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The theory of pair density is extended to excited states. The theory of a single excited state is generalized for
the pair density. A two-particle equation is derived for the square root of the pair density of the given excited
state. An expression for the effective potential of this equation is presented.

DOI: 10.1103/PhysRevA.90.022505 PACS number(s): 31.15.E−

I. INTRODUCTION

Recently there has been a growing interest in the theory
of pair density, where the fundamental variable is not the
electron density, but the pair density. Ziesche [1] extended the
Hohenberg-Kohn theorems [2] for the pair density. Another
approach was presented by Gonis et al. [3]. It was shown by
the present author [4,5] that in the ground state the pair density
can be determined by solving a single auxiliary equation of a
two-particle problem. Thus, the problem of an arbitrary system
can be reduced to a two-particle problem. A similar result was
later presented by Furche [6].

In this paper the theory of pair density is extended to excited
states. In density-functional theory there are several time-
independent approaches to treat excited states: the ensemble
theories [7–9] and the theories for a single excited state
[10–15]. Here the approach of [12,13] of a single excited state
is generalized for the pair density. The paper is organized
as follows. In Sec. II the previous theory is summarized.
Section III presents the generalization of the theory for the
pair density. In Sec. IV a two-particle equation is derived for
the square root of the pair density of the given excited state.
The last section is devoted to discussion.

II. THEORY FOR A SINGLE EXCITED STATE

First the theory is summarized in order that the extension
of the theory of pair density to excited states can be followed
more easily. Consider the Hamiltonian of interest,

Ĥ = T̂ + V̂ee +
N∑

i=1

v(ri). (1)

The kinetic energy and the electron-electron energy operators
have the form

T̂ =
N∑

i=1

(
−1

2
∇2

i

)
(2)

and

V̂ee =
N∑

i<j

1

|ri − rj | , (3)

where v(r) is a local external potential.
The ground-state energy is given by the variational

principle,

E0 = min
�

〈�|Ĥ |�〉. (4)

In the constraint search approach [16,17] the minimization can
be done in two steps,

E0 = min
�

min
�→�

〈�|Ĥ |�〉. (5)

The inner step minimization for all the antisymmetric wave
functions providing the density � leads to the energy
functional E,

E[�] = min
�→�

〈�|Ĥ |�〉. (6)

The ground-state energy can be written as

E0 = min
�

{∫
v(r)�(r)dr + F [�]

}
, (7)

where the universal functional F is defined as

F [�] = min
�→�

〈�|T̂ + V̂ee|�〉. (8)

Then we apply the variational principle for the excited
state i,

Ei = min
�

min
�→�

�⊥�0,...,�i−1

〈�|Ĥ |�〉. (9)

The inner minimization defines the energy density functional
for the ith excited state:

Ei[�,v] = min
�→�

�⊥�0,...,�i−1

〈�|Ĥ |�〉. (10)

The minimization is over all wave functions that are orthogonal
to the first i − 1 states of Ĥ and simultaneously gives the
density �.

Note that for i = 0 the energy density functional is
the ground-state energy functional E[�] [Eq. (6)]. Here a
nondegenerate case is treated. (The extension to degenerate
states can be done utilizing the subspace densities [13].)

We can rewrite this procedure as

Ei = min
�

{∫
v(r)�(r)dr + Fi[�,�0]

}

=
∫

v(r)�i(r)dr + Fi[�i,�0], (11)

where the functional Fi[�,�0] is defined as

Fi[�,�0] = min
�→n

�⊥�0,...,�i−1

〈�|T̂ + V̂ee|�〉

= 〈�[�,�0]|T̂ + V̂ee|�[�,�0]〉. (12)
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In Eq. (12) � yields � and is orthogonal to the first i − 1
state of the Hamiltonian for which �0 is the ground-state
density. Here this Hamiltonian is the Ĥ in Eq. (4). We mention
in passing that the Kohn-Sham theory was also extended to
excited states [12,13]. Note that instead of the ground-state
electron density �0, we could use the external potential v or
any ground-state Kohn-Sham orbital, etc. Thus, we could use
Fi[�,v].

Görling also formalized an excited-state density-functional
theory using the stationary principle [18]. In a recent paper
Ayers and Levy [19] gave Görling’s excited-state functional
a firm theoretical foundation. They also proved that Görling’s
functional is a restriction of the functional (12) to those external
potentials for which it is stationary.

One needs approximate exchange-correlation potentials
to perform excited-state calculations. Local self-interaction-
free approximate exchange-correlation potentials have been
proposed for this purpose [20]. Orbital-dependent functionals
(optimized potential method (OPM) [21] and the Krieger-
Li-Iafrate (KLI) method [22]) were also generalized and
tested [10,12,13,23,24]. Glushkov and Levy [25] presented
an OPM algorithm that takes the necessary orthogonality
constraints to lower states into account.

The standard Hohenberg-Kohn theorems for a single
excited-state density do not exist [26–28]. Gaudoin and
Burke [27] and Sahni, Slamet, and Pan [28] performed numer-
ical calculations and presented cases where a given excited-
state density corresponds to several different “Kohn-Sham”
potentials. Samal, Harbola, and Holas [29] argued that the
density-to-potential map can be fixed uniquely by the criterion
given in [12]. In another paper, Samal and Harbola [30]
proposed a different criterion. Harbola and co-workers also
developed a local spin density functional approximation by
splitting k space and obtained accurate excitation energies
[31–37].

III. GENERALIZATION OF THE THEORY
FOR THE PAIR DENSITY

The second-order reduced density matrix is defined as

n2(x1,x2; x′
1,x

′
2) = N (N − 1)

2

∫
�(x1,x2,x3, . . . ,xN )�∗

× (x′
1,x

′
2,x3, . . . ,xN )dx3, . . . ,dxN, (13)

where xi stands for the spatial and the spin coordinates: ri ,σi .
The diagonal of the spin-independent second-order density
matrix is the pair density:

n(r1,r2) =
∫

n2(x1,x2; x1,x2)dσ1dσ2. (14)

Consider first the ground state. The constrained search
method can be applied for the pair density n,

E = min
n

min
�→n

〈�|Ĥ |�〉, (15)

where the search goes for all antisymmetric wave functions �,
which yield the given n. We can define the universal functional
T as

T [n] = min
�→n

〈�|T̂ |�〉. (16)

Consequently, the ground-state energy can also be written as

E = min
n

{∫
n(r1,r2)

|r1 − r2|dr1dr2

+ 1

N − 1

∫
u(r1,r2)n(r1,r2)dr1dr2 + T [n]

}
. (17)

The factor 1/(N − 1) comes from the normalization of n.
The external potential is conveniently written for the pair of
particles as

u(ri ,rj ) = v(ri) + v(rj ). (18)

Consider now the excited state i. The constrained search
method is applied again, now for the pair density n:

Ei = min
n

min
�→n

�⊥�0,...,�i−1

〈�|Ĥ |�〉. (19)

The search is for all antisymmetric wave functions � that are
orthogonal to the first i − 1 states of Ĥ and simultaneously
gives the trial pair density, n. We can define the functional
Ti[n,u] as

Ti[n,u] = min
�→n

�⊥�0,...,�i−1

〈�|T̂ |�〉. (20)

The energy functional then takes the form

Ei[n,u] =
∫

n(r1,r2)

|r1 − r2|dr1dr2

+ 1

N − 1

∫
u(r1,r2)n(r1,r2)dr1dr2 + Ti[n,u].

(21)

The energy functional Ei[n,u] has important properties.
Theorem 1. The exact energy of the ith excited state is a

lower bound to Ei[n,u],

Ei � Ei[n,u], (22)

with equality holding only when n = ni is the exact density of
the ith excited state.

Proof. Let �n
min denote that antisymmetric wave function

that satisfies [Eq. (20)]

Ti[n,u] = 〈
�n

min

∣∣T̂ ∣∣�n
min

〉
. (23)

Adding terms corresponding to the electron-electron and the
external term we obtain∫

n(r1,r2)

|r1 − r2|dr1dr2

+ 1

N − 1

∫
u(r1,r2)n(r1,r2)dr1dr2 + Ti[n,u]

=
∫

n(r1,r2)

|r1 − r2|dr1dr2

+ 1

N − 1

∫
u(r1,r2)n(r1,r2)dr1dr2 + 〈

�n
min

∣∣T̂ ∣∣�n
min

〉

= 〈
�n

min

∣∣V̂ee + V̂ + T̂
∣∣�n

min

〉
. (24)

The variational principle leads to the first part of the theorem:〈
�n

min

∣∣V̂ee + V̂ + T̂
∣∣�n

min

〉 = Ei[n,u] � Ei. (25)
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Denote �
ni

i the exact wave function corresponding to the pair
density ni . Then

Ti[ni,u] = 〈
�

ni

i

∣∣T̂ ∣∣�ni

i

〉
. (26)

By the variational principle,

Ei �
〈
�n

min

∣∣V̂ee + V̂ + T̂
∣∣�n

min

〉
. (27)

Therefore,〈
�

ni

i

∣∣V̂ee + V̂ + T̂
∣∣�ni

i

〉
�

〈
�n

min

∣∣V̂ee + V̂ + T̂
∣∣�n

min

〉
. (28)

It can also be written as∫
ni(r1,r2)

|r1 − r2|dr1dr2

+ 1

N − 1

∫
u(r1,r2)ni(r1,r2)dr1dr2 + 〈

�
ni

i

∣∣T̂ ∣∣�ni

i

〉

�
∫

ni(r1,r2)

|r1 − r2|dr1dr2

+ 1

N − 1

∫
u(r1,r2)ni(r1,r2)dr1dr2 + 〈

�n
min

∣∣T̂ ∣∣�n
min

〉
(29)

or 〈
�

ni

i

∣∣T̂ ∣∣�ni

i

〉
�

〈
�n

min

∣∣T̂ ∣∣�n
min

〉
. (30)

On the other hand, the consequence of the definition of �n
min

is 〈
�

ni

i

∣∣T̂ ∣∣�ni

i

〉
�

〈
�n

min

∣∣T̂ ∣∣�n
min

〉
. (31)

Equations (30) and (31) can be true if and only if the equality
holds that immediately leads to the validity of the second part
of the theorem.

Denote the wave function that minimizes the energy
functional Ei[n,n0] by �i[n,n0]:

�i[n,u] minimizes Ei[n,u], (32)

Theorem 2. The pair density, the external potential, and the
degree of excitation i determines the wave function.

Proof. The constrained search described above gives to the
wave function.

Theorems 1 and 2 can be considered a generalization of the
Hohenberg-Kohn theorems for excited-state pair densities.

Note that the excited-state wave function �i[n,u] is not just
a functional of the excited-state pair density and i but also a
functional of the external potential u. It can be immediatelly
seen from Eq. (21) as the functional Ti[n,u] can be written as

Ti[n,u] = Ei −
∫

n(r1,r2)

|r1 − r2|dr1dr2

− 1

N − 1

∫
u(r1,r2)n(r1,r2)dr1dr2. (33)

Ti depends parametrically on the external potential through
the constraint that the wave function should be orthogonal to
the lower-lying eigenfunctions of the Hamiltonian. Therefore,
unlike the ground-state Hohenberg-Kohn functional, Ti is not
a universal functional of the pair density.

Instead of the external potential, the ground-state pair
density n0 can also be selected. Applying Ti[n,u] instead of

Ti[n,n0] has the advantage that the direct appearance of the
external potential avoids the v-representability problem. A pair
density is v-representable if it is the pair density associated
with the ith eigenfunction of a Hamiltonian of the form (1)
with some external potential v. [Instead of v it is convenient
to use u here according to Eq. (18).] If we have the functional
Ti[n,u] the v representability is automatically fulfilled as n is
the pair density corresponding to the ith eigenfunction of the
Hamiltonian with external potential u.

Also, it is more natural to use the external potential as
a variable than the ground-state density, as in calculations
the external potential is the usual input. Supposing that the
functional derivative of Ti exists, Eq. (33) leads to the Euler
equation,

u(r1,r2) + 1

|r1 − r2| = −δTi[n,u]

δn
, (34)

up to a constant. In the following section, the Euler equation
is reformulated as a two-particle equation for the square root
of the pair density.

IV. TWO-PARTICLE EQUATION FOR THE SQUARE ROOT
OF THE PAIR DENSITY OF THE GIVEN EXCITED STATE

It was shown [4,5,38,39] that the ground-state problem of
an arbitrary system can be reduced to a two-particle problem,
that is, only a single auxiliary equation of a two-particle
system should be solved. Earlier, the method of Levy, Perdew,
and Sahni [40] was generalized to derive this two-particle
equation and an expression for the effective potential was
obtained [6,41]. The same method can be applied for excited
states.

The Schrödinger equation has the form

Ĥ (N̄)�i(N̄ ) = EN
i �i(N̄), (35)

where M̄ signifies the coordinates of electrons 1, . . . ,M . Take
the following partition of the Hamiltonian of the N -electron
system,

Ĥ (N̄ )=Ĥ (N,N − 1)+Ĥ (N − 2) +
N−2∑
j=1

(
1

rjN

+ 1

rjN−1

)
,

(36)

where

Ĥ (N,N − 1) = −1

2
∇2

N − 1

2
∇2

N−1 + v(rN ) + v(rN−1)

+ 1

rNN−1
(37)

and

Ĥ (N − 2) =
N−2∑
j=1

[
−1

2
∇2

j + v(rj )

]
+

N−2∑
j<k

1

rjk

. (38)

v(r) is the external potential and rjk = |rj − rk|. Introduce a
function �i(N ) as

�i(N − 2; N − 1,N ) =
[
N (N − 1)

2

]1/2
�i(N̄ )

n
1/2
i (rN−1,rN )

.

(39)
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�i(N − 2; N − 1,N ) is antisymmetric in electrons 1, . . . ,N −
2 and it depends parametrically on the variables of electrons
N − 1 and N . It has the property that∫

|�i(N − 2; N − 1,N )|2d(N − 2) = 1 (40)

for any rN−1 and rN . It can be proved utilizing Eqs. (13), (14),
and (39). Subtracting EN−2

0 �i(N̄ ) from both sides of Eq. (35),
multiplying by �i(N − 2; N − 1,N )∗, and integrating over all
the coordinates of electrons 1, . . . ,N − 2 and spin coordinates
of electrons N − 1,N , the effective two-particle equation

[
−1

2
∇2

N − 1

2
∇2

N−1 + v(rN ) + v(rN−1) + 1

rNN−1
+ ṽeff

i (rN−1,rN )

]
n

1/2
i (rN−1,rN ) = μin

1/2
i (rN−1,rN ) (41)

is obtained, where EN−2
0 is the total ground-state energy of the N − 2-electron system (after removing two electrons from the

N -electron system) and

μi = EN
i − EN−2

0 . (42)

The effective potential takes the form

ṽeff
i (rN−1,rN ) = 〈�i(N − 2; N − 1,N )|Ĥ (N − 2) − EN−2

0 |�i(N − 2; N − 1,N )〉

+ 1

2
[〈|∇N�i(N − 2; N − 1,N )|2〉 + 〈|∇N−1�i(N − 2; N − 1,N )|2〉]

+ 6

N (N − 1)

[∫
ñi(rN−2,rN−1,rN )

rN−2,N−1
drN−2 +

∫
ñi(rN−2,rN−1,rN )

rN−2,N

drN−2

]
, (43)

where ñi(rN−2,rN−1,rN ) is the density of that �i(N − 2; N − 1,N ) associated with electron N − 1 at point rN−1 and electron
N at point rN . As no term on the right-hand side of Eq. (43) can ever be negative,

ṽeff
i � 0. (44)

The asymptotic behavior of the effective potential ṽeff
i can be seen from the long-range form of the pair density [42]:

ni(rN−1,rN ) → e−2αirN−1e−2αirN , (45)

where

αi = [−μi + ṽeff
i (∞,∞)

]1/2
. (46)

The inequality (44) leads to

αi �
√−μi. (47)

Consider the system obtained after removing two electrons. The eigenstates of the Hamiltonian Ĥ (N − 2) [Eq. (38)] are
denoted by �l(N − 2). After multiplying Eq. (35) by �∗

l (N − 2), integrating over the coordinates of N − 2 electrons and using
Eqs. (36)–(39) we arrive at[

−1

2
∇2

N−1 − 1

2
∇2

N + v(rN−1) + v(rN ) + 1

rN−1,N

− εl
i

]
gl

i (rN−1,rN )

= −(N − 2)n1/2(rN−1,rN )

〈
�l(N − 2)

(
1

r1,N−1
+ 1

r1,N

)
�i(N − 2; N − 1,N )

〉
, (48)

where

εl
i = EN

i − EN−2
l , (49)

EN−2
l is the eigenvalue corresponding to the eigenfunction

�l(N − 2), and

gl
i (rN−1,rN ) = n

1/2
i (rN−1,rN )

×〈�∗
l (N − 2)|�i(N − 2; N − 1,N )〉. (50)

If l = 0,

g0
i (rN−1,rN ) = n

1/2
i (rN−1,rN )〈�∗

0 (N − 2)|
×�i(N − 2; N − 1,N )〉. (51)

If rN−1 → ∞ and rN → ∞, g0
i (rN−1,rN ) →

e−√−μirN−1e−√−μirN as ε0
i = μi . Taking into account the

asymptotic form (45) of the pair density and the Schwartz
inequality,

|〈�∗
0 (N − 2)|�i(N − 2; N − 1,N )〉| � 1, (52)

Eq. (51) provides that

αi �
√−μi. (53)

[There might be an exception: the case when symmetry induces
that 〈�∗

0 (N − 2)�i(N − 2; N − 1,N )〉 = 0. If this is true, the
state �∗

0 (N − 2) is called “inaccessible”.]
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As both the inequalities (47) and (53) should hold simulta-
neously, we arrive at the equality

αi = √−μi. (54)

Then the asymptotic form

ṽeff
i (∞,∞) = 0 (55)

arises from Eq. (46). Another consequence is that
�i(N − 2; N − 1,N ) asymptotically collapses to the eigen-
function �0(N − 2). Equations (39) and (43) show that
�i(N − 2) asymptotically cannot depend on the coordinates
rN−1 and rN . Equation (43) leads to the asymptotic form of
the effective potential:

ṽeff
i → N − 2

rN−1
+ N − 2

rN

. (56)

V. DISCUSSION

In the ground-state two-particle equation the Pauli poten-
tial was introduced. Now, Eq. (41) is written in a similar
form, [

−1

2
∇2

N−1 − 1

2
∇2

N + v(rN−1) + v(rN )

+ N − 1

rN−1,N

+ vP
i (rN−1,rN )

]
n

1/2
i (rN−1,rN )

= μin
1/2
i (rN−1,rN ), (57)

where vP
i is the Pauli potential of the ith excited state.

The Pauli energy of the pair-density-functional theory is
analogous to that of the density-functional theory: the dif-
ference of the kinetic energy and a Weizsäcker-like expres-
sion [43] (constructed from the pair density instead of the
density) [4].

The Pauli potential is the functional derivative of the Pauli
energy with respect to the pair density. For a two-electron
system the Pauli potential disappears.

The theory presented above is free from the N -
representability problem [42,44–56]. However, the exact form
of the Pauli potential is not known even for the ground
state. Therefore, we have to find approximate expressions for
numerical calculations. In constructing approximations [57]
the N -representability problem might be important and should
be taken in consideration.

The kinetic energy functional should be approximated,
since the exact forms of the other terms in the total energy
functional are known. One can try to use or generalize the
ground-state approximate functionals. Higuchi and Higuchi
developed a method to approximate the ground-state kinetic
energy functional [58–60]. As their method is based on the
constrained search technique, it can be extended to excited
states. They use representable pair densities with a restriction
of the searching area to the set of single Slater determinants.
The kinetic energy functional Ts gained by this procedure
is, of course, different from the exact one and Higuchi and
Higuchi [58–61] proposed several approximate forms for the
difference 	T . Their technique can be extended to excited
states by a further restriction of the searching area to those
single Slater determinants that are orthogonal to the first i − 1
states. Finally, one has to find adequate approximation for
the difference 	T . Probably, one of the approximate forms
proposed by Higuchi and Higuchi [58–60] will work for
excited states, too. That will be the subject of further research.
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[13] Á. Nagy and M. Levy, Phys. Rev. A 63, 052502 (2001).
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