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The entanglement between the position and the coin state of an N -dimensional quantum walker is shown to lead
to a thermodynamic theory. The entropy, in this thermodynamics, is associated with the reduced density operator
for the evolution of chirality, taking a partial trace over positions. From the asymptotic reduced density matrix it
is possible to define thermodynamic quantities, such as the asymptotic entanglement entropy, temperature, and
Helmholz free energy. We study in detail the case of a two-dimensional quantum walk, in the case of two initial
conditions: a nonseparable coin-position initial state and a separable one. The resulting entanglement temperature
is presented as a function of the parameters of the system and those of the initial conditions.
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I. INTRODUCTION

The coined quantum walk (QW) model on the line was
introduced by Aharonov et al. [1] and its properties in
graphs were studied in Ref. [2]. In this model, the particle
jumps from site to site in a direction which depends on
the value of an internal degree of freedom called chirality.
QWs on multidimensional lattices have been studied by
many authors [3–6] and display the key feature of spreading
quadratically faster, in terms of the probability distribution,
compared to the classical random walk model on the same
underlying structure [7]. These models were successfully ap-
plied to develop quantum algorithms, especially for searching a
marked node in graphs [8–10]. There are other models of QWs
and some of them do not use an auxiliary Hilbert space and
have no coin. The continuous-time QW model introduced by
Farhi and Gutman [11] and the coinless QW model introduced
by Patel et al. [12] are examples of such models. The latter
model can be used to search a marked node on two-dimensional
finite lattices with the same number of steps (asymptotically in
terms of the system size) compared to the coined model, with
the advantage of using a smaller Hilbert space [13].

The thermodynamics of QWs on the line was introduced
in Refs. [14,15] using the coined QW model, which has
two subspaces, namely, the coin and spatial parts. Taking
the model’s whole Hilbert space, the dynamics is unitary,
with no change in the entropy. On the other hand, the coin
subspace evolves entangled with its environment. In the
asymptotic limit (t → ∞), after tracing out the spatial part,
the coin reaches a final equilibrium state which, if we consider
the quantum canonical ensemble, can be seen to have an
associated temperature. This procedure allows the introduction
of thermodynamical quantities and helps to clarify the physics
behind the dynamics. In most cases, the thermodynamical
quantities depend on the initial condition, in stark contrast
with the classical Markovian behavior.

In general, the Hilbert space of a quantum mechani-
cal model factors as a tensor product Hsys ⊗ Henv of the
spaces describing the degrees of freedom of the system and
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environment. The evolution of the system is determined by
the reduced density operator that results from taking the trace
overHenv to obtain �sys = trenv(ρ). A simple toy model, similar
to our model studied in Refs. [16] and [17], shows how the
correlations of a quantum system with other systems may cause
one of its observables to behave in a classical manner. In this
sense, the fact that the partial trace over the QW positions
leads to a system effectively in thermal equilibrium agrees
with these previous results.

In this work, we focus our attention on the thermodynamics
of coined QWs on multidimensional lattices. The analysis of
the dynamics is greatly simplified by using the Fourier basis
(momentum space). In the computational basis, the evolution
operator is in a Hilbert space of infinite dimensions, while
in the Fourier basis we use a new operator in the finite
coin subspace. The temperature of the QW is obtained by
taking the asymptotic limit (t → ∞) of the reduced density
matrix of the coin subspace and by making a correspondence
with a quantum canonical ensemble. Using the saddle-point
expansion theorem [18], we obtain the expression of the
entanglement temperature in terms of the coin entries and the
initial state. This analysis generalizes the results in Ref. [14]
and allows us to obtain many new examples due to the
increased number of degrees of freedom.

The paper is organized as follows. In Sec. II we review the
dynamics of multidimensional coined QWs in terms of the
Fourier basis. In Sec. III we describe the thermodynamics of
QWs on lattices and show how to obtain the temperature and
other thermodynamical quantities. In Sec. IV we obtain an
explicit expression for the temperature in terms of the initial
condition. In Sec. V we give some examples in two dimensions.
In the last section we draw conclusions.

II. N-DIMENSIONAL DISCRETE QUANTUM WALKS

In this section, following Ref. [19], we present a brief
theoretical development to obtain the wave function of the
system. The system moves at discrete time steps t ∈ N across
an N -dimensional lattice of sites x ≡ (x1, . . . ,xN ) ∈ ZN . Its
evolution is governed by a unitary time operator. This operator
can be written as the application of two simpler operators, one
representing the unitary operator due to the 2N -dimensional
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coin which determines the direction of displacement and the
other being specifically the unitary operator of the displace-
ment. The Hilbert space of the whole system then has the form

H = HP ⊗ HC, (1)

where the position space, HP, is spanned by the unitary
vectors {|uα〉 ≡ |δ1α, . . . ,δNα〉; α = 1, . . . ,N}, and the coin
space, HC, is spanned by 2N orthonormal quantum states
{|αη〉 : α = 1, . . . ,N ; η = ±}. Therefore α is associated with
the axis, and η with the direction. In the usual QW on the line
(N = 1), |1−〉 and |1+〉 are the right and left states, |R〉 and
|L〉. The state of the system at any time t is represented by the
ket |ψt 〉, which can be expressed as

|ψt 〉 =
∑

x∈ZN

N∑
α=1

∑
η=±

ψ
α,η
x,t |x〉 ⊗ |αη〉, (2)

where

ψ
α,η
x,t = (〈αη| ⊗ 〈x|)|ψt 〉. (3)

We define, at each point x, the ket

|ψx,t 〉 = 〈x|ψt 〉 =
N∑

α=1

∑
η=±

ψ
α,η
x,t |αη〉, (4)

which is a coin state, so that

ψ
α,η
x,t = 〈αη|ψx,t 〉. (5)

As |ψα,η
x,t |2 = |(〈αη| ⊗ 〈x|)|ψt 〉|2 is the probability of finding

the walker at (x,t) and the coin in state |αη〉, the probability of
finding the walker at (x,t) irrespective of the coin state is then

Px,t =
N∑

α=1

∑
η=±

∣∣ψα,η
x,t

∣∣2 = 〈ψx,t |ψx,t 〉, (6)

where we have used the fact that
∑N

α=1

∑
η=± |αη〉〈αη| is the

identity in HC. Clearly
∑

x Px,t = 1 because
∑

x |x〉〈x| is the
identity in HP.

The dynamical evolution of the system is ruled by

|ψt+1〉 = Û |ψt 〉, (7)

where the unitary operator

Û = D̂ ◦ (Î ⊗ Ĉ) (8)

is given in terms of the identity operator in HP, Î , and two
more unitary operators. First, the so-called coin operator Ĉ,
which acts in HC, can be written in its more general form as

Ĉ =
N∑

α=1

∑
η=±

N∑
α′=1

∑
η′=±

C
α,η

α′,η′ |αη〉〈α′
η′ |, (9)

where the matrix elements C
α,η

α′,η′ ≡ 〈αη|Ĉ|α′
η′ 〉 can be arranged

as a 2N×2N unitary square matrix C. Then D̂ is the
conditional displacement operator in H:

D̂ =
∑

x

N∑
α=1

∑
η=±

|x + ηuα〉〈x| ⊗ |αη〉〈αη|. (10)

Note that, depending on the coin state |αη〉, the walker moves
one site to the positive or negative direction of xα if η = + or
η = −, respectively.

Projecting Eq. (7) onto 〈x| and using Eqs. (3) and (8)–(10)
we obtain

|ψx,t+1〉 =
N∑

α=1

∑
η=±

|αη〉〈αη|Ĉ|ψx−ηuα,t 〉, (11)

which, further projected onto 〈αη|, leads to

ψ
α,η

x,t+1 =
N∑

α′=1

∑
η′=±

C
α,η

α′,η′ψ
α′,η′
x−ηuα,t . (12)

Equation (12) is the N -dimensional QW map in the position
representation. It shows that for any given time step the wave
function at each point is the coherent linear superposition of
the wave functions at the neighboring points calculated in
the previous time step, the weights of the superposition being
given by the coin operator matrix elements C

α,η

α′,η′ .
Given the linearity of the map and the fact that it is space

invariant, i.e., the matrix elements C
α,η

α′,η′ do not depend on
the space coordinates, the spatial discrete Fourier transform
(DFT), which has been used many times in QW studies [20,21],
is a very useful technique.

The DFT is defined as

|ψ̃k,t 〉 ≡
∑

x

e−ik·x|ψx,t 〉, (13)

where k = (k1, . . . ,kN ); kα ∈ [−π,π ], is the quasimomentum
vector. The DFT satisfies

|ψx,t 〉 ≡
∫

dNk
(2π )N

eik·x|ψ̃k,t 〉. (14)

Following Eq. (4) we define the components of the wave
function in momentum space as

|ψ̃k,t 〉 =
N∑

α=1

∑
η=±

ψ̃
α,η

k,t |αη〉, (15)

ψ̃
α,η

k,t =
∑

x

e−ik·xψα,η
x,t . (16)

Applying the previous definitions to the map, (12), and using∑
x

e−ik·x|ψx−ηuα,t 〉 = exp(−iηk · uα)|ψ̃k,t 〉, (17)

we obtain

|ψ̃k,t+1〉 = Ĉk|ψ̃k,t 〉, (18)

where we have defined a coin operator in momentum space,

Ĉk ≡
N∑

α=1

∑
η=±

|αη〉〈αη|Ĉ exp(−iηkα). (19)

Above, kα = k · uα .
The matrix elements of the coin operator in this space are

〈αη|Ĉk|α′
η′ 〉 ≡ (Ck)α,η

α′,η′ = exp(−iηkα)Cα,η

α′,η′ . (20)
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Projecting Eq. (18) onto 〈αη| and using (19) and (20) leads to

ψ̃
α,η

k,t+1 =
N∑

α′=1

∑
η′=±

exp(−iηkα)Cα,η

α′,η′ψ̃
α′,η′
k,t . (21)

As we see, the nonlocal maps (11) and (12) become local in
the momentum representation given by Eqs. (18) and (21).
This allows us to easily obtain a formal solution to the QW
dynamics, since the map (18), implies

|ψ̃k,t 〉 = (Ĉk)t |ψ̃k,0〉. (22)

Therefore the set of eigenvalues and eigenvectors of Ĉk is most
useful to solve the QW evolution dynamics.

Since, according to Eq. (22) the operator Ĉk must be
unitary, all its eigenvalues {λ(s)

k : s = 1,2,3, . . . ,2N} can be
written in the form λ

(s)
k = exp(−iω

(s)
k ), with ω

(s)
k real. In

addition to these eigenvalues, we also need to know the
corresponding eigenvectors {|φ(s)

k 〉}. These eigenvectors satisfy
the orthogonality condition〈

φ
(s)
k

∣∣φ(s ′)
k

〉 = δss ′ , (23)

where δss ′ is the Kronecker δ. Once the eigenvalues and
eigenvectors of Ĉk are known, implementing Eq. (22) is
straightforward. Given the initial distribution of the walker in
the position representation, |ψx,0〉, we compute its DFT |ψ̃k,0〉
via Eq. (13), as well as the projections

f̃
(s)
k = 〈

φ
(s)
k

∣∣ψ̃k,0
〉
, (24)

so that |ψ̃k,0〉 = ∑
s f̃

(s)
k |φ(s)

k 〉. Using Eq. (22), we obtain

|ψ̃k,t 〉 =
2N∑
s=1

exp
(−iω

(s)
k t

)
f̃

(s)
k

∣∣φ(s)
k

〉
. (25)

In the position representation we get, using Eq. (14),

|ψx,t 〉 =
2N∑
s=1

∣∣ψ (s)
x,t

〉
, (26)

∣∣ψ (s)
x,t

〉 =
∫

dN k
(2π )N

exp
[
i
(
k · x−ω

(s)
k t

)]
f̃

(s)
k

∣∣φ(s)
k

〉
. (27)

In this way the time evolution of the QW is formally solved: all
we must do is to compute the set of eigenvalues and eigenstates
of Ĉk and the initial state in reciprocal space |ψ̃k,0〉, which
determines the weight functions f̃

(s)
k through Eq. (24).

III. ENTANGLEMENT AND THERMODYNAMICS

Entanglement in quantum mechanics is associated with
the nonseparability of the degrees of freedom of two or
more particles. The degrees of freedom involved in entangled
states are usually discrete, such as the spins of electrons
or nuclei. However, there is also interest in continuous
degrees of freedom, such as the position or the moment of
a particle, due to their potential to increase storage capacity
and information processing in quantum computation [22].
The unitary evolution of the QW generates entanglement
between the coin and the position degrees of freedom. The
asymptotic coin-position entanglement and its dependence on

the initial conditions of the QW have been investigated by
several authors [14,15,23–34]. In particular, in Ref. [15] it has
been shown that the coin-position entanglement can be seen as
a system-environment entanglement and it allows us to define
the entanglement temperature. In the present work we also
study this subject using the N -dimensional QW as a system.

Let us briefly review the usual definition of entropy with the
aim of clarifying the emergence of the concept of entanglement
entropy. The density matrix of the quantum system is

ρ̂(t) = |ψt 〉〈ψt |. (28)

The quantum analog of the Gibbs entropy is the von Neumann
entropy,

SN (t) = −tr[ρ̂(t) log ρ̂(t)]. (29)

Owing to the unitary dynamics of the QW, the system remains
in a pure state, and this entropy vanishes. However, for these
pure states, the entanglement between the chirality and the
position can be quantified by the associated von Neumann
entropy for the reduced density operator, namely,

S(t) = −tr(ρ̂c(t) log ρ̂c(t)), (30)

where

ρ̂c(t) = trp(ρ̂) =
∑

x

〈x|ψt 〉〈ψt |x〉 (31)

is the reduced density operator for the chirality evolution
and the partial trace, trp, is taken over the positions. Note
that, in general, tr(ρ̂ 2

c ) < 1, i.e., the reduced operator ρ̂c(t)
corresponds to a statistical mixture. The expression for the
entropy given by Eq. (30) will be used as a measure of
entanglement between the position and the chirality of the
system. Using the properties of the wave function |ψx,t 〉 =
〈x|ψt 〉 and the identity∑

x

ei(k−k0)·x = (2π )NδN (k − k0), (32)

for the N -dimensional δ, it is straightforward to obtain
the following expression for Eq. (31), the reduced density
operator:

ρ̂c(t) =
∑
s=1

∑
s,=1

∫
exp

[
i
(
ω

(s,)
k − ω

(s)
k

)
t
]

× f̃
(s)
k

(
f̃

(s,)
k

)∗∣∣φ(s)
k

〉〈
φ

(s,)
k

∣∣ dNk
(2π )N

. (33)

This expression can be evaluated in the asymptotic limit t → ∞
using the stationary phase theorem (see Ref. [21]), where only
terms with ω

(s,)
k = ω

(s)
k contribute in Eq. (33). Therefore, in the

asymptotic limit the reduced density operator is

�̂ ≡ ρ̂c(t → ∞) =
2N∑
s=1

∫
dNk

(2π )N
∣∣f̃ (s)

k

∣∣2∣∣φ(s)
k

〉〈
φ

(s)
k

∣∣. (34)

As the density operator is positive definite, its associated
matrix, Eq. (34), has real and positive eigenvalues. We let
{|�s〉} be the basis that makes this matrix diagonal. Therefore,
in this basis, the corresponding asymptotic density matrix has
the simple shape

�ss
′ = sδss

′ , (35)
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where s � 0 are the eigenvalues of the asymptotic density
matrix, which satisfy

2N∑
s=1

s = 1. (36)

In order to make a more complete description of this equi-
librium in the asymptotic limit, it is necessary to connect the
eigenvalues of ρc with an unknown associated Hamiltonian
operator Hc. To obtain this connection we use the quantum
Brownian motion model from Ref. [35]. In this theory
one considers that the entanglement between the system
associated with the chirality degrees of freedom, characterized
by the density matrix ρc, and the system associated with the
position degrees of freedom, the lattice, is equivalent to the
thermal contact between the system and a thermal bath. In
equilibrium,

[Hc,ρc] = 0 (37)

should be satisfied. As a consequence, in the asymptotic
regime the density operator ρc is an explicit function of a
time-independent Hamiltonian operator. If we note by {|�s〉}
the set of eigenfunctions of the density matrix, the operators Hc

and ρc are both diagonal in this basis. Therefore the eigenvalues
s depend on the corresponding eigenvalues of Hc. We denote
this set of eigenvalues {εs}; they can be interpreted as the
possible values of the entanglement energy. This interpretation
agrees with the fact that s is the probability that the system
is in the eigenstate |�s〉.

To construct this connection, we note that Eq. (36) together
with s � 0 implies that 0 � s � 1, therefore making it
possible to associate a Boltzmann-type probability with each
s . In other words, it is possible to associate, with each s ,
a virtual level of energy εs . The precise dependence between
s and εs is determined by the type of ensemble we construct.
We propose in the present work that this equilibrium can be
made to correspond to a quantum canonical ensemble. To do
this, we define the relation

s ≡ e−βεs

Z
, (38)

where Z is the partition function of the system, that is,

Z ≡
2N∑
s=1

e−βεs , (39)

and the parameter β can be put into correspondence with an
entanglement temperature

T ≡ 1

κβ
, (40)

where κ is the Boltzmann constant. Since only the relative dif-
ference between energy eigenvalues has physical significance,
we consider the eigenvalues in decreasing order and, without
loss of generality, set

ε1 = ε, (41)

ε2N = −ε. (42)

The value of ε can be determined from Eqs. (38), (41), and (42):

ε = 1

2β
log

2N

1
. (43)

The energy eigenvalues for the remaining values of s,
s = 2,3 . . . ,2N − 1, are, again using Eq. (38),

εs = ε − 1

β
log

s

1
. (44)

Therefore the asymptotic density matrix of Eq. (35) can be
thought as the density matrix of the canonical ensemble,

� = 1

Z

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e−βε1 0 0 . . 0 0

0 e−βε2 0 . . 0 0

0 0 e−βε3 . . 0 0

. . . . . . .

. . . . . . .

0 0 0 . . e−βε2N−1 0

0 0 0 . . 0 e−βε2N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(45)

Starting from the partition function of the system given by
Eq. (39), it is possible to build the thermodynamics for the
QW entanglement. In particular, the Helmholtz free energy A

is given by

A ≡ − 1

β
logZ = − 1

β
log

2N∑
s=1

e−βεs , (46)

and the internal energy U is given by

U ≡ − 1

Z

∂Z

∂β
= 1

Z

2N∑
s=1

εse
−βεs . (47)

Thus, the asymptotic entanglement entropy as a function of
the eigenvalues s is

S = −
2N∑
s=1

s log s. (48)

Substituting Eq. (38) into Eq. (48), after straightforward
operations using Eqs. (46) and (47), we obtain the following
expression for the asymptotic entanglement entropy:

S = β(U − A). (49)

As should be expected, the latter equation agrees with the
thermodynamic definition of the entropy.

Of course, in Eq. (43), only the ratio ε/T is well defined;
however, we chose to introduce the temperature, as this concept
strengthens the idea of asymptotic equilibrium between the
position and the chirality degrees of freedom. Note that while
the temperature makes sense only in the mentioned equilibrium
state, the entropy concept can be introduced without such a
restriction. For all practical purposes we take ε = κ; then the
entanglement temperature is determined by

T = 2

log(2N/1)
, (50)
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and the energy eigenvalues by

εs = 1 − 2
log(s/1)

log(2N/1)
. (51)

IV. INITIAL CONDITIONS

We now discuss the consequences of choosing different
initial conditions on the thermal evolution of the system. We
are interested in characterizing the long-time coin-position
entanglement generated by the evolution of the N -dimensional
QW. We consider the case of a separable coin-position initial
state. More specifically, we take initial chirality conditions of
the form

|ψx,0〉 = ξx,0|χ〉, (52)

where ξx,0 is a generic position wave function and

|χ〉 = cos (γ /2)|Z+〉 + eiϕ sin (γ /2)|Z−〉, (53)

with

|Z±〉 ≡ 1√
N

N∑
α=1

| α±〉. (54)

The two parameters γ ∈ [0,π ] and ϕ ∈ [0,2π ] define the
initial point on the generalized Bloch’s sphere. The DFT of
Eq. (52) is

|ψ̃k,0〉 =
∑

x

e−ik·x|ψx,0〉 =
∑

x

e−ik·xξx,0|χ〉. (55)

In order to obtain a closed equation for s we consider in detail
the simple case where the amplitudes ξx,0 have an isotropic
Gaussian position distribution multiplied by the plane waves
eik0·x; that is,

ξx,0 ∝ eik0·x 1

σN/2
exp

(
−x · x

σ 2

)
, (56)

where σ > 0 is a characteristic width and k0 is a particular
initial momentum that characterizes the initial condition. We
deal with a sufficiently large value of σ for the Gaussian so as to
make possible the connection of the DFT with the continuous
limit. Then, for these values of σ , Eq. (55) can be written as

|ψ̃k,0〉 ∝ σN/2
∑

x

e− σ2

2 (k−k0+2πx)2 |χ〉 (57)

(see the Appendix). If we want to simulate an uniform initial
distribution for the N -dimensional QW, we can take σ �→ ∞
in Eq. (57). In this case we can use the following mathematical
property for the Dirac δ:

lim
σ �→∞

(
σ√
π

)N

e−σ 2(k−k0+2πx)2 ≡ δN (k − k0 + 2πx). (58)

Equation (57) can then be expressed as

|ψ̃k,0〉 ∝
[∑

x

δN/2(k − k0 + 2πx)

]
|χ〉. (59)

We now assume that the components of k0 belong to the
interval (−π,π ); then in the sum of Eq. (59) the only term

that survives is the one for x = 0. This is due to the facts that
all components of k lie within the interval [−π,π ] and that the
vector x has only discrete components. Then using Eq. (24),
Eq. (59), and the normalization condition, we have∣∣f̃ (s)

k

∣∣2 = (2π )NδN (k − k0)
∣∣〈φ(s)

k |χ 〉∣∣2
. (60)

Therefore in this case, from Eq. (34), it is straightforward to
obtain the eigenvalues for the asymptotic density matrix,

s = ∣∣〈φ(s)
k0

|χ 〉∣∣2
, (61)

and their respective eigenfunctions,

|�s〉 = ∣∣φ(s)
k0

〉
. (62)

As a second example, we consider a nonseparable coin-
position initial state. In particular, we take

|ψx,0〉 =
∫

dN k
(2π )N

exp[i(k · x)]|ψ̃k,0〉, (63)

with

|ψ̃k,0〉 = cos (γ /2)
1√
N

N∑
s=1

∣∣φ(s)
k

〉
+ eiϕ sin (γ /2)

1√
N

2N∑
s=N+1

∣∣φ(s)
k

〉
, (64)

and then∣∣f̃ (s)
k

∣∣2 = ∣∣〈φ(s)
k |ψ̃k,0

〉∣∣2

= 1

N

{
cos2 (γ /2) for s = 1,2, . . . ,N,

sin2 (γ /2) for s = N + 1,N + 2, . . . ,2N.

(65)

Therefore the eigenvalues s are the eigenvalues of the matrix
associated with the following operator [see Eq. (34)]:

1

N

∫
dN k

(2π )N

{
cos2 (γ /2)

N∑
s=1

∣∣φ(s)
k

〉〈
φ

(s)
k

∣∣
+ sin2 (γ /2)

2N∑
s=N+1

∣∣φ(s)
k

〉〈
φ

(s)
k

∣∣} . (66)

As a third example, we take

|ψ̃k,0〉 = cos (γ /2)
1√
N

N∑
s=1

∣∣φ(2s)
k

〉
+ eiϕ sin (γ /2)

1√
N

N∑
s=1

∣∣φ(2s−1)
k

〉
, (67)

and then∣∣f̃ (s)
k

∣∣2 = ∣∣〈φ(s)
k |ψ̃k,0

〉∣∣2 = 1

N

{
cos2 (γ /2) for s even,

sin2 (γ /2) for s odd.
(68)
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Finally, using Eq. (34), the eigenvalues s are the eigenvalues
of the matrix associated with the operator

1

N

∫
dNk

(2π )N

{
cos2 (γ /2)

N∑
s=1

∣∣φ(2s)
k

〉〈
φ

(2s)
k

∣∣
+ sin2 (γ /2)

N∑
s=1

∣∣φ(2s−1)
k

〉〈
φ

(2s−1)
k

∣∣} . (69)

V. APPLICATION TO THE 2D QUANTUM WALK

In this section we illustrate the general treatment introduced
above in the special case of the 2D QW. References [6]
and [36] introduced a one-parameter family of QW models
in two dimensions as a generalization of Grover’s model by
specifying the corresponding matrix Ck [see Eq. (20)] as

Ck =

⎛⎜⎜⎜⎝
−peik1 qeik1

√
pqeik1

√
pqeik1

qe−ik1 −pe−ik1
√

pqe−ik1
√

pqe−ik1

√
pqeik2

√
pqeik2 −qeik2 peik2

√
pqe−ik2

√
pqe−ik2 pe−ik2 −qe−ik2

⎞⎟⎟⎟⎠,

(70)

where the parameter p ∈ [0,1], q = 1 − p, and k = (k1,k2)
is the quasimomentum vector. If p = q = 1/2, we have the
Grover coin. Henceforth we take this to be the case.

Equation (70) has four eigenvalues λs, s = 1, 2, 3, 4,

λ1 = 1, λ2 = −1, λ3 = eiω(k1,k2), λ4 = e−iω(k1,k2), (71)

where

cos ω(k1,k2) = − 1
2 (cos k1 + cos k2). (72)

The eigenvectors corresponding to the eigenvalues are given
by the column vectors

∣∣φ(s)
k

〉 = 1

N (s)
k

⎛⎜⎜⎜⎜⎝
(
1 + e−ik1λ

(s)
k

)−1(
1 + e+ik1λ

(s)
k

)−1(
1 + e−ik2λ

(s)
k

)−1(
1 + e+ik2λ

(s)
k

)−1

⎞⎟⎟⎟⎟⎠, (73)

where the normalization factors N (s)
k are given by

N (1)
k =

√
1

1 + cos k1
+ 1

1 + cos k2
,

N (2)
k =

√
1

1 − cos k1
+ 1

1 − cos k2
, (74)

N (3)
k = N (4)

k =
√

2
4 − (cos k1 + cos k2)2

(cos k1 − cos k2)2
.

From Eq. (71), we see that the first two eigenvalues λ1 = 1
and λ2 = −1 do not depend on k, and the last two eigenvalues
are complex conjugates of each other. Equation (72) is a
dispersion relation of the system. The frequency ω(k1,k2) ∈
[0,2π ], and when k1 = 0 and k2 = 0 the system has a
degeneracy because the three eigenvalues λ2 = λ3 = λ4 = −1
[see Eqs. (71) and (72)]. Then, due to this degeneracy the

frequencies ±ω(k1,k2), as a function of k1 and k2, has a
diabolo shape. These degenerate points are called “diabolical
points” [19].

A. Quantum-walk temperature for a separable
coin-position initial state

In order to calculate s , Eq. (61), we select the diabolical
point k0 = 0, and we must be very careful, because the
calculation of the eigenvectors, Eq. (73), has indeterminacies.
The eigenvectors of the 2D Grover walk matrix are given by
Eq. (73). Whenever k is not close to a diabolical point these
eigenvectors vary smoothly around k. However, we want to
study the behavior of the eigenvectors close to the diabolical
point at k = k0 ≡ (0,0). We find it convenient to use polar
coordinates (k1,k2) = (k cos θ,k sin θ ). Performing the limit
of (73) for k → 0 we find

∣∣φ(1)
k0

〉 = 1

2

⎛⎜⎜⎜⎝
1

1

1

1

⎞⎟⎟⎟⎠ , (75)

∣∣φ(2)
k0

〉 = i√
2

⎛⎜⎜⎜⎝
− sin θ

+ sin θ

− cos θ

+ cos θ

⎞⎟⎟⎟⎠ , (76)

∣∣φ(3)
k0

〉 = i

2
√

2

⎛⎜⎜⎜⎜⎝
1 − √

2 cos θ

1 + √
2 cos θ

−1 + √
2 sin θ

−1 − √
2 sin θ

⎞⎟⎟⎟⎟⎠ , (77)

∣∣φ(4)
k0

〉 = i

2
√

2

⎛⎜⎜⎜⎜⎝
−1 − √

2 cos θ

−1 + √
2 cos θ

1 + √
2 sin θ

1 − √
2 sin θ

⎞⎟⎟⎟⎟⎠ . (78)

Taking the 2D expression of |χ〉 [see Eq. (53)] in its matrix
shape,

|χ〉 = 1√
2

⎛⎜⎜⎜⎝
cos (γ /2)

eiϕ sin (γ /2)

cos (γ /2)

eiϕ sin (γ /2)

⎞⎟⎟⎟⎠, (79)

we can evaluate s [see Eq. (61)]; that is,

1 = 1
2 (1 + sin γ cos ϕ), (80)

2 = 1
4 (1 + sin 2θ )(1 − sin γ cos ϕ), (81)

3 = 4 = 1
8 (1 − sin 2θ )(1 − sin γ cos ϕ). (82)

Figure 1 shows the dependence of s, s = 1,2,3,4, with the
initial conditions given through the parameter

x ≡ sin γ cos ϕ. (83)
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FIG. 1. Eigenvalues of the reduced density matrix [Eqs. (80),
(61), and (82)] as a function of the parameter x = sin γ cos ϕ, with
θ = π . 1, solid line; 2, dashed line; and 3, dot-dashed line.

From Eq. (50), the entanglement temperature in the diabol-
ical point is

T = 2/ log

(
max

min

)
, (84)

where max and min are, respectively, the maximum and
minimum value of  given by Eqs. (80)–(82).

Equation (84) shows that the QW initial conditions γ , ϕ, and
θ (k0) determine the entanglement temperature, and for a fixed
θ the isothermal lines as a function of the initial conditions are
determined by the equation

x = sin γ cos ϕ = C, (85)

where C is a constant.
In Fig. 2 we see that the temperature as a function of x in-

creases from T = 0 for x = −1, to the constant value T0 = 2/

log 2 in the x interval [−3/5,−1/3], and then decreases
gradually, reaching T = 0 at x = 1. The isotherms are the
intersections of the Bloch sphere with the planes x = constant.

FIG. 2. (Color online) Entanglement temperature [see Eq. (84)]
as function of the dimensionless parameter x = sin γ cos ϕ,
with θ = π .

FIG. 3. (Color online) Isotherms on the Bloch sphere. |Z+〉 and
|Z−〉 are the North and South Pole, respectively. The two black points
(“cold points,” corresponding to T = 0) on the sphere are the points

1√
2
(|Z+〉 + |Z−〉) and 1√

2
(|Z+〉 − |Z−〉). The light (yellow) zone is

the “hot zone,” T = T0.

Figure 3 shows the isotherms for the entanglement temperature
as a function of the QW initial position, defined on the Bloch
sphere. The figure shows three regions: two dark zones, left
and right, corresponding to temperatures 0 < T < T0, and a
light one, corresponding to the constant temperature T = T0.

B. Quantum-walk temperature for nonseparable
coin-position initial state I

Taking the initial state given by Eqs. (63) and (64) and
adding Eq. (66), it is easy to show that �̂ reduces to

�̂ = 1

4

⎛⎜⎜⎝
1 a b b

a 1 b b

b b 1 a

b b a 1

⎞⎟⎟⎠ , (86)

where

a = (1 − 4/π ) cos γ, (87)

b = (1 − 2/π ) cos γ. (88)

The eigenvalues of Eq. (86) are

1 = [1 − cos γ ]/4, (89)

2 = [1 − (3 − 8/π ) cos γ ]/4, (90)

3 = [1 − (1 − 4/π ) cos γ ]/4 (91)

4 = 3. (92)

The entanglement temperature, Eq. (50), is thus given by

T = 2∣∣∣ln 1+( 4
π

−1) cos γ

1−cos γ

∣∣∣ . (93)

Figure 4 shows that the temperature as a function of γ increases
from T = 0 for γ = 0, to infinity for γ = π/2, and then
decreases gradually to T = 2/|ln(1 − 2/π )| at γ = π . In order
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FIG. 4. (Color online) Entanglement temperature [see Eq. (93)]
as a function of the dimensionless parameter γ .

to take the initial condition on the generalized Bloch sphere,
we redefine

|Z+〉 ≡ 1√
N

N∑
s=1

∣∣φ(s)
k

〉
, (94)

|Z−〉 ≡ 1√
N

2N∑
s=N+1

∣∣φ(s)
k

〉
. (95)

Then the initial state, Eq. (64), takes the form

|ψ̃k,0〉 = cos (γ /2)|Z+〉 + eiϕ sin (γ /2)|Z−〉, (96)

where γ and ϕ define a point on the unit Bloch sphere. In
this case the isotherms have a rotation symmetry around the
axis defined by the points |Z+〉 and |Z−〉, the North and South
Poles, respectively. Therefore the isotherms are the parallels
z = constant on the Bloch sphere. In the northern hemisphere
the temperature of the isotherms increases from T = 0 at the
North Pole to infinity at the Equator, and in the southern
hemisphere the temperature of the isotherms decreases from
infinity at the Equator to the finite value T = 2/|ln(1 − 2/π )|
at the South Pole.

C. Quantum-walk temperature for nonseparable
coin-position initial state II

For the 2D case, taking the initial state given by Eq. (67),
after some straightforward operations, we can evaluate s and
they satisfy

s = 1
4 for s = 1, 2, 3, 4, (97)

which, according to Eq. (50), indicates that the temperature is
infinite all over the Bloch sphere, representing a degenerate
case. The symmetries of the Grover coin seem to point out that
�̂ = Î

2N
for N > 2 when we use the initial condition, Eq. (67).

VI. CONCLUSION

During the last 30 years, several technological advances
have made it possible to construct and preserve quantum states.

They also have increased the possibility of building quantum
computing devices. Therefore, the study of the dynamics of
open quantum systems becomes relevant for the development
of these technologies and of the algorithms that will run on
those future quantum computers. The QW has emerged as a
useful theoretical tool to study many fundamental aspects of
quantum dynamics. It provides a frame to study, among other
effects, the entanglement between its degrees of freedom, in a
simple setting that often allows for a full analytical treatment
of the problem. The study of this kind of entanglement is
important in order to understand the asymptotic equilibrium
between its internal degrees of freedom.

In this paper we have studied the asymptotic regime of
the N -dimensional QW. We have focused on the asymptotic
entanglement between chirality and position degrees of free-
dom and have shown that the system establishes a stationary
entanglement between the coin and the position that allows
the development of a thermodynamic theory. Then we were
able to generalize previous results, obtained in Refs. [15]
and [37]. The asymptotic reduced density operator was used
to introduce the entanglement thermodynamic functions in
the canonical equilibrium. These thermodynamic functions
characterize the asymptotic entanglement and the system can
be seen as a particle coupled to an infinite bath, the |x〉 position
states. It was shown that the QW initial condition determines
the system’s temperature, as well as other thermodynamic
functions. A map of the isotherms was analytically built
for arbitrary localized initial conditions. The behavior of
the reduced density operator looks diffusive but it has a
dependence on the initial conditions, the global evolution of the
system being unitary. Thus, if one only had information related
to the chirality degrees of freedom, it would be very difficult
to recognize the unitary character of the quantum evolution.
In general, from this simple model we can conclude that if the
quantum system dynamics occurs in a composite Hilbert space,
then the behavior of the operators that act on only one subspace
could camouflage the unitary character of the global evolution.

The development of experimental techniques has made
possible the trapping of samples of atoms using resonant
exchanges in momentum and energy between atoms and laser
light. However, it is not yet possible to prepare a system with
a particular initial chirality. Therefore, the average thermody-
namical functions could have more meaning when considered
from an experimental point of view. It is interesting to point
out that for a given family of initial conditions, such as that
given by Eq. (53), the explicit dependence of thermodynamic
functions with the initial position on the Bloch’s sphere, γ

and ϕ, can be eliminated if we take the average of s over all
initial conditions. Then each family could be characterized by
a single asymptotic average temperature.
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APPENDIX

Here we derive Eq. (57). We employ the well-known Poisson summation formula
n=∞∑

n=−∞
g(n) =

n=∞∑
n=−∞

∫ ∞

−∞
g(x)e−i2πnxdx, (A1)

which, together with Eqs. (55) and (56), leads to∑
x

e−i(k−k0)·x exp

(
−x · x

2σ 2

)
=

∑
x

∫ ∞

−∞
. . .

∫ ∞

−∞
e−i(k−k0)·y exp

(
−y · y

2σ 2

)
e−i2πx·ydy

=
∑

x

∫ ∞

−∞
. . .

∫ ∞

−∞
e−i(k−k0+2πx)·y exp

(
−y · y

2σ 2

)
dy. (A2)

The last integrals can be evaluated using ∫ ∞

−∞
e−p2x2±qxdx =

√
π

p
exp

(
− q2

2p2

)
, (A3)

where p � 0. In this way we obtain∑
x

e−it(k−k0)·x exp

(
−x · x

2σ 2

)
= (

√
2πσ )N

∑
x

e−σ 2(k−k0−2πx)2
. (A4)
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