a.u. for CS and 0.00019 a.u. for SiS,
respectively.

Table III summarizes all contributions considered in the
present work in the computation of the sulfur electric-field
gradients of CS and SiS. The final values are −0.7975 a.u.
for CS and −0.6809 a.u. for SiS. The corresponding error
estimates are of the order of 0.002 to 0.003 a.u. for both
molecules, mostly due to the remaining uncertainties in the
basis-set convergence of higher excitations beyond CCSD(T).
The conversion of the experimental sulfur quadrupole-
coupling constants using our best-estimate values for the sulfur
electric-field gradients leads to values of −69.52(30) mb and
−69.24(30) mb for the 33S quadrupole moment, depending on
whether one considers CS or SiS. The given uncertainties are
based on assumed error estimates of 0.002 to 0.003 a.u. for
the sulfur electrical-field gradients, as already discussed. We
note that the sole consideration of the nonrelativistic CCSD(T)
contribution lead in particular for SiS to a rather larger error
of 0.7 mb in the derived value for the quadrupole moment.
Contributions due to a full treatment of triples and due to
quadruple excitations are nonnegligible, i.e., up to 1.3 mb, but
they have opposite signs and partially cancel. Their combined
contributions are about −0.64 mb in the case of CS and 0.36
mb in the case of SiS, indicating that CCSD(T) indeed benefits
from some error cancellation. Relativistic effects also amount
to corrections of the same order of magnitude and thus are
not negligible for an accurate determination of the sulfur
quadrupole moment. However, unlike the scalar-relativistic
corrections, SO contributions turn out to be more or less
negligible. The same is not true for the Gaunt corrections
computed at the DHF level which contribute about 0.06 and
0.07 mb for CS and SiS, respectively.

The two values, derived from the experimental quadrupole
couplings of CS and SiS, differ slightly, but they agree within
0.3 mb. We thus propose to use in the future the mean of both
values, i.e., −69.4 mb with an uncertaintity of 0.4 mb as the
currently best available value for the 33S quadrupole moment.
For the 35S quadrupole moment, we propose to use a value of

TABLE III. Individual contributions to the sulfur electric-field gradient (efg, in a.u.) of
CS and SiS and the derived values for the 33S quadrupole moment (eQ, in mb).

CS SiS

efg eQ efg eQ

CCSD(T) basis-set limit −0.7969 −69.57 −0.6733 −70.02
+ full treatment of triples 0.0147 −1.31 0.0056 −0.59
+ perturbative quadruples −0.0075 0.67 −0.0092 0.96
+ corrections for full quadruples 0.0004 −0.04 0.0000 0.00
+ scalar-relativistic corrections −0.0075 0.66 −0.0035 0.36
+ spin-orbit corrections 0.0001 0.01 0.0002 0.02
+ Gaunt corrections −0.0008 0.06 −0.0007 0.07
final value −0.7975 −69.52 −0.6809 −69.24
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TABLE IV. Calculated vibrational corrections to the sulfur
electric-field gradients (efg, in a.u.) and quadrupole-coupling con-
stants (χ , in kHz) of CS and SiS. All calculations were performed
at the CCSD(T) level with the BAS-5 basis and a value of −69.4 mb
is used for the 33S quadrupole moment in the conversion of the
electric-field gradients.

CS SiS

efg χ efg χ

VPT2a 0.01182 −192.7 0.00753 −122.7
DVRa 0.01178 −192.1 0.00751 −122.4
DVRb 0.01189 −193.9 0.00755 −123.1
exp. −199.73 (1.95)c −124.64 (0.31)d

aPotential curve and efg’s from nonrelativistic calculations.
befg’s from SFX2C-1e calculations.
cReference [12].
dReference [11].

48.3(3) mb based on the experimentally known ratio of −0.695
for the 33S and 35S quadrupole moments [10].

Our revised values for the sulfur quadrupole moments are
more or less in line with the earlier results of Sundholm and
Olsen [8] who reported values of −67.8(13) and 47.1(9) mb
for 33S and 35S, respectively. The present values are slightly
larger (i.e., by about 1.6 and 1.2 mb), but the main achievement
is the significantly reduced uncertainty. While Sundholm and
Olsen estimated the uncertainty of their value to about 1.3 mb
in the case of 33S, the present study yields an error estimate of
only 0.4 mb. In the same way, we reduce the uncertainty for
the 35S value from 0.9 mb in Ref. [8] down to about 0.3 mb.

A consistency check for our revised sulfur quadrupole
moment values is provided by a comparison of the computed
and experimentally derived vibrational corrections for the
quadrupole couplings in CS and SiS (see Table IV). For both
molecules, the various computational schemes agree within
a few kHz in their values. To be more specific, the DVR
scheme provides in absolute terms slightly smaller corrections

than VPT2 and consideration of relativistic effects leads to
a small increase in the computed values. In comparison to
experiment, the computed values are somewhat too small, by
about 6 kHz in the case of CS and 1.5 kHz in the case of
SiS, respectively. While an uncertainty of about 1 kHz can be
attributed to the remaining uncertainty in the revised sulfur
quadrupole-moment value, the contributions of other error
sources such as inaccuracies in the potential curves, remaining
basis-set effects, and neglected higher-order correlation effects
are difficult to estimate. Nevertheless, the reached agreement
between computed and experimental vibrational corrections
can be taken as a further indication of the reliability and
accuracy of our revised sulfur quadrupole-moment values.

Finally, we note that our revised 33S quadrupole-moment
value was already used in Ref. [57] in the computation of the
sulfur quadrupole couplings in H2S and SO2.

IV. SUMMARY

Based on our analysis of the experimental sulfur
quadrupole-coupling constants for CS and SiS and high-level
quantum-chemical calculations of the corresponding sulfur
electric-field gradients, we propose a revision of the value for
the 33S and 35S quadrupole moments. The revised values are
with −69.4(4) and 48.3(3) mb for 33S and 35S slightly larger
than the previous values derived by Sundholm and Olsen [8]
and most importantly have significantly reduced uncertainties.
In comparison with the previous values from Ref. [8], they
have been reduced by a factor of about 3.
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[7] P. Pyykkö, Mol. Phys. 106, 1965 (2008).
[8] D. Sundholm and J. Olsen, Phys. Rev. A 42, 1160 (1990).

[9] R. Trainham, R. M. Jopson, and D. J. Larson, Phys. Rev. A 39,
3223 (1989).

[10] T. Wentink, W. S. Koski, and V. W. Cohen, Phys. Rev. 81, 948
(1951).

[11] H. S. P. Müller, M. C. McCarthy, L. Bizzocchi, H. Gupta,
S. Esser, H. Lichau, M. Caris, F. Lewen, J. Hahn, C. Degli
Esposti, S. Schlemmer, and P. Thaddeus, Phys. Chem. Chem.
Phys. 9, 1579 (2007).
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D. Jonsson, J. Jusélius, K. Klein, W. J. Lauderdale, D. A.
Matthews, T. Metzroth, L. A. Mück, D. P. O’Neill, D. R.
Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W.
Schwalbach, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, and
J. D. Watts, and the integral packages MOLECULE (J. Almlöf and
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