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Quantum state discrimination is a fundamental task having many applications in quantum information
processing. However up to now there has been no rigorous formulation for discriminating N -qudit states. In
this article we provide a geometric method to obtain minimum error discrimination for N -qudit states. By using
the geometric approach to minimum-error discrimination for N -qudit states, we supply the condition for the
existence of optimal measurement that can be composed of null operators, which gives a key understanding
for discriminating N -qudit states. Furthermore we present how the number of nonzero operators for optimal
measurement can be reduced. Applying our method to symmetric N -qudit states we obtain optimal measurements,
which are different from known ones.
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In quantum communication the sender prepares a quantum
system used as a carrier of information and the receiver
performs a quantum measurement to extract the encoded in-
formation [1–3]. However a mutually nonorthogonal quantum
state cannot be discriminated perfectly. Therefore, obtaining
accurate information is impossible [4]. In classical communi-
cation one uses perfectly discriminated states as carriers, which
means that one can extract the exact information. Along these
lines, it is an important task to find a quantum measurement
that provides the information as accurately as possible. A
strategy to get the optimal measurement can be classified by the
existence of an inconclusive result. The strategies that allow
an inconclusive result are unambiguous discrimination [5–8]
and maximum confidence discrimination [9]. Unambiguous
discrimination permits an inconclusive result with a certain
probability; however, it does not allow the error to be a
conclusive result. Here we take minimum error discrimination
(MD) [4] as a strategy. Unlike the previous two strategies an
inconclusive result does not occur. Therefore if the quantum
states do not become orthogonal to each other, the guessing
error must exist.

The purpose of MD is to find the quantum measurement
that provides the minimum error. The optimal method to
discriminate two quantum states is already known [4,10].
However a method for discriminating three or more general
quantum states has not been supplied except for qubit states.
Hunter [11] and Samsonov [12] considered the case of pure
qubit states. In Refs. [13,14] a complete solution for three
or four mixed qubit states with arbitrary a priori probability
is derived. From the solution the method for discriminating
N -qubit states can be provided because the minimum error
measurement for qubit states can always be written as a
positive-operator valued measure (POVM) with at most four
nonzero elements [11,15,16]. Besides qubit states, there have
been efforts to discriminate special quantum states [17–21].

Even though in Refs. [1,22–24], the necessary and sufficient
condition for measurement to minimize the guessing error
is obtained; however, by using the condition, a method
to obtain the analytic solution for optimal measurement is
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not known yet. Deconinck et al. [16] and Bae et al. [25]
introduced methods to MD for qubit states in terms of
semidefinite programming [26]. In Refs. [13,14] the geometric
representation was provided for the necessary and sufficient
condition for the existence of optimal measurement, which can
be composed of some null operators. Therefore one determines
the maximum number of nonzero operators in measurement,
which can discriminate qubit states with minimum error.

In this article we introduce the geometric approach to MD
for d-level quantum states (qudit states) [27]. Through the
method we provide the geometric condition for the existence
of optimal measurement composed of some null operators.
Using this condition we show that for MD to given N -qudit
states, there exists the case that one does not need to consider
every state. Furthermore we show how the number of nonzero
operators for minimum error measurement can be reduced.
And we prove that then it is sufficient to handle a specific
d2 number of quantum states (when one needs to consider
d-dimensional complex Hilbert space Hd ) [15]. Applying this
to cyclic states suggested by Chou and Hsu [21], we supply
the method to obtain optimal measurement, which has at most
d2 nonzero operators.

One can consider MD as a process of sending a message
from Alice to Bob. Before Alice send a message to Bob, she
tells him that she encodes alphabet x with probability qx into
the quantum state corresponding to the density operator ρx

on a d-dimensional complex Hilbert space Hd , which we
write as {qx,ρx}. A density operator is a positive semidefinite
Hermitian operator with unit trace. What Bob has to do is
discriminate {ρx} with minimum error. In order to receive
Alice’s message, he performs a measurement described by a
POVM {Mx} which consists of positive semidefinite Hermitian
operators Mx on Hd and satisfies the completeness relation∑

x Mx = Id , where Id is the identity operator on Hd . When a
click of Mx means the detection of quantum state ρx , the prob-
ability that Bob understand Alice’s message x as y becomes
P (y|ρx) = tr[ρxMy] by Gleason’s theorem [28]. Therefore in
{qx,ρx} the probability for transmitting Alice’s message to
Bob correctly turns out to be Pcorr = ∑

x qx tr[ρxMx]. The
purpose of MD is to minimize the probability of detection
error Perr(=1 − Pcorr) with measurement. It is equivalent to
maximize Pcorr using POVM. In MD the maximum value of
Pcorr is called the guessing probability, Pguess. Let m be an
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alphabet corresponding to the greatest a priori probability.
That is, qm = maxx qx . If Pguess = qm, Bob does not need to
use measurement for the best effort [29].

The discrimination of {qx,ρx}Nx=1 can be understood as
a discrimination of {qx/Qχ,ρx}x∈χ with probability Qχ (=∑

x∈χ qx) and {qx/QχC ,ρx}x∈χC with the probability QχC (=
1 − Qχ ). Here χ and χC are some subset of {x}Nx=1 and its
complementary set, respectively. If {Mx > 0}x∈χ and P

(χ)
guess are

an optimal POVM of {qx,ρx}Nx=1 and the guessing probability
of {qx/Qχ,ρx}x∈χ , respectively, then Pguess = Qχ × P

(χ)
guess

because the POVM does not guess the quantum states as
ρx(∀x ∈ χC). Therefore in {qx,ρx}Nx=1 if Bob can discriminate
|χ | alphabets {x}x∈χ optimally, the message transmission with
minimum error is possible.

Now we will explain how to find such a subset χ of {x}Nx=1
when Alice encodes messages using a d-level quantum state,
that is, a qudit state. The Lagrange dual problem [16] for the
original problem to maximize Pcorr under POVM constraints
is to mimimize tr[K] with K = K† and K � qxρx . Using the
convexity of the MD problem and separating the hyperplane
theorem, one can see that Pguess � tr[K] for any K satisfying
constraints of the dual problem and there must exist a POVM
{Mx}Nx=1 and a feasible K satisfying Pcorr = tr[K] [24]. The
approach to MD as the complementarity problem can be
introduced using the set of complementary states {rx,ρ̃x}Nx=1,
which satisfies K = qxρx + rxρ̃x(∀x) for optimal K [25]. Here
rx are nonnegative numbers and ρ̃x are density operators on
Hd . When {Mx}Nx=1 is an optimal POVM and {rx,ρ̃x}Nx=1 is
a set of complementary states, the following relation should
hold:

Pguess =
N∑

x=1

qx tr[ρxMx] =
N∑

x=1

tr[(K − rxρ̃x)Mx]

= tr[K] −
N∑

x=1

rx tr[ρ̃xMx]

= tr[K] = qx + rx ∀x. (1)

Because of this result, for optimality of both prob-
lems, one must need rx tr[ρ̃xMx] = 0(∀x), which is called
the complementary slackness. If this condition is added to the
constraints of the primal and the dual problem, one can have the
necessary and sufficient conditions of {Mx}Nx=1 and {rx,ρ̃x}Nx=1
for optimality of both problems [30]. Let us introduce the
geometric representation for the qudit state [27]:

ρx = 1

d

(
Id +

√
d(d − 1)

2
vx · λ

)
∀x,

(2)

ρ̃x = 1

d

(
Id +

√
d(d − 1)

2
wx · λ

)
∀x,

where λ is (d2 − 1) generators of SU (d) satisfying the
Hermitian λx = λ

†
x , traceless tr[λx] = 0, trace-orthogonal

tr[λiλj ] = 2δij properties, and vx and wx are Bloch vectors
in the generalized Bloch ball �d ⊂ Rd2−1 for the qudit state.
Using this representation one can see that

qxρx − qyρy = ryρ̃y − rxρ̃x, (3)

and the constraints of the dual problem can be rewritten as rx −
ry = qy − qx(∀x,y) and rxwx − rywy = qyvy − qxvx(∀x,y).
By the positive semidefinite condition of the POVM, the
elements can be found as

Mx = px

(
Id +

√
d(d − 1)

2
ux · λ

)
∀x, (4)

where px are nonnegative numbers and ux are Bloch vectors in
�d . From the completeness condition, one can obtain

∑
x px =

1 and
∑

x pxux = 0, which are the geometric representations
for POVM constraints. In addition, by Eqs. (2) and (4),
the complementary slackness condition becomes pxrx[(d −
1)ux · wx + 1] = 0(∀x). Then one has the following theorem.

Theorem 1. In {qx,ρx}Nx=1, there exists a minimum error
measurement expressed by the POVM, which has N nonzero
elements and its guessing probability is greater than the largest
a priori probability if and only if there exist an optimal POVM
and a set of complementary states described as {px > 0,ux ∈
�d}Nx=1 and {rx > 0,wx ∈ �d}Nx=1, respectively, fulfilling the
following conditions:

(i) rxwx − rywy = qyvy − qxvx ∀x,y,

(ii)
N∑

x=1

px = 1,

N∑
x=1

pxux = 0,

(5)
(iii) ux · wx = −1/(d − 1) ∀x,

(iv) rx − ry = qy − qx ∀x,y.

Suppose that Pguess > qm in {qx,ρx}Nx=1 and {Mx}Nx=1 is
an optimal POVM whose every element is nonzero and
{rx,ρ̃x}Nx=1 is a set of complementary states. Let {px � 0,ux ∈
�d}Nx=1 and {rx � 0,wx ∈ �d}Nx=1 be two sets of Bloch vectors
corresponding to its optimal POVM and complementary states,
respectively. What is needed is to show that they satisfy
condition (iii) because constraints of the primal and the dual
problem contain conditions (i), (ii), and (iv) of Eq. (5).
Since pxrx[(d − 1)ux · wx + 1] = 0(∀x) by complementary
slackness, its proof can be shown through px,rx > 0(∀x).
px > 0(∀x) can be found from the fact every element of POVM
is nonzero. rx > 0(∀x) can be shown through the following two
facts: (i) because of rx − ry = qy − qx(∀x,y), rm becomes the
minimum of {rx}Nx=1, and (ii) Pguess > qm and Pguess = qm + rm

imply rm > 0. Therefore, in {qx,ρx}Nx=1, if Pguess > qm and
there exists an optimal measurement whose POVM consists of
N nonzero operators, there must exist {px > 0,ux ∈ �d}Nx=1
and {rx > 0,wx ∈ �d}Nx=1 fulfilling the conditions in Eq. (5).

Now let us prove the inverse and assume that {px > 0,ux ∈
�d}Nx=1 and {rx > 0,wx ∈ �d}Nx=1 satisfy the conditions in
Eq. (5). It is clear that {Mx}Nx=1 and {ρ̃x}Nx=1 obtained by
substituting these parameters into Eqs. (2)–(4) satisfy the
constraints of the primal and dual problems and the com-
plementary slackness condition. Thus, {Mx}Nx=1 is an optimal
POVM whose every element is nonzero since every px is
nonzero, and {rx,ρ̃x}Nx=1 is a set of complementary states. Then
we can see that the guessing probability is larger than qm,
from the fact that Pguess = qm + rm and rm > 0. Therefore the
inverse is proved.

This tells the following fact: In {qx,ρx}Nx=1, if {px > 0,ux ∈
�d}Nx=1 and {rx > 0,wx ∈ �d}Nx=1 cannot fulfill the geometric
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optimality condition (GOC) of Eq. (5), it is not necessary to
consider every alphabets {x}Nx=1 for message transmission with
minimum error. It is because the guessing probability Pguess

is either qm with a POVM {Mm = Id} or Qχ × P
(χ)
guess(>qm)

with some POVM {Mx > 0}x∈χ (χ ⊂ {x}Nx=1). Note that χ is
a proper subset of {x}Nx=1. In the latter case, since P

(χ)
guess >

qm/Qχ � (maxx∈χ qx)/Qχ and Mx > 0 for any x ∈ χ , there
must exist {px > 0,ux ∈ �d}x∈χ and {rx > 0,wx ∈ �d}x∈χ

such that {px,ux}x∈χ and {rx/Qχ,wx}x∈χ fulfill the GOC of
{qx/Qχ,ρx}x∈χ .

Let us consider MD for N -qudit states satisfying the follow-
ing three conditions: (i) qx = 1/N (∀x), (ii) the relative interior
of {vx}Nx=1 contains the origin of the Bloch ball, and (iii) ρx

has f (1 � f < d) eigenvalue 1/f . The first condition implies
that, if {rx,ux}Nx=1 are a set of Bloch vectors’ corresponding
complementary states, rx are all equal. The second one means
that there exists {px > 0}Nx=1 satisfying

∑N
x=1 px = 1 and∑N

x=1 pxvx = 0. Since tr[ρ2
x ] = (1 + (d − 1)‖vx‖2

2)/d = 1/f

and

Id − fρx = d − f

d

(
Id −

√
d(d − 1)

2

f vx

d − f
· λ

)
� 0

for any x, all of vx fulfill ‖vx‖2
2 = (d − f )/f (d − 1)

and −f vx/(d − f ) ∈ �d . From these relations we can
see that, if for any x, we can have rx = (d − f )/Nf ,
wx = −f vx/(d − f )}Nx=1, and ux = vx , {px,ux}Nx=1
and {rx,wx}Nx=1 can satisfy the GOC of {qx,ρx}Nx=1.
Therefore d/Nf [=1/N + (d − f )/Nf = qx + rx ∀x]
and {dpxρx(=dpx[Id + √

d(d − 1)/2vx · λ]/d =
px[Id + √

d(d − 1)/2ux · λ])}Nx=1 are the guessing
probability and a POVM of minimum-error measurement
in {qx,ρx}Nx=1, respectively. Then if

∑N
x=1 vx = 0, we have∑N

x=1 qxρx = Id/d. If we set px = 1/N(∀x), we can make an
optimal POVM {dpxρx}Nx=1 as a square root or a pretty good
measurement [31].

Now we provide the method in which the number of
nonzero operators for optimal measurement can be reduced.
Suppose that Pguess = Qχ × P

(χ)
guess > qm (χ ⊆ {x}Nx=1). Note

that this χ is not necessarily a proper subset of {x}Nx=1.
Then by theorem there exist {px > 0,ux ∈ �d}x∈χ and {rx >

0,wx ∈ �d}x∈χ such that {px,ux}x∈χ and {rx/Qχ,wx}x∈χ

fulfill the GOC of {qx/Qχ,ρx}x∈χ . Let Mx be POVM el-
ements corresponding {px,ux}x∈χ . For {p̄x > 0}x∈� (� ⊆
χ ) fulfilling

∑
x∈�(p̄xd/tr[Mx])Mx = Id , {p̄x,ux}x∈� and

{rx/Q�,wx}x∈� can satisfy the GOC of {qx/Q�,ρx}x∈�.
Therefore the measurement associated with the POVM

{(p̄xd/tr[Mx])Mx}x∈� can discriminate {qx/Q�,ρx}x∈� with
minimum error. Then we find that

Q� × P (�)
guess = qx + rx = Qχ × P (χ)

guess = Pguess, (6)

for any x ∈ � ⊆ χ . This implies that the suggested POVM
is another one describing the minimum-error measurement.
Then we obtain the following lemma.

Lemma 1. In the discrimination of a set of qudit states
{qx,ρx}Nx=1, when {Mx > 0}x∈χ (χ ⊆ {x}Nx=1) is a POVM de-
scribing the minimum-error measurement and the guessing
probability is larger than the greatest a priori probability,
if {p̄x > 0}x∈�(� ⊆ χ ) satisfies

∑
x∈�(p̄xd/tr[Mx])Mx = Id ,

{(p̄xd/tr[Mx])Mx}x∈� is also a POVM describing the mini-
mum error measurement in {qx,ρx}Nx=1.

By Carathéodory’s theorem, if the relative interior of
{ux}x∈χ contains the origin of �d , there must exist a subset
� of χ satisfying the following conditions: (i) the convex
hull of {ux}x∈� is simplex, and (ii)the relative interior of
{ux}x∈� contains the origin of �d . Furthermore the fact that
�d ⊂ Rd2−1 tells us that the affine dimension of simplex of
the convex hull of {ux}x∈� is less than d2. This means that the
number of elements of � should be equal to or less than d2.
Therefore we obtain the following corollary [15].

Corollary 1. For MD for any qudit state, there exists a
minimum-error measurement expressed by nonzero operators
equal to or less than d2.

This tells us the following fact: If one can analyze MD
for d2-qudit states, one can obtain the guessing probability
and an optimal POVM for MD to N -qudit states. When
N > d2, {px > 0,ux ∈ �d}Nx=1 and {rx > 0,wx ∈ �d}Nx=1 are
hard to fulfill the GOC of {qx,ρx}Nx=1. This is because
condition (iv) of Eq. (5) builds equality conditions and one
cannot express the GOC as inequality like the GOC [13,14]
of qubit states. In fact when N > d2 and Pguess > qm, the
minimum-error measurement may not be a POVM with N

nonzero elements. However for special symmetric states,
though N > d2, there exists a minimum-error measurement
with N nonzero elements [17,21].

From now on, for MD to N (>d2)-cyclic states, using
Lemma 1, we show the method to provide a minimum-error
measurement which has equal to or less than d2 nonzero opera-
tors. The N (>d2)-cyclic states {ρx}Nx=1 (satisfying ρy+N = ρy

for y ∈ {x}Nx=1) can be defined as {ρx = Uxρ0U
x†}Nx=1, where

a unitary operator U on H and a density operator ρ0 on H are
given by

U =
d−1∑
k=0

e2πifk/N |φk〉〈φk|, ρ0 =
d−1∑
i,j=0

ci,j |φi〉〈φj |. (7)

Here |φk〉 are orthonormal eigenvectors of U and fk are
integers between 0 and N − 1 satisfying ρy 
= ρz for any
y,z ∈ {x}Nx=1 with y 
= z. If there exist y,z ∈ {x}Nx=1 fulfilling
ρy = ρz and y 
= z, one can see that there exist X ∈ {x}N−1

x=1
satisfying ρX = ρ0 and N ≡ 0(mod X). The discrimination
of {1/N,ρx}Nx=1 is equivalent to that of {1/X,ρx}Xx=1 for X

less than N . Therefore it is sufficient to consider the unitary
operator U mentioned above. Since ρN = ρ0, preparing
{1/N,ρx}N−1

x=0 is equivalent to preparing {1/N,ρx}Nx=1. Here
we choose the index from x = 0 to N − 1. We assume
that f0 = 0 and as k increases fk also increases. This
means that 0 = f0 < f1 < · · · < fd−1 < N . The assumption
is that this operator U can preserve its unitarity when d =
2; however it does not when d > 2. The results of Ref.
[21] show that if ci,j � 0 for any i,j , the measurement
described as {Mx = Ux |
〉〈
|Ux†}N−1

x=0 is a minimum error
measurement in {1/N,ρx}N−1

x=0 and the guessing probability
becomes (1/N )(

∑d−1
i,j=0 ci,j ), where

|
〉 = 1√
N

d−1∑
k=0

|φk〉. (8)
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If for i,j ∈ {0, . . . ,d − 1} satisfying i 
= j , ci,j = 0, one
can see that ρ0 = ρ1 = · · · = ρN−1, which cannot fulfill an
assumption such as ρy 
= ρz for y,z ∈ {x}Nx=1 with y 
= z.
Therefore there should exist i,j ∈ {0, . . . ,d − 1} with i 
= j ,
satisfying ci,j > 0. Furthermore

∑d−1
i=0 ci,i = tr[ρ0] = 1 gives

Pguess > 1/N = qm.
Here we obtain the necessary and sufficient condi-

tion for
∑

x∈�(p̄xd/tr[Mx])Mx = Id , when {p̄x > 0}x∈�(� ⊂
{x}N−1

x=0 ) satisfies the following special constraints: (i) 0 ∈ �

and N/2 /∈ �, (ii) if x ∈ � \ {0}, N − x ∈ � and p̄x = p̄N−x ,
(iii) |�| � d2, where |�| is the number of elements of �. We
now substitute Mx = Ux |
〉〈
|Ux†(x ∈ �) and U of Eq. (7)
into

∑
x∈�(p̄xd/tr[Mx])Mx :

∑
x∈�

p̄xd Mx

tr[Mx]
=

d−1∑
k,l=0

∑
x∈�

p̄xU
x |φk〉〈φl|Ux†

=
d−1∑
k,l=0

|φk〉〈φl|
∑
x∈�

p̄xe
2πi(fk−fl )x/N . (9)

From
∑

x∈� p̄x = 1 one can see that∑
x∈�(p̄xd/tr[Mx])Mx = Id becomes∑

x∈�

p̄x cos

[
2π (fk − fl)x

N

]
= 0 ∀k,l, (10)

∑
x∈�

p̄x sin

[
2π (fk − fl)x

N

]
= 0 ∀k,l. (11)

For {p̄x > 0}x∈� these condition can be rewritten as

p̄0 + 2

|�|−1
2∑

i=1

p̄
x

(�)
i

= 1,

(12)

p̄0 + 2

|�|−1
2∑

i=1

p̄
x

(�)
i

cos

[
2π (fk − fl)x

(�)
i

N

]
= 0 ∀k,l,

where x
(�)
i are elements of � \ {0} satisfying x

(�)
j < x

(�)
j+1.

Since the number of elements of � is odd and the sine
function is an odd function, the conditions of Eq. (11)
vanish for any k,l. If {p̄x > 0}x∈� satisfies the previous
three conditions and the conditions of Eq. (12), by Lemma
1, the measurement expressed as {Np̄xU

x |
〉〈
|Ux†}x∈�

can discriminate {1/N,Uxρ0U
x†}N−1

x=0 with minimum error. In
Eq. (12), the second equation when k = l coincides with the
first equation (the second equation when k > l coincides with
the equation when k < l). One should note that the conditions
of Eq. (12) are independent of orthonormal eigenvectors of U .

For the case of d = 2, if {|φ′
0〉 = |φ0〉,|φ′

1〉 =
(c1,0/|c1,0|)|φ1〉} are used instead of {|φ0〉,|φ1〉} as orthonormal
eigenvectors of U , every element of ρ0 is positive. U and ρ0

in Eq. (7) can be written in the following way:

U = ‖φ′
0〉〈φ′

0| + e2πif1/N |φ′
1〉〈φ′

1|,
ρ0 = c0,0|φ′

0〉〈φ′
0| + |c0,1||φ′

0〉〈φ′
1| (13)

+|c1,0||φ′
1〉〈φ′

0| + c1,1|φ′
1〉〈φ′

1|.

The conditions of Eq. (12) can be expressed by

�

(
p̄0

p̄x1

)
=

(
1
0

)
, (14)

where

� =
(

1 2

1 2 cos
[ 2πf1x

(�)
1

N

]
)

. (15)

Since det[�] 
= 0 is equivalent to cos[2πf1x
(�)
1 /N] < 1, � can

be invertible in this case. By multiplying �−1 to Eq. (14) p̄0

and p̄
x

(�)
1

can be found as

p̄0 = − cos
[
2πf1x

(�)
1 /N

]
1 − cos

[
2πf1x

(�)
1 /N

] ,

(16)

p̄
x

(�)
1

= 1

2
(
1 − cos

[
2πf1x

(�)
1 /N

]) .

From this we can see that the condition for p̄0,p̄x
(�)
1

>

0 becomes cos[2πf1x
(�)
1 /N ] < 0. This condition contains

det[�] 
= 0. Lemma 2 summarizes this result.
Lemma 2. Let U and ρ0 be a unitary operator on H2 and a

density operator on H2, respectively, described as

U = |φ0〉〈φ0| + e2πif/N |φ1〉〈φ1|,
(17)

ρ0 =
1∑

i,j=0

ci,j |φi〉〈φj |,

where |φk〉 are orthonormal eigenvectors of U and f is an
integer between 1 and N − 1 satisfying ρy 
= ρz for any
y,z ∈ {x}N−1

x=0 with y 
= z and N being an integer more than 4.
Then if x ′ satisfies cos[2πf x ′/N ] < 0, the following operators
{M0,Mx ′ ,MN−x ′ } become a POVM associated with minimum-
error measurement in {1/N,Uxρ0U

x†}N−1
x=0 :

M0 =
( − cos[2πf x ′/N ]

1 − cos[2πf x ′/N ]

)
M̃0,

Mx ′ =
(

1

2(1 − cos[2πf x ′/N ])

)
M̃x ′ , (18)

MN−x ′ =
(

1

2(1 − cos[2πf x ′/N ])

)
M̃N−x ′ ,

where

M̃x = Ux |
̄〉〈
̄|Ux†,
(19)

|
̄〉 = 1√
N

(
|φ0〉 + 〈φ1|ρ0|φ0〉

|〈φ1|ρ0|φ0〉| |φ1〉
)

.

Finally let us consider an example when d = 3. If f1 = 1
and f2 = 2 for d = 3 and N = 9, one can find f1 − f0 =
f2 − f1 = 1 and f2 − f0 = 2. This shows that the conditions
of Eq. (12) become

p̄0 + 2

|�|−1
2∑

i=1

p̄
x

(�)
i

= 1,

p̄0 + 2

|�|−1
2∑

i=1

p̄
x

(�)
i

cos

[
2πx

(�)
i

9

]
= 0,
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p̄0 + 2

|�|−1
2∑

i=1

p̄
x

(�)
i

cos

[
4πx

(�)
i

9

]
= 0. (20)

When � = {0,3,6} the first condition of Eq. (20) becomes
p̄0 + 2p̄3 = 1. The second and third ones become p̄0 − p̄3 =
0. Therefore the conditions for p̄0 and p̄3 are expressed
as (

1 2
1 −1

) (
p̄0

p̄3

)
=

(
1
0

)
. (21)

Without using an invertible matrix, we can see that p̄0 = p̄3 =
p̄6 = 1/3 fulfills this equation. This means that the measure-
ment {3Ux |
〉〈
|Ux†}x∈� can discriminate {qx,ρx}8

x=0 with
minimum error.

In this article we provided a geometric method to obtain
MD for qudit states. By supplying the geometric conditions
for minimum error measurement including null operators, we
could understand the structure to MD for N -qudit states.
Furthermore we investigated the way to reduce the number
of nonzero operators for minimum-error measurement and
determined how many nonzero operators can exist. Finally we
applied our method to symmetric states and obtained optimal
measurements which are different from known ones.
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