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A quantum algorithm is presented for the simulation of arbitrary Markovian dynamics of a qubit, described
by a semigroup of single-qubit quantum channels {Tt } specified by a generator L. This algorithm requires only
single-qubit and controlled-NOT gates and approximates the channel Tt = etL up to the chosen accuracy ε, with a
slightly superlinear cost O((‖L‖(1→1)t)1+1/2k/ε1/2k) for any integer k. Inspired by developments in Hamiltonian
simulation, a decomposition and recombination technique is utilized which allows for the exploitation of recently
developed methods for the approximation of arbitrary single-qubit channels. In particular, as a result of these
methods the algorithm requires only a single ancilla qubit, the minimal possible dilation for a nonunitary
single-qubit quantum channel.
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I. INTRODUCTION

One of the primary motivations for the development of
quantum computation is the possibility of efficiently sim-
ulating quantum systems [1–3], as suggested in Feynman’s
seminal paper on the topic [4]. The natural first step towards
this vision is the simulation of closed quantum systems
undergoing Hamiltonian-generated unitary evolution, and over
the past two decades consistent progress has been made in this
field. Initially, Lloyd demonstrated a technique for the efficient
simulation of Hamiltonians constructed as a tensor product of
simpler Hamiltonians [5], and over time new methods and
techniques have been introduced which have generalized the
class of Hamiltonians which can be efficiently simulated while
simultaneously tightening the relevant cost and error bounds
[6–14].

However, equally important is the development of methods
for the simulation of open quantum systems [15,16], crucial for
enhancing our understanding of nonequilibrium dynamics and
thermalization in a wide range of systems, from damped-driven
spin-boson models to complex many fermion-boson models
[2,3]. In particular, one would like to begin by simulating
quantum channels, representing the most general quantum
dynamics possible, and dynamical semigroups of quantum
channels, which describe Markovian dynamics: continuous-
time processes resulting from interactions with a Markovian
environment in the Born approximation [17]. A straightfor-
ward methodology for the simulation of these systems is
instantly suggested by the Stinespring dilation theorem [18], in
which one introduces an initially pure state environment, with
a size the square of the system size in the general case, such
that one may simulate the open system dynamics of the system
via Hamiltonian dynamics of the larger system-environment
combination. Initially, Lloyd [5] conjectured that this approach
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may be improved by utilizing environments initialized in a
mixed state, but this conjecture was quickly falsified by Terhal
et al. [19], who proved that in the worst case an environment of
dimension n2 is necessary for the simulation of n-dimensional
quantum channels via the Stinespring dilation.

An important early contribution was also made by Bacon
et al. [20], who provide a method for decomposing the
generators of Markovian evolution into simpler “primitive”
generators. In particular, they demonstrate that for the single-
qubit case universal simulation of Markovian dynamics
requires only the ability to simulate a specific continuous
one-parameter family of generators, as well as the ability to
implement the recombination methods of linear combination
and unitary conjugation. The development of collision models
[21,22] for understanding quantum decoherence processes
also suggests a constructive approach for the simulation of
open quantum systems, and combining these insights with the
results of Bacon et al. allowed for the development of collision-
model-based methods for the simulation of single-qubit unital
semigroups [23], generalized phase-damping processes [24],
and indivisible qubit channels [25].

More recently the notion of dissipative quantum computa-
tion and state preparation [26] has been introduced, in which,
under the assumption of Markovian dynamics described by a
Lindblad master equation, the interactions of a system with
its environment are no longer considered destructive but are,
instead, utilized to drive a desired computational process. This
formalism offers a natural setting for the simulation of open
quantum systems, and research in this direction has resulted
in successful experimental demonstrations of the dissipative
simulation of complex many-body spin models [27,28]. In
addition, dissipative quantum computation has allowed for al-
ternative approaches to state preparation [29–38] and universal
quantum computation [39,40]. Importantly, however, it has
recently been shown that dissipative quantum computing is no
more powerful than the traditional circuit model: the so-called
“dissipative Church-Turing thesis” [41]. Specifically, it was
shown that the time evolution of an open quantum system can
be efficiently simulated by a unitary quantum circuit of a size
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scaling polynomially in the simulation time and size of the
system.

Given these previous results we address in this paper the
problem of constructing explicitly these efficient quantum
circuits for the simulation of arbitrary Markovian processes
within the traditional circuit model of quantum computation.
In particular, we generalize into the superoperator regime
recombination results, based on higher order Suzuki-Lie-
Trotter formulas [42,43], from recent Hamiltonian simulation
approaches [9–11]. These results allow us to efficiently
implement the recombination methods of Bacon et al. [20],
such that in order to construct efficient quantum circuits for
the simulation of arbitrary Markovian dynamics of a qubit,
it is only necessary to construct efficient circuits for the
simulation of semigroups corresponding to the continuous
one-parameter family of generators defined by Bacon et al.
[20]. Furthermore, recently Wang et al. [44] have shown
how to utilize convex properties of the set of single-qubit
quantum channels [45] to simulate any such channel via
unitary circuits requiring only a single-ancilla qubit, as
opposed to the two-ancilla qubits required by straightforward
implementations of the Stinespring dilation. We utilize these
results for the construction of circuits for the simulation of
the semigroups required by Bacon et al. [20], such that after
recombination we obtain an explicit unitary circuit, with size
scaling slightly superlinearly with respect to time, consisting
only of controlled-NOT (CNOT) gates and single-qubit gates
and requiring only a single-ancilla qubit, for the simulation up
to any desired accuracy of an arbitrary single-qubit quantum
dynamical semigroup.

The structure of this paper is as follows: We begin in
Sec. II by introducing the setting and rigorously defining the
problem we wish to address. Following this we proceed in
Sec. III by presenting the method, introduced in [20], for
the decomposition of an arbitrary generator of a single-qubit
Markov semigroup. In Sec. IV we generalize results from
[10] into the setting applicable for the problem addressed
here, effectively demonstrating a method for the efficient
recombination of the generators decomposed in Sec. III.
Finally, in Sec. V we exploit the methods introduced in [44]
in order to provide explicit efficient unitary circuits for the
semigroups corresponding to the generators resulting from the
decomposition in Sec. III.

II. PROBLEM AND SETTING

Given a system with finite-dimensional Hilbert space
HS = Cd , a quantum state of this system is described by a
density matrix ρ ∈ Md (C) ∼= B(HS), where ρ � 0, tr[ρ] = 1,
and B(HS) is the algebra of bounded operators on HS .
Quantum channels [17] provide the most general framework
for describing the evolution of quantum states and are given
by completely positive, trace-preserving maps,

T : B(HS) → B(HS). (1)

Given any quantum channel T , there exist Kraus operators
{Kj ∈ B(HS)}, such that

T (ρ) =
r∑

j=1

KjρK
†
j . (2)

In the above,
∑r

j=1 K
†
jKj = 1 and r = rank(τ ) � d2 is the

minimal number of Kraus operators, with τ ∈ B(HS ⊗ HS)
the Jamiolkowski state,

τ = (T ⊗ 1S)|�〉〈�|, (3)

where 1S is the identity on HS and |�〉 ∈ HS ⊗ HS is any
maximally entangled state [17]. Furthermore, it is always
possible to dilate the total Hilbert space in order to include an
environment such that the action of the channel on the system
can be viewed as arising from the Hamiltonian-generated
unitary evolution of the total system and environment. Tech-
nically, it is always possible to introduce a dilation space HE

with dim(HE) = [dim(HS)]2 such that there exists a unitary
matrix U ∈ Md3 (C), where

T (ρ) = trE
[
U (|e0〉〈e0| ⊗ ρ)U †] (4)

and |e0〉〈e0| ∈ HE is some initial state of the environment.
However, in the case where d is a factor of rank(τ ), then
it is possible to construct a dilation with dim(HE) = r and
U ∈ Mdr (C); such a dilation space is called a minimal
dilation. Quantum channels as described above provide a
complete picture of discrete-time evolution. However, in this
paper we are concerned with the simulation of Markovian
continuous-time evolutions, described by a continuous one-
parameter semigroup of quantum channels {Tt } satisfying

TtTs = Tt+s , T0 = 1, (5)

for t ∈ R+, where ρ(t) = Tt (ρ(0)). Every continuous one-
parameter semigroup of quantum channels {Tt } has a unique
generator

L : B(HS) → B(HS) (6)

such that

Tt = etL =
∞∑

k=0

t kLk

k!
(7)

and L satisfies the differential equation

d

dt
ρ(t) = L(ρ(t)), (8)

known as a master equation. Furthermore, a linear superop-
erator L : B(HS) → B(HS) is the generator of a continuous
dynamical semigroup of quantum channels, if and only if it
can be written in the form

L(ρ) = i[ρ,H ] +
d2−1∑
k,l=1

Al,k([Fk,ρF
†
l ] + [Fkρ,F

†
l ]), (9)

where H = H † ∈ Md (C) is Hermitian, A ∈ Md2−1(C) is
positive semidefinite, and {Fi} is a basis for the space
of traceless matrices in Md (C). Equation (9) is known
as the Gorini, Kossakowsi, Sudarshan, and Lindblad form
of the quantum Markov master equation and we refer to A

as the GKS matrix [17]. For the remainder of this paper we
choose the basis {Fi}, without loss of generality, to be the
normalized Pauli operators 1√

2
{σx,σy,σz}.

In order to quantify the error in approximations of quantum
channels we utilize the (1 → 1)-norm for superoperators,
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where, in general, the (p → q)-norm of a superoperator is
defined as [46]

‖T ‖p→q := sup
‖A‖p=1

‖T (A)‖q . (10)

The (p → q)-norm defined above is induced from the Schatten
p norm of an operator, defined as ‖A‖p := (tr(|A|p))

1
p . We use

the (1 → 1)-norm, as this is induced by the Schatten 1-norm,
which corresponds up to a factor of 1/2 with the trace distance,
dist(ρ,σ ) := sup0�A�1 tr(A(ρ − σ )), arising from a physical
motivation of the operational distinguishability of quantum
states [39]. At this stage it is possible to succinctly state the
problem which is addressed in this paper.

Problem. Given a continuous one-parameter semigroup of
single-qubit quantum channels {Tt }, generated by a generator
L, specified by a GKS matrix A � 0 ∈ M3(C) and a Hamil-
tonian H = H † ∈ M2(C), find a quantum circuit, acting on
only the system qubit and a single-ancilla qubit and using
at most poly(‖L‖(1→1),t,1/ε) single-qubit and CNOT gates,
that approximates the superoperator Tt = etL such that the
maximum error in the final state, as quantified by the 1-norm,
is at most ε.

It is important to note that each member Tt of an arbitrary
semigroup of single-qubit channels {Tt } is itself a single-qubit
channel and therefore, in principle, when the methods of Wang
et al. are used [44], can be simulated within 1-norm distance ε

using O(log3.97(1/ε)) gates from any specified single-qubit set
S and one CNOT, acting on only the system qubit and a single
ancilla. However, in order to utilize this method, which may
even be improved [47,48] to require only O(log(1/ε)) such
gates, it is necessary first to obtain a decomposition of the
channel Tt into a convex sum of quasiextreme channels; this
explicitly requires the specification of the generator. Therefore
in order to exploit these methods for the simulation of a
semigroup generated by an arbitrary generator, we utilize the
decomposition-recombination strategy outlined in Sec. I. This
strategy is inspired by approaches in Hamiltonian simulation
[9–11], and as such, we simultaneously adopt the notion of
efficiency developed within that context. Due to our restriction
to the single-qubit case our notion of efficiency has no
dependence on the system size, which remains a constant.
However, as in [44], we restrict ourselves to quantum circuits
requiring only a single-ancilla qubit, the smallest possible
minimal dilation for a nonunitary single-qubit channel.

As we are restricting ourselves to single-qubit channels we
begin by recalling some geometric properties of single-qubit
states [45]. As {I,σx,σy,σz} forms a basis for M2(C), every
density matrix ρ can be written in this basis as ρ = 1/2(1 +
r · σ ), where σ = (σx,σy,σz) and r ∈ R3 with |r| � 1. Any
single-qubit quantum channel can then be represented in this
basis by a unique 4 × 4 matrix M , with the structure

M =
(

1 0

m M̃

)
, (11)

where M̃ is a 3 × 3 matrix, 0 and m are row and column
vectors, respectively, and if we define

T (ρ) = ρ ′ = 1/2(1 + r′ · σ ), (12)

then M defines an affine map via

r′ = M̃ · r + m. (13)

At this stage we can proceed to develop the solution to the
problem defined above, as per the strategy outlined in Sec. I.

III. DECOMPOSITION OF THE ARBITRARY
GENERATOR

As outlined in the description of our strategy, the first step
is to provide a decomposition of an arbitrary generator L,
specified as per (9) by a GKS matrix A � 0 ∈ M3(C) and
a Hamiltonian H = H † ∈ M2(C), into the combination of
generators of simpler semigroups. This problem was initially
addressed by Bacon et al. [20] and we follow their strategy
here. As A � 0, one can use the spectral decomposition to
write

A =
3∑

k=1

λkAk, (14)

and therefore, via linearity of L,

L = LH +
3∑

k=1

λkLk, (15)

where

LH (ρ) = i[ρ,H ] (16)

and

Lk(ρ) =
3∑

i,j=1

Ak,(i,j )([Fj ,ρF
†
i ] + [Fjρ,F

†
i ]). (17)

Relabeling L0 := LH and defining λ0 = 1 we can then write

L =
3∑

k=0

λkLk, (18)

giving us that

Tt = etL = exp

(
t

3∑
k=0

λkLk

)
. (19)

Furthermore, defining T
(k)
t ′ := et ′Lk we see via a straightfor-

ward implementation of the Lie-Trotter formula [42] that

Tt = lim
n→∞

[
3∏

k=0

e[tλk (Lk/2)]/n

0∏
k′=3

e[tλk′ (Lk′ /2)]/n

]n

(20)

= lim
n→∞

[
3∏

k=0

T
(k)(

tλk
2n

) 0∏
k′=3

T
(k′)(

tλ
k′

2n

)
]n

. (21)

Using the language of [20] we say that Tt can be constructed
via linear combination of the semigroups {T (k)

t ′ }. In Sec. IV
we present a method for the efficient recombination of linear
combinations; i.e., we provide a method for the approximation
of Tt , up to arbitrary accuracy, using only a finite (polynomial
in t) number of implementations of channels from the
constituent semigroups {T (k)

t }. Given such a method for the
efficient simulation of linear combinations, it is then clear that
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one can obtain an efficient algorithm for the simulation of
Tt , provided that one can efficiently simulate the constituent
channels T

(k)
t .

However, as per [20] we can utilize basis transformations
to further decompose the constituent semigroups {T (k)

t } and,
hence, simplify the task of implementing channels from these
semigroups, which is tackled in Sec. V. First, note that for
k = 1, Lk simply generates Hamiltonian evolution, which can
be simulated using a single unitary operation on a single qubit.
We therefore focus on the generators of dissipative evolution,
for which k ∈ [2,4]. We begin by defining unitary conjugation
of a channel Tt as the procedure transforming Tt according
to U†TtU , where U(ρ) = UρU † for some unitary operator
U . Unitary conjugation preserves all Markovian semigroup
properties and it is clear that the effect of unitary conjugation
is to apply Tt in an alternative basis. In order to use unitary
conjugation to further decompose the semigroups {T (k)

t } we
utilize the following theorem, due to [20], establishing the
manner in which unitary conjugation of a semigroup {Tt }
affects the GKS matrix defining the corresponding generator.

Theorem 1. For an N -dimensional system, unitary con-
jugation of the semigroup {Tt } by U ∈ SU(N ) results in
conjugation of the GKS matrix by a corresponding element
in the adjoint representation of SU(N).

One can then show [20] that, given Ak , as per (14), there
exists Gk ∈ SO(3), the adjoint representation of SU(2), such
that

Ak = GkA(θk )G
T
k , (22)

where

A(θk ) =
⎛
⎝ cos2(θk) −i cos(θk) sin(θk) 0

i cos(θk) sin(θk) sin2(θk) 0
0 0 0

⎞
⎠ (23)

for θk ∈ [0,π/4]. Therefore, as a result of Theorem 1 there
exist unitary matrices Uk ∈ SU(2) such that

T
(k)
t (ρ) = U

†
k

[
T

(θk)
t

(
UkρU

†
k

)]
Uk, (24)

where T
(θk)
t := etL(θk ) and

L(θk)(ρ) =
3∑

i,j=1

A(θk),(i,j )([Fj ,ρF
†
i ] + [Fjρ,F

†
i ]). (25)

In light of the above, we can see that simulation of any channel
from the semigroup {T (k)

t } requires only simulation of channels
from the semigroup {T (θk)

t }, along with implementations of the
single-qubit unitary Uk .

IV. RECOMBINATION

In this section we utilize methods developed within the
context of Hamiltonian simulation [9–11] to show that higher
order Suzuki integrators [42,43] can be used to simulate
Tt up to arbitrary accuracy ε, using a finite sequence of
implementations of T

(j )
t ′ := et ′Lj . In particular, we wish to

place an upper bound on the number of implementations of
T

(j )
t ′ required within this sequence.

Given the generator L = ∑m
j=1 Lj of a dynamical semi-

group of quantum channels, as per (19) where m = 4, we

begin by assuming that

‖L1‖1→1 � ‖L2‖1→1 � · · · � ‖Lm‖1→1 (26)

and defining the normalized component generators L̂j =
Lj /L1, where we have defined L1 := ‖L1‖1→1. We then
follow [10] and define the basic Lie-Trotter product formula
[42,43,49] as

S2(L̂1, . . . ,L̂m,λ) =
m∏

j=1

e( λ
2 )L̂j

1∏
j ′=m

e( λ
2 )L̂j ′ (27)

=
m∏

j=1

T
(j )
tλ

1∏
j ′=m

T
(j ′)
tλ , (28)

where tλ = λ/(2L1). Suzuki’s higher order integrators are then
defined using the recursion relation

S2k(λ) = [S2k−2(pkλ)]2[S2k−2((1 − 4pk)λ)][S2k−2(pkλ)]2,

(29)

where pk = (4 − 41/(2k−1))−1 for k > 1 and for notational
convenience we have used S2k(λ) and S2k−2(λ) to de-
note S2k(L̂1, . . . ,L̂m,λ) and S2k−2(L̂1, . . . ,L̂m,λ), respec-
tively. Note that S2k(λ) consists of a product of

2(m − 1)5k−1 + 1 (30)

exponentials, so that we can define

Nexp = [2(m − 1)5k−1 + 1]x (31)

as the number of exponentials, and hence channels T
(j )
t ′ ,

appearing in the expression [S2k(t/r)]x . In order to obtain the
desired result, we then prove the following theorem, a direct
generalization of the work in [10] to the superoperator setting.

Theorem 2. Let 1 � ε > 0 be such that 4met‖L2‖1→1 � ε;
then for any k ∈ N there exists r such that∥∥∥∥∥∥exp

⎛
⎝t

m∑
j=1

Lj

⎞
⎠ − [

S2k(L̂1, . . . ,L̂m,t/r)
]rL1

∥∥∥∥∥∥
1→1

� ε

(32)

and the number of exponentials required is bounded by

Nexp � (2m − 1)5k−1

[
L1t

(
4emtL2

ε

)1/2k 4me

3

(
5

3

)k−1]
,

(33)

where L2 := ‖L2‖1→1.
In order to prove Theorem 2 we first note that the following

lemma can be proven using the exact same proof as described in
[10], provided one replaces the 1-norm with the (1 → 1)-norm
and notes that ‖T ‖1→1 = 1 for any quantum channel T [41,46],
as the proof relies only on properties of the Taylor expansion
of exponentials and generic properties of the norm, which hold
for both Schatten norms and the induced superoperator norms
[46].

Lemma 1. For k ∈ N, dkλ < k + 1, dk = m(4/3)k(5/3)k−1,
and

‖L̂m‖1→1 � · · · � ‖L̂2‖1→1 � ‖L̂1‖1→1 = 1, (34)
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we have that∥∥∥∥∥∥exp

⎛
⎝λ

m∑
j=1

L̂j

⎞
⎠ − S2k(λ)

∥∥∥∥∥∥
1→1

� 4L2

(2k + 1)!
(dkλ)2k+1,

(35)
where S2k(λ) = S2k(L̂1, . . . ,L̂m,λ).

In addition to Lemma 1, the following lemma is required:
Lemma 2. Given quantum channels T and V we have that

||T n − V n||1→1 � n||T − V ||1→1. (36)

Lemma 2 is a direct generalization to the superoperator
setting of an important result describing the accumulation of
errors due to gate approximations in unitary circuits. However,
in the conventional operator setting the proof relies crucially on
properties of Hermitian operators, and as a result, an alternative
proof is required within this more general setting.

Proof of Lemma 2. It is clear that in the case where n = 1
the lemma is true. Assume that the lemma holds for n = m.
We now show that it holds for n = m + 1 and, as a result,
prove the result by induction:

‖T m+1−V m+1‖1→1=‖T T m − T V m+ T V m − V V m‖1→1

(37)

� ‖T (
T m − V m

)‖1→1 + ‖(T − V
)
V m‖1→1 (38)

� ‖T ‖1→1‖T m − V m‖1→1 + ‖T − V ‖1→1‖V m‖1→1 (39)

� ‖T m − V m‖1→1 + ‖T − V ‖1→1 (40)

� (m + 1)‖T − V ‖1→1. (41)

In the above, (39) follows from (38) via submultiplicativity of
the norm, and (40) follows from (39) due to the fact [41,46]
that for any quantum channel T we have that ‖T ‖1→1 = 1. �

Given these two lemmas it is now possible to follow [10]
in order to prove Theorem 2.

Proof of Theorem 2. First, note that

exp

⎛
⎝t

m∑
j=1

Lj

⎞
⎠ =

⎡
⎣exp

⎛
⎝ t

r

m∑
j=1

L̂j

⎞
⎠

⎤
⎦

rL1

, (42)

and as a result, we can utilize Lemma 1 and Lemma 2 to obtain∥∥∥∥∥∥exp

⎛
⎝t

m∑
j=1

Lj

⎞
⎠ −

[
S2k

(
t

r

)]rL1

∥∥∥∥∥∥
1→1

�4tL2
d2k+1

k

(2k + 1)!

t2k

r2k
.

(43)
Therefore, taking

r � t

(
4tL2d

2k+1
k

ε(2k + 1)!

)1/(2k)

(44)

ensures that (32) is satisfied. Furthermore, via the argument in
[10] it suffices to take

r � t

(
4emtL2

ε

)1/(2k) 2edk

2k + 1
, (45)

such that we can define r as the lower bound,

r := t

(
4emtL2

ε

)1/(2k) 2edk

2k + 1
, (46)

which is easily seen to satisfy the assumptions of Lemma
1. From (31) one can then see that the total number of
exponentials required is

Nexp � (2m − 1)5k−1rL1, (47)

so that substituting in the values of r and dk one
obtains (33). �

As calculated in [10], if ε � mtL2, then the minimum value
of the right-hand side of (33) is achieved for

k = round

(√
1

2
log25/3

4emtL2

ε

)
, (48)

such that the number of exponentials required satisfies

Nexp � 8
3 (2m − 1)metL1e

2
√

1
2 ln(25/3)ln(4emtL2/ε). (49)

Furthermore, by definition of the (1 → 1)-norm we have that
for any density matrix ρ and any superoperators P and Q,

‖P (ρ) − Q(ρ)‖1 � ‖P − Q‖1→1, (50)

and as such, the results of Theorem 2 bound the error
in the output state obtained when approximating Tt with
[S2k(t/r)]rL1 . At this point we have established that any
channel Tt , a member of the semigroup {Tt } generated by
L = ∑m

j=1 Lj , can be simulated up to arbitrary accuracy
using only a slightly superlinear, with respect to t , number
of implementations of T

(j )
t ′ = et ′Lj .

V. SIMULATION OF CONSTITUENT SEMIGROUPS

Given the results in Secs. III and IV, all that remains is
to illustrate a method for the construction of unitary circuits,
consisting only of single-qubit and CNOT gates and requiring
only a single-ancilla qubit, for the exact implementation of
quantum channels from the semigroups {T (θk)

t }. We proceed
by following the strategy, introduced in [44], of decomposing
the channels T

(θk)
t into the convex sum of quasiextreme

channels. These quasiextreme channels require only two Kraus
operators for implementation and, hence, can be simulated
using a unitary circuit acting on only a single-ancilla qubit.
Furthermore, given a decomposition of T

(θk)
t into the convex

sum of quasiextreme channels, T
(θk)
t can be simulated using

classical random sampling of these channels.
In order to obtain this convex decomposition we proceed

via the following steps: First, we utilize the damping basis
[50,51] in order to find the affine map representation of T

(θk)
t .

From this affine map representation it is then easy to construct
the Jamiolkowski state, from which it is possible to obtain the
desired convex decomposition [45].

Using damping basis methods [50,51] (details are given in
the Appendix) we find, as per (11)–(13), that the affine map

022331-5



RYAN SWEKE, ILYA SINAYSKIY, AND FRANCESCO PETRUCCIONE PHYSICAL REVIEW A 90, 022331 (2014)

representation M of T
(θk )
t is given by

M =

⎛
⎜⎜⎜⎝

1 0 0 0

0 
1 0 0

0 0 
2 0

m3 0 0 
3

⎞
⎟⎟⎟⎠, (51)

where


1 = e(−2 sin2(θk)t), (52)


2 = e(−2 cos2(θk)t), (53)


3 = e(−2t), (54)

m3 = sin(2θk)(1 − 
3). (55)

Given this affine representation of T
(θk)
t , the Jamiolkowski state

τ(θk) = (
T

(θk )
t ⊗ 1S

)|ψ0〉〈ψ0|, (56)

with |ψ0〉 = (1/
√

2)(|00〉 + |11〉), is then given by [45]

τ(θk )=1

4

⎛
⎜⎜⎜⎝

a2 0 0 
1 + 
2

0 b2 
1 − 
2 0

0 
1 − 
2 c2 0


1 + 
2 0 0 d2

⎞
⎟⎟⎟⎠,

(57)

with

a = (1 + m3 + 
3)1/2, (58)

b = (1 − m3 − 
3)1/2, (59)

c = (1 + m3 − 
3)1/2, (60)

d = (1 − m3 + 
3)1/2. (61)

In order to utilize τ(θk) to obtain the desired convex
decomposition of T (θk ), we follow the procedure established in
[45]. First, for any quantum channel T we define β(T ) = 2τ

and note that β(T ) can always be written in the block form

β(T ) =
(

A C

C† B

)
. (62)

Furthermore, if T̂ is the adjoint [17] of T , then

β(T̂ ) = U
†
23β(T )U23 (63)

=
(

A C

C† I − A

)
, (64)

where

U23 = U
†
23 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞
⎟⎟⎟⎠. (65)

Given these facts we then utilize the following three results
(Theorem 3, Lemma 3, and Lemma 4), all due to [45], in order
to obtain the desired convex decomposition.

Theorem 3. A quantum channel T is a generalized extreme
point of the set of all quantum channels of the same dimension
if and only if β(T̂ ) is of the form

β(T̂ ) =
(

A
√

AU
√

I − A√
I − AU †√A I − A

)
(66)

for some unitary matrix U .
Lemma 3. A matrix (

A C

C† B

)
(67)

is positive semidefinite if and only if A � 0, B � 0, and C =√
AR

√
B for some contraction R. Moreover, the set of positive

semidefinite matrices with fixed A and B is a convex set whose
extreme points satisfy C = √

AU
√

B for some unitary matrix
U .

Lemma 4. Any contraction in M2(C) can be written as the
convex combination of two unitary matrices.

In light of the above three results, our strategy for obtaining
a convex decomposition of an arbitrary channel T is as follows:
Given β(T ) we find β(T̂ ) using (63). As T is completely
positive, this ensures that β(T̂ ) � 0, and as such we write
β(T̂ ) in the form described in Lemma 3. As R is a contraction,
we know, via Lemma 4, that R can be decomposed into the
convex combination of two unitary matrices, and as a result
we obtain that

β(T̂ ) = 1
2β(T̂1) + 1

2β(T̂2), (68)

where, due to Theorem 3, we see that T1 and T2 are
quasiextreme channels (generalized extreme points of the set
of quantum channels) providing the desired convex decompo-
sition of T . Following these steps for T

(θk )
t we find that

β
(
T̂

(θk)
t

) = 1
2β

(
T̂

θk

(t,1)

) + 1
2β

(
T̂

θk

(t,2)

)
, (69)

where

β
(
T̂

θk

(t,i)

) =
(

A
√

AUi

√
I − A√

I − AU
†
i

√
A I − A

)
, (70)

with

U1 =
(

0 eiφ1

eiφ2 0

)
, U2 =

(
0 e−iφ1

e−iφ2 0

)
, (71)

φ1 = arccos

(

1 + 
2

ab

)
, (72)

φ2 = arccos

(

1 − 
2

cd

)
, (73)

and

A = 1

2

(
a2 0

0 c2

)
. (74)

As in [44], in order to construct the unitary circuits
implementing T

θk

(t,i) it is necessary to first find the Kraus
operators Ki

1 and Ki
2, where

T
θk

(t,i)(ρ) =
2∑

j=1

(
Ki

j

)
ρ
(
Ki

j

)†
. (75)
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To find these Kraus operators one then uses (63) to find the
relevant Jamiolkowski state, before exploiting the standard
Choi-Jamiolkowski correspondence [17]. Following these
steps one obtains

K1
1 = 1√

2

(
0 c

deiφ2 0

)
, K1

2 = 1√
2

(
ae−iφ1 0

0 b

)
(76)

and

K2
1 = 1√

2

(
0 c

de−iφ2 0,

)
K2

2 = 1√
2

(
aeiφ1 0

0 b

)
. (77)

Given these Kraus operators it is then possible to find a
constant-size unitary circuit implementing T

θk

(t,i), consisting
only of CNOT and single-qubit gates, in a variety of ways. The
first method is to apply directly the results of [44] (requiring
an additional two basis transformations), or alternatively, one
can construct from the Kraus operators unitary matrices U

(θk)
i ,

such that

T
θk

(t,i)(ρ) = trE
[(

U
(θk)
i

)
(|0〉〈0| ⊗ ρ)

(
U

(θk)
i

)†]
, (78)

and proceed by obtaining a circuit decomposition of these
unitary matrices. We provide an explicit demonstration of the
latter strategy here. It is important to note that these unitary
matrices are not unique [17]; however, for the purposes of
this paper we choose to work with the following form for the
unitary U

(θk)
1 ,

U
(θk)
1

=

⎛
⎜⎜⎜⎝

e−iφ1 cos(β) 0 0 −e−iφ2 sin(β)

0 cos(α) − sin(α) 0

0 sin(α) cos(α) 0

eiφ2 sin(β) 0 0 eiφ1 cos(β)

⎞
⎟⎟⎟⎠,

(79)

where we have written

cos(β) = 1√
2
a, sin(β) = 1√

2
d, (80)

cos(α) = 1√
2
b, sin(α) = 1√

2
c, (81)

as a result of the observation that a2 + d2 = 2 and b2 + c2 =
2. Furthermore, note that U

(θk)
2 can be simply obtained by

swapping the signs occurring within each exponential function
in U

(θk)
1 and, as such, is not presented explicitly. In order to

obtain an explicit circuit decomposition for U
(θk)
1 we note that

we can write U
(θk)
1 = U

(θk)
1,A U

(θk)
1,B , where U

(θk)
1,A and U

(θk)
1,B are the

two-level unitary matrices

U
(θk)
1,A =

⎛
⎜⎜⎜⎝

e−iφ1 cos(β) 0 0 −e−iφ2 sin(β)

0 1 0 0

0 0 1 0

eiφ2 sin(β) 0 0 eiφ1 cos(β)

⎞
⎟⎟⎟⎠ (82)

Ũ
(θk)
1,A

U
(θk)
1,A =

•

Ũ
(θk)
1,B

U
(θk)
1,B =

FIG. 1. Circuit decompositions for the unitary operators U
(θk )
1,A

and U
(θk )
1,B , where the unitary operator U

(θk )
1 , implementing the

quasiextreme channel T
θk

(t,i) via (78), is given by U
(θk )
1 = U

(θk )
1,A U

(θk )
1,B .

The single-qubit unitary operations Ũ
(θk )
1,A and Ũ

(θk )
1,B are defined in

Eqs. (84) and (85), respectively.

and

U
(θk)
1,B =

⎛
⎜⎜⎜⎝

1 0 0 0

0 cos(α) − sin(α) 0

0 sin(α) cos(α) 0

0 0 0 1

⎞
⎟⎟⎟⎠. (83)

Furthermore, if we define the unitary matrices,

Ũ
(θk)
1,A =

(
e−iφ1 cos(β) −e−iφ2 sin(β)

eiφ2 sin(β) eiφ1 cos(β)

)
(84)

and

Ũ
(θk)
1,B =

(
cos(α) − sin(α)

sin(α) cos(α)

)
, (85)

then we can implement U (θk)
1,A and U

(θk)
1,B using the circuits shown

in Fig. 1.
At this stage all that remains is to obtain circuit decom-

positions of the controlled-Ũ (θk )
1,i gates. In order to implement

the controlled-Ũ (θk )
1,B gate we note the equivalence depicted in

Fig. 2, where AB = Ry(α) and BB = Ry(−α), with Ry the
standard exponentiation of the Pauli y matrix, given by

Ry(θ ) =
(

cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

)
. (86)

Similarly, in order to implement the controlled-Ũ (θk )
1,A gate we

note the equivalence depicted in Fig. 2, where AA = Rz(φ1 +
φ2)Ry(β), BA = Ry(−β)Rz(−φ1), and CA = Rz(−φ2), with

Ũ
(θk)
1,B =

BB AB

Ũ
(θk)
1,A =

AA BA CA

• • •

FIG. 2. Circuit decomposition for the controlled-Ũ (θk )
1,i operations,

required for implementation of the unitary operators U
(θk )
1,i , into only

single-qubit and controlled-NOT gates. The single-qubit unitary gates
are defined as AB = Ry(α), BB = Ry(−α), AA = Rz(φ1 + φ2)Ry(β),
BA = Ry(−β)Rz(−φ1), and CA = Rz(−φ2), where Ry(θ ) and Rz(θ )
are defined in Eqs. (86) and (87), respectively.
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Rz the standard exponentiation of the Pauli z matrix, given by

Rz(θ ) =
(

e−iθ/2 0

0 eiθ/2

)
. (87)

VI. CONCLUSIONS AND OUTLOOK

Combining the results in the previous three sec-
tions we obtain the following algorithm, requiring only
O((‖L‖1→1t)1+1/2j /ε1/2j ) single-qubit and CNOT gates, as a
solution to the problem defined in Sec. II:

(1) Given L, obtain, as per Sec. III, the spectral decompo-
sition

L =
4∑

k=0

λkLk, (88)

and Gk and θk specifying the decomposition

Ak = GkA(θk )G
T
k , (89)

for all k ∈ [1,3].
(2) Choose the desired approximation accuracy ε as well

as the simulation time t . Using Eqs. (28) and (29), construct
S2j (t/r) with

j = round

(√
log25/3

8etL2

ε

)
(90)

and

r = t

(
16etL2

ε

)1/(2j ) 2edj

2j + 1
. (91)

(3) Implement S2j (t/r) L1r times using

T
(k)
t ′ (ρ) = U

†
k

[
T

(θk)
t ′ (UkρU

†
k )

]
Uk, (92)

where λk , L1, and r have been incorporated into t ′, Uk is
obtained from Gk as per Sec. III, and T

(θk)
t ′ is implemented via

classical random sampling of the circuits derived in Sec. V.
In light of this result two natural avenues arise for extension

of this work. The first is the investigation of improvements
to the method presented here for the simulation of arbitrary
single-qubit Markovian open quantum systems. In particular,
it will be of interest to determine whether an optimality result,
analogous to the “no fast-forward theorem” of Hamiltonian
simulation [9], exists in this generalized context, in which
case the results of this paper would be close to optimal
for the single-qubit case. The second natural extension of
this work is the development of methods allowing for the
construction of explicit algorithms for the simulation of
multiqubit and multiqudit Markovian open systems. However,
the work presented in this paper relies heavily on the geometric
properties of single-qubit channels, and as such, generalization
of this work would require investigation into the geometric and
convex structure of multiparticle quantum channels, at present
an open question [52].
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APPENDIX: DAMPING BASIS DERIVATION OF AFFINE
MAP REPRESENTATION

Given the generator L of a semigroup of quantum channels
(with H = 0) one can find the left and right eigenoperators Li

and Ri satisfying [51]

LiL = λ(L,i)Li, (A1)

LRi = λ(R,i)Ri, (A2)

where the left action of a superoperator is defined so that

tr[(XL)ρ] = tr[(L(ρ))X] (A3)

for any Hermitian operator X and for all density matrices
ρ. Using this left action one finds that tr[LiRj ] = δij and
λ(L,i) = λ(R,i). Furthermore, any density matrix ρ(0) can be
expressed in this basis (known as the damping basis), such
that [50]

ρ(0) =
∑

i

tr[Liρ(0)]Ri (A4)

and

ρ(t) = eLt [ρ(0)] (A5)

=
∑

i

tr
[
Liρ(0)

]

iRi, (A6)

with 
i = eλi t . Furthermore, the submatrix M̃ in the affine
map representation of Tt = etL is then given by

M̃ =

⎛
⎜⎝


2 0 0

0 
3 0

0 0 
4

⎞
⎟⎠. (A7)

Utilizing these methods for the semigroup T
(θk )
t generated by

L(θk ), as per (25), we find that

λ2 = −2 sin2(θk), (A8)

λ3 = −2 cos2(θk), (A9)

λ4 = −2. (A10)

The full affine representation, (51)–(55), is then found using
(A7) and constructing m in (11) such that (12) and (13) hold.
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