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A pure quantum state of N subsystems with d levels each is called k-multipartite maximally entangled state,
which we call a k-uniform state, if all its reductions to k qudits are maximally mixed. These states form a
natural generalization of N -qudit Greenberger-Horne-Zeilinger states which belong to the class 1-uniform states.
We establish a link between the combinatorial notion of orthogonal arrays and k-uniform states and prove the
existence of several classes of such states for N -qudit systems. In particular, known Hadamard matrices allow us
to explicitly construct 2-uniform states for an arbitrary number of N > 5 qubits. We show that finding a different
class of 2-uniform states would imply the Hadamard conjecture, so the full classification of 2-uniform states
seems to be currently out of reach. Furthermore, we establish links between the existence of k-uniform states and
classical and quantum error correction codes and provide a graph representation for such states.
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I. INTRODUCTION

A multipartite pure state of N qudits is called entangled if
it cannot be written as the tensor product of N single-qudit
pure states. There exist also states for which at least some
subsystems can be factorized. Hence, one distinguishes the
biseparable states, for which one can find a splitting with
respect to which a given state is separable. A state is called
genuinely entangled if all subsystems are correlated and the
state is not separable with respect to any possible splitting of
N subsystems [1,2].

In the case of multipartite systems there exists several
different classes of entangled states. In the simplest case
of three qubits there are two noncomparable classes of
entanglement, called Greenberger-Horne-Zeilinger (GHZ) and
W , which are not equivalent with respect to local operations
and classical communication [3]. In the case of N = 4 qubits
the number of inequivalent classes of pure states grows to
nine [4] or more [5] if another classification is used. In
general, the number of parameters describing entanglement
grows exponentially with the number N of subsystems [6].

Investigation of highly entangled states of several qubits,
initiated by Gisin and Bechmann-Pasquinucci [7], was then
continued in the specific case of four qubits by Higuchi and
Sudbery [8]. Later on the issue of identifying multipartite
pure states which are distinguished by maximizing certain
measures of entanglement was analyzed in [9–14] and was
further developed in [15–17].

In the case of bipartite systems, one distinguishes the
Bell states and their generalizations for two d-level systems,
for which reduced states are maximally mixed. A class of
multiqubit pure states with a stronger property, in which
every possible one-qubit reduction is maximally mixed,
was analyzed in [7,11,18,19] and called perfect maximally
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multipartite entangled state. A further important contribution
on these issues was provided recently by Arnaud and Cerf [20],
who used the name of k-multipartite maximally entangled pure
states. In the present work we call these states k-uniform,
following an earlier paper of Scott [21]. These states are
distinguished by the fact that their reduction with respect to an
arbitrary splitting leaves a k-partite reduced state maximally
mixed, so the mean purity of the reduction, averaged over
different choices of the ancillary system, is minimal [22]. In
particular, 1-uniform states are also balanced, which means
that the total number of each of the d levels appearing in the
representation of the state is equal [1,23].

Construction of genuinely multipartite entangled states is
an important open problem in the theory of quantum informa-
tion, as these states have numerous applications to quantum
teleportation, quantum key distribution, dense coding, and
error-correcting codes [20,21]. The main goal of this work
is to establish a link between orthogonal arrays and k-uniform
states and to make use of it to construct families of such states
for an arbitrary number of subsystems.

This paper is organized as follows. In Sec. II we introduce
k-uniform states and resume the state of the art. In Sec. III
we present basic concepts of orthogonal arrays useful in this
work. In Sec. IV we connect k-uniform states with orthogonal
arrays in a natural way. This allows us to prove the existence
of families of k-uniform states for N subsystems of d levels
each. In Sec. V we present examples of k-uniform states
obtained from orthogonal arrays and we study the minimal
number of terms required to construct a k-uniform state of N

qubits. In Sec. VI we show that the problem of classifying
2-uniform states for qubits contains the Hadamard conjecture.
Consequently, the complete classification of 2-uniform states
seems to be currently out of reach. Fortunately, a different
class of 2-uniform states is possible, so making use of the
well-known Hadamard matrices of order 2m and 3 × 2m we
construct such states for every N . The paper is concluded
in Sec. VII, in which a list of open questions is presented.
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Explicitly constructed families of 2-uniform states of 6 to 15
qubits are listed in Appendix A. In Appendix B we present
further examples of k-uniform states of qudits having d > 2
levels related to orthogonal arrays. In Appendix C we present
an extended construction of further families of k-uniform
states.

II. k-MULTIPARTITE MAXIMALLY ENTANGLED
PURE STATES

In this section we discuss the concept of k-uniform states
[18,20] and present a short review of the state of the art. A pure
quantum state of N subsystems with d levels each is called k

maximally entangled, written k-uniform, if every reduction to
k qudits is maximally mixed. For example, GHZ states belong
to the class 1-uniform and W states do not belong to any class of
k-uniform states. The general problem to construct k-uniform
states is difficult and explicit solutions are known for systems
consisting of a few subsystems only. For the convenience of
the reader, we present here some of the most important results
known in the literature.

We start recalling the notion of local equivalence. Two pure
states |ψ〉 and |φ〉 of a bipartite system are called locally
equivalent, written |ψ〉 ∼ loc|φ〉, if there exists a product
unitary matrix UA ⊗ UB such that |ψ〉 = UA ⊗ UB |φ〉. In the
case of N -partite systems the product unitary matrix factorizes
into a tensor product of N unitaries. By definition, if a given
state |�〉 belongs to the class of k-uniform states, so does any
other locally equivalent state.

In the case of two qubits, one distinguishes four mutually
orthogonal, maximally entangled Bell states,

|�±
2 〉 = |00〉 ± |11〉 and |�±

2 〉 = |01〉 ± |10〉. (1)

These locally equivalent states are 1-uniform. Moreover, it
is easy to show that any state of this class has to be locally
equivalent to the Bell state |�+

2 〉.
For three qubits the only 1-uniform state is the GHZ state

[24],

|GHZ〉 = |000〉 + |111〉, (2)

up a local unitary transformation. For brevity we omit in the
paper the normalization factors, provided they are the same
for each term.

A class of 1-uniform states of N qudits systems of d levels
is easy to find,

∣∣GHZd
N

〉 =
d−1∑
i=0

|i〉⊗N . (3)

For three qubits there exists another class of maximally
entangled states called W ,

|W 〉 = |100〉 + |010〉 + |001〉. (4)

However, the reductions to 1-qubit systems are not maximally
mixed, so |W 〉 is neither a 1-uniform state nor a balanced state
[23].

In the case of four qubits it is straightforward to write some
1-uniform states. Any state locally equivalent to the four-qubit
state |GHZ2

4〉—a special case of (3)—does the job. Another

example reads

|�4〉 = |0000〉 + |0011〉 + |0101〉 + |0110〉
+ |1001〉 + |1010〉 + |1100〉 + |1111〉. (5)

This state is locally equivalent to the 1-uniform state of
four qubits |HS〉 [8]. It is worth emphasizing that there
exist no 2-uniform states of four qubits [8,12,13,18,25]. This
fact was interpreted as a symptom of frustration [22], as
the requirement that the entanglement is maximal for all
possible bipartitions of the system becomes conflicting. The
phenomenon of frustration is known in various matrix models
including spin glasses [26], for which a phase transition takes
place. In the case of N = 4 qubit systems, or other systems
for which uniform states do not exist, it is interesting to
identify special states, for which the average entanglement
is maximal. More formally, one looks for states for which
the mean purity of the k-partite reduced state, averaged over
different choices of the ancillary system, is minimal [22,27].
However, it has been proven that such minimization procedures
do not help to uniquely identify maximally entangled states
when a k-uniform state does not exist [28]. For five qubits
there are 2-uniform states:

|�5〉 = −|00000〉 + |01111〉 − |10011〉 + |11100〉
+|00110〉 + |01001〉 + |10101〉 + |11010〉. (6)

This state, also called |0L〉, has been used to distribute
quantum information over five qubits [29]. It is worth noting
that a k-uniform state is also a k′-uniform state with 0 < k′ <

k. Thus, the state |�5〉 is also 1-uniform. It is easy to see that
there is no 3-uniform state of five qubits, as a k-uniform state
of N qubits can exist if [21]

k � �N/2�, (7)

where �·� denotes the integer part. If this bound is not satisfied,
then the dimension of the reduced state is larger than the size
of the ancillary space, so the reduction of a pure state cannot
be maximally mixed. Observe that for N = 2, 3, and 5 the
above inequality is saturated; however, for N = 4 it is not the
case.

Additionally, there exist 3-uniform states of six qubits [12]:

|�6〉 = −|000000〉 + |001111〉 − |010011〉 + |011100〉
+ |000110〉 + |001001〉 + |010101〉
+ |011010〉 − |111111〉 + |110000〉
+ |101100〉 − |100011〉 + |111001〉
+ |110110〉 − |101010〉 − |100101〉. (8)

The above examples have been constructed by hand or by
computing algorithms. As far as we know, the first expression
of a 3-uniform state of six qubits was found by Borras et al.
[12]. In general, for N > 6 the existence of k-uniform states
for k > 1 remains open.

In this work we use the combinatorial notion of orthogonal
arrays and demonstrate that they form a suitable tool for
studying genuine multipartite entangled pure states.
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III. ORTHOGONAL ARRAYS

Orthogonal arrays are combinatorial arrangements intro-
duced by Rao [30] in 1946. They have a close connection
to codes, error-correcting codes, difference schemes, Latin
squares, and Hadamard matrices; see [31]. The most important
applications of orthogonal arrays are given in statistics and in
designing experiments. An r × N array A with entries taken
from a set S with d elements is said to be an orthogonal array
with r runs, N factors, d levels, strength k, and index λ if every
r × k subarray of A contains each k-tuple of symbols from S

exactly λ times as a row. Here r and N denote the number of
rows and columns of A, respectively, while d is the cardinality
of the set S. That is, the level d is the number of different
symbols appearing in A.

An excellent introduction to orthogonal arrays and their
applications is provided in the book of Hedayat, Sloane, and
Stufken [31]. Furthermore, extensive catalogs of orthogonal
arrays can be found in the handbook [32] and in the web sites
of Sloane [33] and Kuhfeld [34]. The ordering of parameters
characterizing orthogonal arrays used in this work follows the
standard notation introduced by Rao [30]:

OA(r,N,d,k).

However, the labels of the parameters has been conveniently
adapted here to quantum theory. The same ordering is used in
[31,33,34], but since some other conventions are also present
in the literature, the reader is advised to check the order of the
parameters before using a given resource on OAs.

One usually determines an OA by the following four
independent parameters r, N, d, and k, while the index λ

satisfies the relation

r = λdk. (9)

Additionally, the following Rao bounds hold [35],

r �
k/2∑
i=0

(
N

i

)
(d − 1)i if k is even, (10)

r �
k−1

2∑
i=0

(
N

i

)
(d − 1)i +

(
N − 1

k−1
2

)
(d − 1)

k−1
2 if k is odd.

(11)

If the parameters are such that the above inequalities are
saturated, then the OA is called tight. It is easy to check that
the examples presented in Fig. 1 satisfy this property. Given an
OA(r,N,d,k) we can easily construct an OA(r,N ′,d,k) for any
k � N ′ � N by removing from the array N − N ′ columns.
Therefore, it is interesting to determine the maximal factor N

such that an OA(r,N,d,k) exists for r, d, and k fixed. This
maximal factor is defined as

Nmax = f (r,d,k). (12)

Orthogonal arrays are very useful to design fractional factorial
experiments [35]. The parameter r determines the number of
runs of the experiments. Thus, it is important to minimize the
number r without changing the rest of the parameters defining
the experiment. Consequently, we define

rmin = F (N,d,k) (13)

FIG. 1. Orthogonal arrays of strength one (top left), two (bottom
left), and three (right). Their symbolic expressions are OA(2,2,2,1),
OA(4,3,2,2), and OA(8,4,2,3), respectively.

as the lowest value of r such that an OA(r,N,d,k) exists for
N, d, and k fixed. Interestingly, the following relationships are
satisfied [31]:

F (N,d,k) = min{r : f (r,d,k) � N},
f (r,d,k) � max{N : F (N,d,k) � r}.

In what follows we present one of the first important results
on the existence of OAs, discovered in 1946 by Rao [30].

Theorem 1 (Rao). If d is a prime power, then an
OA(dn,(dn − 1)/(d − 1),d,2) exists whenever n � 2.

These OAs can be constructed [35] by using Galois fields,
but this is not simple to do for high values of d.

IV. k-UNIFORM QUANTUM STATES FROM
ORTHOGONAL ARRAYS

In this section we study a close connection between OAs
and k-uniform quantum states. Let us start by defining a pure
state |�〉 of a system consisting of N qudits,

|�〉 =
∑

s1,...,sN

as1,...,sN
|s1, . . . ,sN 〉, (14)

where as1,...,sN
∈ C, s1, . . . ,sN ∈ S, and S = {0, . . . ,d − 1}.

The set of vectors {|s1, . . . ,sN 〉} forms an orthonormal basis
of CdN

. In fact, this is the canonical or computational basis.
For simplicity, the range of the sums is omitted, but all of them
go from 0 to d − 1. The density matrix ρ associated with this
pure state reads

ρ = |�〉〈�| =
∑

s1 ,...,sN
s′1 ,...,s′

N

as1,...,sN
a∗

s ′
1,...,s

′
N

× |s1, . . . ,sN 〉〈s ′
1, . . . ,s

′
N |. (15)

Let us divide the system S into two parts SA and SB , each
containing NA and NB qudits, respectively, such that N =
NA + NB . In order to find the density matrix associated with
SA, we have to consider the reduced state

ρA = TrB(ρAB), (16)
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where ρAB denotes the state (15). Performing the partial trace
we get

ρA = TrB

⎛
⎜⎝ ∑

s1 ,...,sN
s′1 ,...,s′

N

as1,...,sN
a∗

s ′
1,...,s

′
N
|s1, . . . ,sN 〉〈s ′

1, . . . ,s
′
N |

⎞
⎟⎠

=
∑

s1 ,...,sN
s′1 ,...,s′

N

as1,...,sN
a∗

s ′
1,...,s

′
N

TrB(|s1, . . . ,sN 〉〈s ′
1, . . . ,s

′
N |)

=
∑

s1 ,...,sN
s′1 ,...,s′

N

as1,...,sN
a∗

s ′
1,...,s

′
N

〈
s ′
NA+1, . . . ,s

′
N |sNA+1, . . . ,sN

〉

× ∣∣s1, . . . ,sNA

〉〈
s ′

1, . . . ,s
′
NA

∣∣. (17)

The following reasoning deserves special attention as it
contains the key point of our work. First, let us assume
that every coefficient as1,...,sN

is zero or one for simplicity.
Therefore, the state |�〉 can be written as a superposition of r

product states,

|�〉 = ∣∣s1
1 ,s

1
2 , . . . ,s

1
N

〉 + · · · + ∣∣sr
1,s

r
2, . . . ,s

r
N

〉
, (18)

where the upper index i on s denotes the ith term in the linear
decomposition of |�〉. Second, let us now arrange the symbols
appearing in Eq. (18) in an array,

s1
1 s1

2 . . . s1
N

s2
1 s2

2 . . . s2
N

...
... . . .

...

sr
1 sr

2 . . . sr
N

, (19)

so every column of the array is identified with a particular
qudit and every row corresponds to a linear term of the state.
Here we are interested to study pure states having maximally
mixed reductions. This means that the reduced system ρA must
be proportional to the identity matrix, independently of the
number NB of qudits traced out. By imposing this requirement
into Eq. (17) and considering Eqs. (18) and (19), we find two
basic ingredients for constructing k-uniform states.

(A) Uniformity. The sequence of NA symbols appearing in
every row of every subset of NA columns of the array given in
Eq. (19) is repeated the same number of times. This implies
that the diagonal of the reduction ρA is uniform, as all its
elements are equal.

(B) Diagonality. The sequence of NB symbols appearing
in every row of a subset of NB columns is not repeated along
the r rows. Due to this property the reduced density matrix ρA

becomes diagonal.
The above two conditions are sufficient to find k-uniform

states of N qudits of d levels. Note that the uniformity
condition (A) implies that the array defined in Eq. (19) is an
OA. From a physics point of view, the first condition concerns
the reduced state of subsystem A, while the second one deals
with the environment B, with respect to which the partial trace
is performed. Moreover, there exists a perfect match between
the parameters of an OA(r,N,d,k) and the parameters of a
k-uniform state, as we can see in Table I.

Figure 2 presents the basic ingredients of the relation
between a multipartite entangled state and an OA of N columns

TABLE I. Correspondence between parameters of OAs and
quantum states.

Orthogonal arrays Multipartite quantum state |�〉
r Runs No. of linear terms in the state
N Factors No. of qudits
d Levels Dimension of the subsystem

(d = 2 for qubits)
k Strength Class of entanglement (k-uniform)

and r rows. It will be thus convenient to introduce the following
class of arrays.

Definition. An orthogonal array OA(r,N,d,k) is called
irredundant, written IrOA, if when removing from the array
any k columns all remaining r rows, containing N − k symbols
each, are different.

If this condition is not fulfilled, certain remaining rows are
equal and carry some redundant information. Any irredundant
OA satisfies thus both conditions (A) and (B) and allows us
to construct a k-uniform state. However, condition (B) is not
necessary, as there exist quantum states, e.g., locally equivalent
to states constructed by an IrOA, which are k-uniform but do
not satisfy the diagonality property.

On the other hand, we do not know whether every k-uniform
state is related by a local unitary transformation to a k-uniform
state constructed with an irredundant OA.

Since the seminal work of Rao [30] the theory of OAs
has been developed significantly. Many important theorems
concerning the existence of OAs have been found and direct
connections with other combinatorial arrangements have been
established. We translate here some of these relevant theorems
to the construction of k-uniform quantum states. Interestingly,
there is a match between basic properties of OAs and k-uniform
states. For OAs the following properties hold (see Hedayat
et al. [31], pp. 4 and 5).

(i) The parameters of an OA satisfy equality λ = r/dk .
(ii) Any OA(r,N,d,k) is also an OA(r,N,d,k′) for every

k′ < k.
(iii) A permutation of the runs or factors in an OA results

in an OA with the same parameters.

FIG. 2. Connection between OAs and k-uniform states of N

qudits, where k � N − k.
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(iv) A permutation of the levels of any factor in an OA
results in an OA with the same parameters.

(v) Any r × N ′ subarray of an OA(r,N,d,k) is an
OA(r,N ′,d,k′), where k′ = min{N ′,k} and N ′ < N .

(vi) Taking the runs in an OA(r,N,d,k) that begins with
a particular symbol and omitting the first column yields an
OA(r/d,N − 1,d,k − 1).

(vii) Take m OAs Ai = OA(ri,N,d,ki), for i = 0, . . . ,

m − 1, and define the array A as their juxtaposition:

⎡
⎢⎢⎣

A0

A1
...

Am−1

⎤
⎥⎥⎦ . (20)

Then A is an OA(r,N,d,k), where N = N0 + · · · + Nm−1 and
the strength is k for some k � min{k0, . . . ,km−1}. Furthermore,
if m = d and each Ai is an OA(r,N,d,k), after appending a 0
to each row of A0, a 1 to each row of A1, and so on, we obtain
an OA(dr,N + 1,d,k).

Now let us translate the above properties to the setup of
k-uniform quantum states.

(i′) All the reduced density matrices of a k-uniform state
satisfy Tr(ρ) = 1.

(ii′) A k-uniform state is also a k′-uniform for every k′ < k.
(iii′) A permutation of terms or qudits in a k-uniform state

leads us to a k-uniform state.
(iv′) Any permutation of the d symbols defining a qudit

(e.g., caused by the Pauli X gate or NOT gate), does not change
the k-uniform property.

(v′) Any k-uniform state of N qudits can be reduced to
a k′-uniform state of N ′ < N qudits, where k′ = min{N ′,k}
[whenever the property (B) holds]. For example, it fails for
k′ � N ′/2).

(vi′) We can always decompose a k-uniform state as a
function of k′-uniform states with k′ � k. For example, a 2-
uniform state of five qubits can be decomposed in the following
way:

|�5〉 = |0〉|�4a〉 + |1〉|�4b〉, (21)

where

|�4a〉 = |0000〉 + |1010〉 + |0101〉 + |1111〉, (22)

and

|�4b〉 = |0011〉 + |1001〉 + |0110〉 + |1100〉 (23)

are orthogonal 1-uniform states of four qubits.
(vii′) If the states |�i〉, i = 0, . . . ,m − 1 are ki-

uniform and come from OA(ri,N,d,ki), then the state
|�〉 = ∑m−1

i=0 |�i〉 is a k-uniform state for some k �
min{k0, . . . ,km−1}. For instance, the sum of the four qubits
states |�4a〉 and |�4b〉 given in Eqs. (22) and (23), respectively,
forms a 1-uniform state. Furthermore, if m = d and each state
|�i〉 of N qudits is k-uniform, then the state

|�〉 =
m−1∑
i=0

|i〉|�i〉 (24)

is a k-uniform state of N + 1 qudits whenever the diagonality
property (B) holds.

The latter condition is crucial, as shown with an example
of the following state of six qubits,

|�6〉 = |0〉|�5〉 + |1〉|�5〉
= −|000000〉 + |001111〉 − |010011〉 + |011100〉

+ |000110〉 + |001001〉 + |010101〉
+ |011010〉 − |100000〉 + |101111〉
− |110011〉 + |111100〉 + |100110〉
+ |101001〉 + |110101〉 + |111010〉, (25)

where the overbar denotes the flip operation performed on
every qubit. In this case the property (B) does not hold, so
the state |�6〉 is not 2-uniform nor even 1-uniform. However,
3-uniform states of six qubits can be obtained in this way for
an appropriate choice of states; see Eq. (5) in [20].

In decomposition (24) every ki-uniform state |�i〉 must
come from an OA(ri,N,d,ki) in order to get a k uniform state
with k � min{k0, . . . ,km−1}. For instance, the seven-qubit
state

|�7〉 = |0〉|�6〉 + |1〉|�6〉
= −|0000000〉 + |0001111〉 − |0010011〉 + |0011100〉 + |0000110〉 + |0001001〉 + |0010101〉 + |0011010〉

− |0111111〉 + |0110000〉 + |0101100〉 − |0100011〉 + |0111001〉 + |0110110〉 − |0101010〉 − |0100101〉
− |1111111〉 + |1110000〉 − |1101100〉 + |1100011〉 + |1111001〉 + |1110110〉 + |1101010〉 + |1100101〉
−|1000000〉 + |1001111〉 + |1010011〉 − |1011100〉 + |1000110〉 + |1001001〉 − |1010101〉 − |1011010〉 (26)

is constructed from the 3-uniform state of six-qubit |�6〉
defined in Eq. (8). The state (26) is an almost 3-uniform state,
as only 3 out of its

(7
3

) = 35 reductions to three qubits are not
maximally mixed. These three reductions are identically equal
and have four nonzero eigenvalues equal to 1/4. Evidently,

three sets of four columns of the OAs forming this state have
repeated rows and, consequently, the diagonality property (B)
does not hold. Therefore, the question of whether a 3-uniform
state of seven qubits exists remains open. Additionally, a
2-uniform state of seven qubits having 8 terms appears in
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TABLE II. Existence of k-uniform states for qubits. Here “p”
and “n” denote that a state constructed as a superposition of product
states with all positive and some negative coefficients, respectively, is
known in the literature. Symbol “–” denotes that such a state cannot
exist, as the necessary condition k � N/2 is not fulfilled, while 0
means that such states do not exist, although the necessary condition
is satisfied.

k \ N 2 3 4 5 6 7 8

1 p p p p p p p
2 – – 0 n p p p
3 – – – – n ? p
4 – – – – – – 0

Appendix A and another one having 64 terms in Appendix B.
In Table II we resume the existence of k-uniform states for
a few number of qubits. Interestingly, some k-uniform states
seem to require negative terms.

We have shown that OAs are useful to construct k-uniform
states. However, the relation between these objects is not
injective. The following proposition connects OAs with a
subset of multipartite quantum states.

Proposition 1. For every orthogonal array OA(r,N,d,k)
there exists a quantum state of N qudits such that every
reduction to k qudits has its dk diagonal entries equal to d−k .

Observe that these pure states are not necessarily entangled.
Moreover, the reductions to k qudits are not necessarily
diagonal. This proposition can be inferred directly from the
scheme presented in Fig. 2. Note that the entries of such states
must have the same amplitude, which follows from Eq. (17).

In order to find a k-uniform state, we require an irredundant
OA satisfying the diagonality property (B). Interestingly, this
condition holds for any OA with index unity (λ = 1).

Theorem 2. Every OA(r,N,d,k) of index unity is irre-
dundant so it is equivalent to a k-uniform state of N qudits
whenever k � N/2.

Proof. Given that λ = 1 every k-tuple of symbols appears
only one time along the rows of the OA. Moreover, all the
possible combinations of the d different symbols appear along
the r = dk rows. This means that any set of k′ > k columns has
repeated rows. Thus, to satisfy the irredundancy property it is
enough to assume that k � N − k, which means that k � N/2;
see Fig. 2. The reciprocal implication is straightforward from
the definition of k-uniform states and OAs. �

We note that OA of index unity contains all possible
combinations of symbols in every subset of k columns (r =
dk). The bound k � N/2, first discussed by Scott [21] for
qubits, holds in general for subsystems with an arbitrary
number of d levels. As we show later, it is also predicted
by the quantum Singleton bound. In Appendix B we present a
list of OAs of index unity obtained from the catalog of Sloane
[33]. In general, these OAs are not easy to find as one needs to
use tables of Galois fields. An efficient algorithm to construct
these tables is presented in Chapter 4 of the book [36]. Given
that OAs with index unity are relevant to construct k-uniform
states, let us mention two important theorems [37].

Theorem 3 (Bush). If d � 2 is a prime-power number,
then an OA(dk,d + 1,d,k) of index unity exists whenever
d � k − 1 � 0.

TABLE III. Existence of k-uniform states of d levels for the
highest strength k = N/2. The first row corresponds to bipartite
systems and it includes the GHZ states (i.e., k = 1). Here the symbol√

denotes existing states, “–” that they do not exist, and ? open
existence.

N \ d 2 3 4 5 6 7 8

2
√ √ √ √ √ √ √

4 –
√ √ √

?
√ √

6
√ √ √ √ √ √ √

8 – ? ? ? ?
√ √

Theorem 4 (Bush). If d = 2m and m � 1, then there exist
an OA(d3,d + 2,d,3).

Also, the following corollary of Theorem 3.7 (see [31],
p. 41) is remarkably important here.

Corollary 1 (Hedayat). If d = 2m and m � 1, then there
exists an OA(dd−1,d + 2,d,d − 1).

The translation of these three results to the theory of quan-
tum entanglement is resumed in the following proposition.

Proposition 1. The following k-uniform states exist:
(i) k-uniform states of d + 1 qudits with d levels, where

d � 2 and k � d+1
2 ;

(ii) 3-uniform states of 2m + 2 qudits with 2m levels, where
m � 2;

(iii) 2m − 1-uniform states of 2m + 2 qudits with 2m levels,
where m = 2,4.

A k-uniform state has the maximal attainable value k =
N/2 for N even. States attaining this bound are known as
absolutely maximally entangled states [38] and their existence
is open in general. Such states are remarkably important in
quantum information theory; for example, they are equivalent
to pure state threshold quantum secret sharing scheme [39]. As
we mentioned, for qubit states the unique solutions of this kind
correspond to 1-uniform states of two qubits (Bell states) and
3-uniform states of six qubits where, curiously, a 2-uniform
state of four qubits does not exist. Interestingly, property (i) of
the above proposition provides us the existence of an infinite
set of absolutely maximally entangled states.

Corollary 2. For every d � 3 odd there are (d + 1)/2-
uniform states of d + 1 qudits with d levels.

Also, Properties (ii) and (iii) lead us to the existence of
3-uniform states of six qudits with four levels. In Table III we
resume the existence of N/2-uniform states of N qudits with
d levels. The existence of the 3-uniform state of six ququarts
shown in Table III is based on the irredundant orthogonal array
OA(64,6,4,3) [33].

A. k-uniform states and QECC

Quantum error-correcting codes (QECCs) theory deals with
the problem of encoding quantum states into qudits such
that a small number of errors can be detected, measured,
and efficiently corrected. QECCs are denoted as ((N,K,D))d ,
where N is the length of the code, K is the dimension of the
encoding state, D is the Hamming minimum distance, and d

is the levels number of the qudit system. An introduction to
QECCs can be found in the recent book of Lidar and Brun
[40]. The standard notation used here for QECCs (double
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parentheses) is in order to avoid confusion with classical codes.
A code having a minimum distance D makes it possible to
correct an arbitrary number of errors affecting up to (D − 1)/2
qudits. It is known that a ((N,K,D))2 QECC exists when the
quantum Gilbert-Varshamov bound [41] is satisfied:

D−1∑
j=0

3j

(
N

j

)
� 2N/K. (27)

Note that this inequality seems to be closely related to the
Rao bounds given in Eq. (10). However, Rao bounds cannot
be used to predict the existence of OAs. Very interestingly,
((N,1,k + 1))d QECCs are one-to-one connected to k-uniform
states of N qubits. Thus, following Eq. (27), we have

k∑
j=0

3j

(
N

j

)
� 2N−1. (28)

From this equation we show that k-uniform states of N qubits
exist for every k ∈ N if N is sufficiently large. However, this
inequality does not allows us to find the minimal number N

for which k-uniform states of N qubits do exist. For instance,
(28) predicts the existence of 3-uniform states for N � 14
qubits and we know that such class of states exists for six-
qubit systems. Another important inequality for QECCs is the
quantum Singleton bound [42]:

N − log K � 2(D − 1). (29)

From here we immediately get the upper bound k � N/2 for
any k-uniform state of N qudits. The codes achieving this
bound are called maximal distance separable (MDS) and their
existence is open in general. Interestingly, any violation of this
bound would allow us to get perfect copies of quantum states,
which is forbidden by the no-cloning theorem.

We have shown above that QECCs are partially related to
OAs through k-uniform states. Furthermore, classical error-
correcting codes (CECCs) are one-to-one connected to OAs
(see Sec. 4.3 of [31]):

(N,K,D)d ⇔ OA(K,N,d,k) for some k � 1, (30)

where single parentheses are used to denote CECCs. For
classical codes (N,K,D)d we also have a version of the
Singleton bound:

N � dK−D+1. (31)

The codes achieving this bound are the classical MDS codes.
An interesting result arises here (see Theorem 4.21, p. 79 in
[31]).

Proposition 3. Classical MDS codes are OAs of index unity.
We have shown, therefore, that CECCs are also useful to

construct k-uniform states. In particular, MDS-CECCs are
connected with k-uniform states if N = dK−D+1. The above
proposition also establishes the following connection between
classical and quantum error-correction codes.

Proposition 4. An MDS-CECC (N,K,D′)d is also a QECC
(N,1,D)d , for any K,D′ whenever D − 1 � N/2.

The proof is straightforward from the above discussions.
Although classical and quantum error-correction codes have
been previously related [43], our results show that some

CECCs are useful to construct k-uniform states and that an
arrangement can define both a CECC and a QECC.

B. Graph representation of k-uniform states

Graph theory is useful to represent a special kind of
multipartite maximally entangled pure states known as graph
states [44], construct QECCs associated with graphs [45,46] or
to define ensembles of random states with interaction between
subsystems specified to a graph [47]. Here we show that OAs
theory provides a natural graph representation of k-uniform
states which is not related to the graph states. Observe that
the graph states correspond to quantum systems composed
of subsystems with the same number of levels. On the other
hand, the graph representation applied here is suitable for
any number of multilevel qudit systems. For simplicity, we
concentrate in this paper on homogeneous subsystems and
postpone the more general case of heterogeneous subsystems
with different numbers of levels for a subsequent publication.
In the following lines we assume basic definitions and
properties of graph theory. Further details can be found in
the book [48] of Bondy and Murty.

An orthogonal array OA(r,N,d,k) corresponds to a natu-
rally associated graph composed of dk + dN−k vertices and r

edges. The vertices define two regular polygons PA and PB ,
where PA is inscribed into PB , as shown in Fig. 3.

The number of vertices of PA and PB is dk and dN−k ,
respectively. This graph is a sort of graphical representation
of a bipartition of the system AB, where PA and PB are
associated with the subsystems A and B. One has HAB =
HA ⊗ HB with Dim(HA) = �[PA] = dk and Dim(HB) =
�[PB] = dN−k . Note that PA = PB if and only if the state
is absolutely maximally entangled (i.e., k = N/2) [38]. As we
have shown, for N -qubit states this is only possible for N = 2
and N = 6.

FIG. 3. (Color online) Graphic representation of k-uniform
states. The regular polygons PA and PB represent the subsystems
A and B, respectively. The number of vertices of the polygons
depend on the number N of d-level subsystems and on the number
k � kmax = �N/2�, whereas the edges characterize the degree of
entanglement of the state.

022316-7
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In the following lines we describe our graph construction.
Let us define S = {0, . . . ,d − 1} and consider the partition

S⊗N = SA ⊕ SB, (32)

such that an OA and its associated pure state are given by

OA =

s0
A s0

B

s1
A s1

B

...

sr−1
A sr−1

B

|�〉 =
r−1∑
i=0

∣∣si
A,si

B

〉
, (33)

where si
A ∈ SA and si

B ∈ SB for every i = 0, . . . ,r − 1,
whereas Dim(SA) = k and Dim(SB) = N − k. We assume
that every entry of |�〉 is zero or one without taking the
normalization into account. Therefore, a simple rule for
constructing graphs arises.

(i) Associate the value si
A ∈ SA with every vertex of the

polygon PA and si
B ∈ SB with every vertex of the polygon PB,

for every i = 0, . . . ,r − 1.
(ii) Connect the vertex si

A to si
B , for every i = 0, . . . ,r − 1.

From here, we note the following interesting properties.
(1) Polygons PA and PB are connected by, at least, an edge

for entangled states (i.e., if PA and PB are disconnected then
the state is separable).

(2) Two vertices of the same polygon are never connected.
(3) If only one vertex of PA (or PB) is connected, then

the qudit associated with the corresponding subsystem is not
entangled to the rest.

(4) A quantum state is k-uniform if and only if the corre-
sponding graph satisfies the following properties equivalent to
(A) and (B):

(A′) Diagonality. Every vertex of PB is connected, at most,
to one edge.

(B ′) Uniformity. Every vertex of PA is connected to the
same number of edges.

These conditions must hold for every bipartition of the
state. In Fig. 4 we show some graphs associated with known
pure states: the Bell state |�+

2 〉 of (1), the GHZ state (2),
and the three-qubit W state (4). Given that edges define the
degree of entanglement of a state, one could speculate that the
entanglement increases with the number of edges. However,
it is not so, as some separable states correspond to the graphs
with several edges. For example, the graph shown in Fig. 4(d)
represents a separable state,

|�sep〉 = |100〉 + |101〉 + |110〉 + |111〉
= |1〉 (|00〉 + |01〉 + |10〉 + |11〉) , (34)

where the first qubit is not entangled to the rest. This
state reflects property (3) mentioned above. By construction,
every graph uniquely determines a pure state. However, the
graph representation depends on the bipartition considered,
in general. Therefore, for constructing k-uniform states from
graphs we should follow rules (A′) and (B′) above for every
bipartition, which is a complicated task for a high number
of qudits. In fact, there are

(
N

k

)
graphs associated with every

k-uniform state of N qudits. Interestingly, k-uniform states
having entries from the set {0,1} have all its graphs isomorphic.
We recall that two graphs G and H are isomorphic if there exist

FIG. 4. (Color online) Graphic representation of certain states of
systems composed of (a) two and (b)–(d) three qubits, where (a) is
a Bell state, (b) is the GHZ state, (c) is the W state, and (d) is the
separable state given in Eq. (34). Auxiliary dashed lines do not belong
to the graph as they represent polygons PA and PB . States (a) and (b)
represent 1-uniform states, while states (c) and (d) do not, as they do
not satisfy the diagonality (A′) and uniformity (B′) conditions.

an isomorphism f such that every pair of vertices u,v ∈ G

are adjacent if and only if f (u),f (v) ∈ H are adjacent.
This property holds because the subset of k-uniform states
considered is one-to-one connected with OAs. In particular, if
a k-uniform state comes from an OA of index unity then all its
graphs are identical. This property has a straightforward proof
from the definition of OAs.

A graph G associated with a k-uniform state has a
simple representation as a function of its adjacency matrix
MG. Here MG

ij = 1 if the vertex Vi ∈ PA is connected to
the vertex Vj ∈ PB and it is zero otherwise. As we have
shown in Fig. 4, the indices i and j are labeled by d-inary
numbers. Therefore, the state associated with a matrix MG is
given by

|�〉 =
∑
i,j

MG
ij |ij 〉, (35)

where i and j take all the values such that Vi ∈ PA and
Vj ∈ PB .

A final comment deserves our attention here. The graph
representation used here allows us to distinguish completely
disentangled states of d-level systems [see Fig. 4(d)] from gen-
uine multipartite entangled states. Furthermore, the structure
of the graphs associated with pure quantum states suggests to
divide them into following classes:

(i) fully separable;
(ii) partially entangled;
(iii) genuinely entangled;
(iv) k-uniform.
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In the last case, the strength k is also encoded in the graph.
We encourage to the reader to verify that the rules (A′) and
(B′) are satisfied for any GHZ state of N qudits.

C. Quantum gate allowing one to generate a k-uniform state

We describe here how to generate k-uniform states by
applying quantum gates to a selected initial blank state:

|η0〉 = |0〉⊗N . (36)

A general recipe to generate a k-uniform states reads as
follows.

(1) Apply the local operation H⊗(k) ⊗ I⊗(N−k), where H is
the single-qubit Hadamard gate and expand the terms involving
the first k qudits. That is, create the state

|η1〉 =
⎛
⎝ d∑

s1,...,sk=0

|s1, . . . ,sk〉
⎞
⎠ |0〉⊗(N−k), (37)

with r = dk terms.
(2) Apply a unitary transformation satisfying the restric-

tion

U
(|i〉 ⊗ |0〉⊗(N−k)) = |i〉 ⊗

λ−1∑
j=0

|fj (i)〉 (38)

for every i such that Vi ∈ PA. A pair {i,fj (i)} denotes
two connected vertices Vi ∈ PA and Vfj (i) ∈ PB , where j =
0, . . . ,λ − 1. Here we require λ functions f because every
vertex of the polygon PA has exactly λ connections to a vertex
of PB , where λ is the index of the OA associated with the
k-uniform state. Note that U is well defined because the inner
product between vectors in the domain is preserved in the
image. Additionally, this operator clones partial information
stored in orthogonal states, so it does not contain a universal
cloning machine for any pair of qudits. In general, U can be
always decomposed as simple nonlocal unitaries. For instance,
to prepare the GHZ state of N qubits we use a generalized
control-NOT gate, with a single control qubit and N − 1 target
qubits. That is,

U = 1⊗N−1
2 ⊕ σ⊗N−1

x . (39)

Finally, step (1) of our recipe has only an illustrative
meaning, in order to have a smooth connection with our
scheme. Thus, it can be removed in practice because it only
involves local operations.

D. Mutually unbiased bases and k-uniform states

The construction of mutually unbiased bases (MUBs) has
become an intriguing problem in pure mathematics and it has
some important applications to quantum tomography. MUBs
are naturally connected with other interesting hard problems:
affine planes, mutually orthogonal Latin squares, and complex
Hadamard matrices [49]. Here our intention is to connect
MUBs with k-uniform states. Specifically, we relate single
multipartite quantum states with maximal sets of MUBs. Two
orthonormal bases {|ϕs〉} and {|φt 〉} defined on a d-dimensional

Hilbert space are mutually unbiased if

|〈ϕs |φt 〉|2 = 1

d
, (40)

for every s,t = 0, . . . ,d − 1. A maximal set of (d + 1) MUBs
exists in every prime-power dimension [50], and in spite of
many efforts its existence remains open for every composite
dimension. In order to connect MUBs with k-uniform states,
we consider a reduced version of Theorem 8.43 (see p. 192,
[31]).

Theorem 5 (Hedayat). An OA(d2,d + 1,d,2) exists if and
only if a projective plane of order d exists.

On one hand, the OAs considered in this theorem have index
unity (leading us to k-uniform states). On the other hand, it
is conjectured that the existence of a projective plane of order
d determines a maximal set of (d + 1) MUBs in dimension
d [51]. A confirmation of this result together with Theorems
2 and 5 would imply the following interesting result: If a
2-uniform state of d + 1 qudits having d2 terms exists, then
a maximal set of d + 1 MUBs exist in dimension d. Note
that 2-uniform states of seven subsystems of six levels each
composed of 36 terms do not exist because of projective planes
of order 6 do not exist. A similar conclusion can be done from
the nonexistence of a projective plane of order 10.

In the subsequent section we present illustrative examples
of our construction of k-uniform states.

V. EXAMPLES OF k-UNIFORM MULTIPARTITE STATES

To show our construction in action we present in this section
some simple examples of k-uniform states connected to OAs.
Working with quantum states we use the standard notation, but
for brevity we work with not normalized pure states. Let us
start with the simplest OA:

OA(2,2,2,1) = 0 1
1 0 . (41)

In a combinatorial context we deal with a 2 × 2 OA of d = 2
levels and strength k = 1. As defined in Sec. III, the strength
denotes the number of columns that should be considered
in order to have λ = 1 times repeated a sequence of k = 1
symbols along the rows. In the physical context, OA(2,2,2,1)
represents a quantum superposition of qubits containing two
terms, each representing a separable pure state of two qubits,
d = 2, which is a 1-uniform state. The strength k of the array
determines the class of the k-uniform state. Thus, the state
connected with the array (41) is the maximally entangled Bell
state,

|�+
2 〉 = |01〉 + |10〉. (42)

In this section we use OAs listed in the resource of Sloane
[33]. In this catalog, we find the following OA:

OA(4,3,2,2) =
0 0 0
0 1 1
1 0 1
1 1 0

. (43)

It cannot be used to construct a 2-uniform state of N = 3 qubits
since the inequality k � N/2 does not hold (see Theorem 2).
However, an OA(r,N,d,k) is always an OA(r,N,d,k − 1), so
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we can consider OA(4,3,2,2) as OA(4,3,2,1), which is an IrOA.
Then inequality k � N/2 holds and the following 1-uniform,
balanced state of three qubits arises:

|�3〉 = |000〉 + |011〉 + |101〉 + |110〉. (44)

Acting on this state with a tensor product of Hadamard
matrices H2 ⊗ H2 ⊗ H2, one can verify that it is locally
equivalent to the standard GHZ state (2). Interestingly, this
three-qubit GHZ state defines the OA,

OA(2,3,2,1) = 0 0 0
1 1 1 . (45)

Orthogonal arrays (43) and (45) do not have anything in
common in the theory OAs. Thus, a natural question arises:
Which OAs are related by the fact that the corresponding
quantum states are equivalent with respect to local unitary
transformations?

Let us now consider the array

OA(8,4,2,3) =

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

, (46)

which is also an OA(8,4,2,1). This array leads to the following
1-uniform state of four qubits,

|�4〉 = |0000〉 + |0011〉 + |0101〉 + |0110〉
+ |1001〉 + |1010〉 + |1100〉 + |1111〉, (47)

well known in the literature [3]. It is worth adding that a
generalization of the above state with complex coefficients
expressed by the third root of unity is known in the literature
as the L state, for which certain measures of quantum
entanglement achieve its maximum [25]. Recently, it was
proved [52] that this state yields the maximum of the absolute
value of the hyperdeterminant for four qubits.

Observe that the existence of an OA(4,4,2,2) would imme-
diately lead us to a 2-uniform state of four qubits. However, the
Rao bound tells us that an OA(r ,4,2,2) must satisfy r � 5. Note
that for arrays with λ � 2, the diagonality condition (B) is not
always satisfied, so not every such array allows us to construct
the corresponding k-uniform state. For example, from the array
with the index λ = 2,

OA(8,5,2,2) =

0 0 0 0 0
1 0 0 1 1
0 1 0 1 0
0 0 1 0 1
1 1 0 0 1
1 0 1 1 0
0 1 1 1 1
1 1 1 0 0

, (48)

we obtain the following 1-uniform state of five qubits:

|�5〉 = |00000〉 + |10011〉 + |01010〉 + |00101〉
+ |11001〉 + |10110〉 + |01111〉 + |11100〉. (49)

FIG. 5. (Color online) Lower bound for the number of terms rk of
a k-uniform state of N qubits imposed by the Rao bounds (10): r1 = 2,
r2 = N + 1, r3 = 2N , r4 = N 2/2 + N/2 + 1, and r5 = N 2 − N + 2.

It is easy to verify that this state is not 2-uniform. The only
nonmaximally mixed reductions to two qubits are ρ24 and
ρ35. Curiously, we could not find a 2-uniform state of five
qubits having {0,1} entries and it is likely they do not exist. In
Appendix C we derive a 2-uniform state of five qubits having
{0, ± 1} entries. Remarkably, for any number of qubits N > 5
it is possible to find a 2-uniform state having {0,1} entries, as
we show in Theorem 7 (see also Appendix A).

In the case of a higher number of qubits the number of
terms r in a k-uniform state becomes large according to the
Rao bound (10). In Fig. 5 we show how the minimal number of
terms r required to produce a k-uniform pure state of N qubits
depends on the number N . The following remarks arise.

(1) For 1-uniform states we have r � 2, as there exist a
family of generalized GHZ states of N qubits, which consist
of two terms. From a combinatorial point of view, the arrays
corresponding to multiqubit GHZ states were discussed by
Hedayat et al. [31] (Example 1.4, p. 3) as a trivial way to
construct OA(r,N,2,1).

(2) Rao bounds tells us that 1-uniform states are the only
kind of k-uniform states allowing a constant number of terms,
r1 = 2.

(3) The minimum number of terms r2 and r3 required
to have a 2-uniform or 3-uniform state, respectively, is a
growing linear function of the number of qubits N , with slopes
1 and 2.

(4) The minimum number of terms r required to have a
k-uniform state for k > 3 is a growing nonlinear function of
the number of qubits N . For example, in the case of k = 4 we
have r4 � 1 + N/2 + N2/2 and r5 � 2 − N + N2.

VI. CONSTRUCTION OF 2-UNIFORM STATES
FOR EVERY N > 4

Generalized GHZ states provide a simple example of
1-uniform states for an arbitrary number of N qubits.
Construction of 2-uniform states usually requires computing
simulations and numerical approximations; see [12] and
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references therein. In fact, 2-uniform states are explicitly
known for five and six qubits only [20].

In this section we solve the problem of constructing a kind
of 2-uniform states for an arbitrary number of N qubits. As
is often the case [53], the theory of quantum information
can benefit from combinatorics and Hadamard matrices. A
Hadamard matrix is up to a prefactor an orthogonal matrix
with entries ±1. Some OAs of strength 2 are connected with
the famous Hadamard conjecture; see Theorem 7.5, p. 148
[31].

Theorem 6 (Hedayat). Orthogonal arrays OA(4λ,4λ −
1,2,2) exists if and only if there exists a Hadamard matrix
of order 4λ.

This theorem combined with a partial classification of
Hadamard matrices allows us to find a kind of 2-uniform
states of an arbitrarily large number of qubits. Consider a
Hadamard matrix of order κ in normalized form so that the
entries appearing in the first row and the first column are equal
to unity.

Making use of Theorem 6 we realize that Hadamard
matrices could be useful to construct 2-uniform states of κ − 1
(or less) qubits. That is, we will be able to find an OA which
satisfies the diagonality property (B). In what follows we derive
for which values of N we can construct a 2-uniform state from
a given Hadamard matrix of size κ . On one hand, every entry
of the first row of the OA contains ones. Thus, we must avoid
having another row containing N − 2 ones since, according to
(B) we need to have different rows for every subset of N − 2
columns. Given that we work with normalized Hadamard
matrices, zeros and ones appear at most κ/2 − 1 times in every
row, excluding the first one. Therefore, if the number of qubits
to be reduced (N − 2) is greater than κ/2 − 1 it is not possible
to obtain a second row of ones. Additionally, if the first row is
not repeated then the remaining rows are not repeated either,
as in OAs every repeated pair of rows is repeated the same
number of times. Thus, the N − 2 columns to be reduced are
different if and only if κ/2 − 1 < N − 2 and thus property
(B) holds. Given that N � κ − 1 we arrive at the following
statement.

Theorem 7. A Hadamard matrix of order κ allows one to
find 2-uniform states of N qubits having entries from the set
{0,1} if and only if

κ/2 + 2 � N � κ − 1. (50)

In Appendix A we exemplify this theorem by constructing
2-uniform states for 6 to 15 qubits.

Combinatorial Theorem 6 can be thus adopted to the
theory of multipartite entanglement. Together with the above
explanations it leads us to the following result.

Theorem 8. The problem of classifying 2-uniform states for
qubits contains the Hadamard conjecture.

Precisely, the 2-uniform states of N = 4λ − 1 qubits
connected with the Hadamard conjecture are those having
r = 4λ terms (λ ∈ N). The Hadamard conjecture states that
a κ × κ Hadamard matrix exists for κ = 2 and for every
κ = 4n, n ∈ N. It has been open since 1893 and it represents
one of the most important problems in combinatorics. Not
knowing whether the Hadamard conjecture holds, we show
that Theorem 7 allows us to construct another kind of 2-
uniform states for an arbitrary number of N > 4 qubits.

FIG. 6. Overlap of the bounds 3 × 2n−2 + 2 � N � 3 × 2n−1

[see Eq. (51)].

First, we note that κ = 2n (n ∈ N) is not a solution for every
N . That is, the intervals given in Eq. (50) have gaps for some
values of N . Specifically, the gaps are given for N = 2n and
N = 2n + 1 (for every n > 2). In order to cover these gaps it
is enough to consider κ = 12 × 2n−3, where the new interval
is given by

3 × 2n−2 + 2 � N � 3 × 2n−1. (51)

Figure 6 shows that many pairs (n,N ) satisfying Eq. (51)
exist for every N > 5. As Hadamard matrices of the size κ =
12 × 2n−3 can be written explicitly as a tensor product (H12 ⊗
H⊗n−3

2 ), we are able to construct 2-uniform states of N qubits
for N > 5. Thus, the following statement holds.

Theorem 9. For every N > 5 there exists 2-uniform quan-
tum states of N qubits and they can be constructed from known
Hadamard matrices. Moreover, they have entries from the set
{0,1}.

The proof of the above theorem is constructive.
(i) Consider a κ × κ Hadamard matrix H in the normalized

form, so that its first column and first row consist of +1 only.
If N �= 2n and N �= 2n + 1 for every n > 2 then consider κ =
2ν , where ν is chosen such that κ − N is positive and, for
simplicity, is as small as possible. Otherwise, consider κ =
12 × 2ν−3 in the same way.

(ii) Discard the first column of H , keep any subset of N

columns and discard the rest to obtain a rectangular matrix
with κ rows and N columns.

(iii) Replace all elements equal to −1s with 0. This leads
us to an OA according to Theorem 6 and property (v) from
Sec. IV.

(iv) Every row of the OA obtained should be put in kets,
summed, and normalized to produce the desired 2-uniform
state of N qubits, which completes the construction. �

Note that for λ = 1 in Theorem 6 we have an OA(4,3,2,2)
which cannot be used to construct a 2-uniform state of three
qubits as condition k � N/2 is not satisfied. Instead, we have
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shown in Eq. (43) that this array allows one to build a 1-uniform
state of three qubits.

As final comments we realize that the complete
classification of 2-uniform states is currently out of reach,
as it includes the Hadamard conjecture. Moreover, already
for κ = 32 there are more than 13 × 106 nonequivalent
Hadamard matrices [54], so the number of ways to generate
2-uniform states for 31 qubits is huge. We do not know how
many of these states are locally equivalent.

Another observation is worth making. We realize that a k-
uniform state constructed from IrOA according to the scheme
shown in Fig. 2 allows us to generate entire classes of k-
uniform states. For instance, taking

|�3〉 = |000〉 + |011〉 + |101〉 + |110〉, (52)

we generate the three-parameter class of states

|�3〉(α1,α2,α3) = |000〉 + eiα1 |011〉
+ eiα2 |101〉 + eiα3 |110〉, (53)

as α1,α2,α3 ∈ [0,2π ). In general, from any k-uniform state of
N qudits generated by an OA of index λ = 1, i.e.,

|�〉 = ∣∣s1
1 ,s

1
2 , . . . ,s

1
N

〉 + ∣∣s2
1 ,s

2
2 , . . . ,s

2
N

〉
+ · · · + ∣∣sr

1,s
r
2, . . . ,s

r
N

〉
, (54)

we can generate the entire dN − 1-dimensional orbit of k-
uniform quantum states,

|�〉 = ∣∣s1
1 ,s

1
2 , . . . ,s

1
N

〉 + eiα1
∣∣s2

1 ,s
2
2 , . . . ,s

2
N

〉
+ · · · + eiαdN −1

∣∣sr
1,s

r
2, . . . ,s

r
N

〉
. (55)

Therefore, our approach is not only useful to generate a k-
uniform state but also to generate entire orbits of maximally
entangled states. It is easy to see that an orbit of k-uniform
states can be considered as a starting point for a search for a
single (k + 1)-uniform state.

VII. CONCLUDING REMARKS

We presented a combinatorial tool to systematically
generate genuine multipartite entangled pure states of N

qudits: the orthogonal arrays. Our construction of k-uniform
states works if an OA of strength k is irredundant (i.e., after
removing from the array any k columns all remaining rows
are distinct). This class of OAs differs, in general, from the
supersimple OAs, recently discussed in [55]. However, these
classes coincide when k + 1 = N − 1, which is only possible
for 1-uniform states of three subsystems and 2-uniform states
of four subsystems of qudits.

Our approach allows us to find new entangled states of
several qudits and to establish their properties. In Sec. IV we
derived two conditions sufficient to construct k-uniform states
and realized that the first one, uniformity condition (A), is
fulfilled by any OA. Having at hand any OA one needs to verify
that it is irredundant, so the diagonality condition (B) is satis-
fied. In practice, it is easy to find examples of arrays for which
both conditions are satisfied, so they lead to k-uniform states.

Results obtained in this paper include the following.
(1) Every OA of index unity OA(dk,N,d,k) allows us

to generate a k-uniform state of N qudits of d levels if and

only if k � N/2; see Theorem 2 . In Appendix B we present
several examples of k-uniform states for subsystems with
d > 2 levels each.

(2) We demonstrated that 2-uniform states of N qubits
exist for every N > 4; see Sec. VI. An explicit construction of
these states is presented in Theorem 9, which involves known
Hadamard matrices. Such states are listed in Appendix A for
N = 6, . . . ,15.

(3) We revisited the connection between k-uniform states
and quantum error correction codes. In particular, we find
that minimal distance separable classical codes are equivalent
to some k-uniform states (see Proposition 3) and also estab-
lished connections between classical and quantum codes; see
Proposition 4.

(4) A certain graph representation of k-uniform states
is proposed. It arises from OAs and it allows us to identify
the k-uniform states; see Sec. IV B. Additionally, the key
conditions of uniformity (A) and diagonality (B) stated above
receive a simple graphical interpretation.

(5) The existence of a single 2-uniform state of d + 1
qudits is connected with the existence of a maximal set of
d + 1 mutually unbiased bases in prime-power dimensions
(see Theorem 5). If Saniga et al.’s conjecture [51] is true, then
our connection is valid for every dimension d.

(6) We proved that the existence of a particular kind of
2-uniform states, those considering N = κ − 1 qubits and
having κ terms are equivalent to construct κ × κ Hadamard
matrices. Consequently, for κ �= 4n they do not exist and for
κ = 4n this is equivalent to the Hadamard conjecture, for
every n ∈ N (see Theorem 8). This suggests that the complete
classification of 2-uniform states of N -qubit states could be
temporarily out of reach.

(7) An entire orbit of maximally entangled states can be
constructed from every k-uniform state generated from an OA;
see Sec. VI.

Additionally, in Appendix C we explain how to construct
k-uniform states from OAs when the diagonality assumption
(B) is not satisfied. In Fig. 7 we show the most important
connections made in this work.

Let us conclude this work by listing some open issues.
(A) Check if every k-uniform state is equivalent under

stochastic local operations and classical communication to a

FIG. 7. (Color online) Relationship between k-uniform states,
QECCs, CECCs, and other relevant mathematical notions. Dashed
(black) lines represent known connections, while solid (blue) lines
denote the relations discussed in this paper.
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state generated from an OA. This property holds for systems
containing N = 2,3,4 qubits.

(B) Find for what N there are 3-uniform states of N qubits
and 2-uniform states of N qutrits. Also, provide an explicit
construction of 3-uniform states of qudits for high values
of N .

(C) Solve the existence problem of 3-uniform states of
seven qubits.

(D) Find how the maximal value kmax, for which kmax-
uniform states of N -qubit exist, depends on N . Analyze the
dependence kmax(N ) for qutrits and higher, d-dimensional
systems.

(E) Investigate the existence of the approximate (ε,k)-
uniform states, for which all reductions are maximally mixed
up to ε corrections. Analyze generic random pure states of N

qudits, distributed with respect to a Haar measure [56], to find
for which values of both parameters they are (ε,k)-uniform.

(F) Extend the method developed here to heterogeneous
systems composed of subsystems with different numbers of
levels, for instance, the qubit-qutrit systems.

(G) Extend Theorem 9 to the case of 2-uniform states of
qudits by using Butson-type complex Hadamard matrices [57].

(H) Find which OAs are locally equivalent,
OA(r,N,d,k) ∼ locOA(r ′,N,d,k′), in a sense that they
lead to locally equivalent quantum states. Note that neither
the number r of the terms in each state nor the strength k

needs to be preserved by the local equivalence relation.
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APPENDIX A: EXPLICIT CONSTRUCTION
OF 2-UNIFORM STATES

In this section, we use known Hadamard matrices to
exemplify the construction of 2-uniform states defined in
Theorem 9. Let us consider the 8 × 8 Hadamard matrix H8

and its associated OA obtained from the last seven columns of
the matrix,

H8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A1)

→ OA =

1 1 1 1 1 1 1
0 1 0 1 0 1 0
1 0 0 1 1 0 0
0 0 1 1 0 0 1
1 1 1 0 0 0 0
0 1 0 0 1 0 1
1 0 0 0 0 1 1
0 0 1 0 1 1 0

. (A2)

Applying Theorem 9 we immediately get the following 2-
uniform state of seven qubits:

|�7〉 = |1111111〉 + |0101010〉 + |1001100〉
+ |0011001〉 + |1110000〉 + |0100101〉
+ |1000011〉 + |0010110〉. (A3)

This state can be called a simplex state, since its eight terms,
interpreted as coordinates of points in R7, form a regular
7-simplex after changing 0s to −1s [58]. Notice that the
scalar product between any two such vectors is constant, so the
collection of these vectors forms equiangular lines. The same
property holds also for the states |�2m−1〉, e.g., the state |�15〉
given in (A9).

Removing the first column of the OA given in Eq. (A1) we
have the following 2-uniform state of six qubits:

|�6〉 = |111111〉 + |101010〉 + |001100〉 + |011001〉
+|110000〉 + |100101〉 + |000011〉 + |010110〉.

(A4)

Note that we attained the lower bound given in Eq. (51) for
the 2-uniform states that can be directly obtained from H8.
However, a 2-uniform state of five qubits can be obtained
from H8 in a different way (see Appendix C). In the following
examples we systematically eliminate the first (left) qubit.
From H12 [59] and Theorem 9 we find the following 2-uniform
states:

|�11〉 = |00000000000〉 + |10100011101〉 + |11010001110〉 + |01101000111〉
+ |10110100011〉 + |11011010001〉 + |11101101000〉 + |01110110100〉
+ |00111011010〉 + |00011101101〉 + |10001110110〉 + |01000111011〉, (A5)

|�10〉 = |0000000000〉 + |0100011101〉 + |1010001110〉 + |1101000111〉
+ |0110100011〉 + |1011010001〉 + |1101101000〉 + |1110110100〉
+ |0111011010〉 + |0011101101〉 + |0001110110〉 + |1000111011〉, (A6)
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|�9〉 = |000000000〉 + |100011101〉 + |010001110〉 + |101000111〉
+ |110100011〉 + |011010001〉 + |101101000〉 + |110110100〉
+ |111011010〉 + |011101101〉 + |001110110〉 + |000111011〉, (A7)

and

|�8〉 = |00000000〉 + |00011101〉 + |10001110〉 + |01000111〉
+ |10100011〉 + |11010001〉 + |01101000〉 + |10110100〉
+ |11011010〉 + |11101101〉 + |01110110〉 + |00111011〉. (A8)

Now, from the Hadamard matrix H16 = H⊗4
2 we construct the following 2-uniform states:

|�15〉 = |111111111111111〉 + |010101010101010〉 + |100110011001100〉 + |001100110011001〉
+ |111000011110000〉 + |010010110100101〉 + |100001111000011〉 + |001011010010110〉
+ |111111100000000〉 + |010101001010101〉 + |100110000110011〉 + |001100101100110〉
+ |111000000001111〉 + |010010101011010〉 + |100001100111100〉 + |001011001101001〉, (A9)

|�14〉 = |11111111111111〉 + |10101010101010〉 + |00110011001100〉 + |01100110011001〉
+ |11000011110000〉 + |10010110100101〉 + |00001111000011〉 + |01011010010110〉
+ |11111100000000〉 + |10101001010101〉 + |00110000110011〉 + |01100101100110〉
+ |11000000001111〉 + |10010101011010〉 + |00001100111100〉 + |01011001101001〉, (A10)

|�13〉 = |1111111111111〉 + |0101010101010〉 + |0110011001100〉 + |1100110011001〉
+ |1000011110000〉 + |0010110100101〉 + |0001111000011〉 + |1011010010110〉
+ |1111100000000〉 + |0101001010101〉 + |0110000110011〉 + |1100101100110〉
+ |1000000001111〉 + |0010101011010〉 + |0001100111100〉 + |1011001101001〉, (A11)

|�12〉 = |111111111111〉 + |101010101010〉 + |110011001100〉 + |100110011001〉
+ |000011110000〉 + |010110100101〉 + |001111000011〉 + |011010010110〉
+ |111100000000〉 + |101001010101〉 + |110000110011〉 + |100101100110〉
+ |000000001111〉 + |010101011010〉 + |001100111100〉 + |011001101001〉, (A12)

|�̃11〉 = |11111111111〉 + |01010101010〉 + |10011001100〉 + |00110011001〉
+ |00011110000〉 + |10110100101〉 + |01111000011〉 + |11010010110〉
+ |11100000000〉 + |01001010101〉 + |10000110011〉 + |00101100110〉
+ |00000001111〉 + |10101011010〉 + |01100111100〉 + |11001101001〉, (A13)

|�̃10〉 = |1111111111〉 + |1010101010〉 + |0011001100〉 + |0110011001〉
+ |0011110000〉 + |0110100101〉 + |1111000011〉 + |1010010110〉
+ |1100000000〉 + |1001010101〉 + |0000110011〉 + |0101100110〉
+ |0000001111〉 + |0101011010〉 + |1100111100〉 + |1001101001〉, (A14)

|�̃9〉 = |111111111〉 + |010101010〉 + |011001100〉 + |110011001〉
+ |011110000〉 + |110100101〉 + |111000011〉 + |010010110〉
+ |100000000〉 + |001010101〉 + |000110011〉 + |101100110〉
+ |000001111〉 + |101011010〉 + |100111100〉 + |001101001〉, (A15)

and

|�̃8〉 = |11111111〉 + |10101010〉 + |11001100〉 + |10011001〉 + |11110000〉 + |10100101〉 + |11000011〉 + |10010110〉
+ |00000000〉 + |01010101〉 + |00110011〉 + |01100110〉 + |00001111〉 + |01011010〉 + |00111100〉 + |01101001〉.

In the case of N = 8,9,10,11 we marked the states with a tilde in order to emphasize that the states obtained from the
Hadamard matrix H16 need not coincide with these constructed from H8. Furthermore, for N = 16 there exists five different
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classes of nonequivalent Hadamard matrices [59], and all of
them allow us to generate 2-uniform states for N � 15 qubits.
Finally, we remark that each of the 2-uniform states of k qubits
generated from our method leads us to the orbits of 2-uniform
states with 2k − 1 real parameters constructed according to
Eq. (55).

APPENDIX B: k-UNIFORM STATES
FOR d-LEVEL SUBSYSTEMS

In this section we construct k-uniform states from OAs
for qudits having d > 2. Let us present some k-uniform

states straightforwardly constructed from OAs of index λ =
1. The following OAs have been taken from the catalog of
Sloane [33]. From OA(9,4,3,2) we have the 2-uniform of four
qutrits:∣∣�4

3

〉 = |0000〉 + |0112〉 + |0221〉 + |1011〉 + |1120〉
+ |1202〉 + |2022〉 + |2101〉 + |2210〉. (B1)

Interestingly, a 2-uniform state of four qutrits exists, whereas
there is no 2-uniform state of four qubits. From OA(16,5,4,2)
we get the 2-uniform state of five ququarts, related to the
Reed-Solomon code [33] of length 5,

∣∣�5
4

〉 = |00000〉 + |01111〉 + |02222〉 + |03333〉 + |10123〉 + |11032〉 + |12301〉 + |13210〉
+ |20231〉 + |21320〉 + |22013〉 + |23102〉 + |30312〉 + |31203〉 + |32130〉 + |33021〉. (B2)

From OA(64,6,4,3) we obtain a 3-uniform state of six ququarts:∣∣�6
4

〉 = |000000〉 + |001111〉 + |002222〉 + |003333〉 + |010123〉 + |011032〉 + |012301〉 + |013210〉 + |020231〉 + |021320〉
+ |022013〉 + |023102〉 + |030312〉 + |031203〉 + |032130〉 + |033021〉 + |100132〉 + |101023〉 + |102310〉
+ |103201〉 + |110011〉 + |111100〉 + |112233〉 + |113322〉 + |120303〉 + |121212〉 + |122121〉 + |123030〉
+ |130220〉 + |131331〉 + |132002〉 + |133113〉 + |200213〉 + |201302〉 + |202031〉 + |203120〉 + |210330〉
+ |211221〉 + |212112〉 + |213003〉 + |220022〉 + |221133〉 + |222200〉 + |223311〉 + |230101〉 + |231010〉
+ |232323〉 + |233232〉 + |300321〉 + |301230〉 + |302103〉 + |303012〉 + |310202〉 + |311313〉 + |312020〉
+ |313131〉 + |320110〉 + |321001〉 + |322332〉 + |323223〉 + |330033〉 + |331122〉 + |332211〉 + |333300〉. (B3)

From OA(25,6,5,2) we get a 2-uniform state consisting of six five-level systems:∣∣�6
5

〉 = |000000〉 + |011234〉 + |022341〉 + |033412〉 + |044123〉 + |101111〉 + |112403〉 + |124032〉 + |130324〉
+ |143240〉 + |202222〉 + |214310〉 + |223104〉 + |231043〉 + |240431〉 + |303333〉 + |310142〉 + |321420〉
+ |334201〉 + |342014〉 + |404444〉 + |413021〉 + |420213〉 + |432130〉 + |441302〉. (B4)

Interestingly, the 1-uniform state of seven qubits obtained from OA(64,7,2,6),∣∣�7
2

〉 = |0000000〉 + |1000001〉 + |0100001〉 + |0010001〉 + |0001001〉 + |0000101〉 + |0000011〉 + |1100000〉
+ |1010000〉 + |1001000〉 + |1000100〉 + |1000010〉 + |0110000〉 + |0101000〉 + |0100100〉 + |0100010〉
+ |0011000〉 + |0010100〉 + |0010010〉 + |0001100〉 + |0001010〉 + |0000110〉 + |1110001〉 + |1101001〉
+ |1100101〉 + |1100011〉 + |1011001〉 + |1010101〉 + |1010011〉 + |1001101〉 + |1001011〉 + |1000111〉
+ |0111001〉 + |0110101〉 + |0110011〉 + |0101101〉 + |0101011〉 + |0100111〉 + |0011101〉 + |0011011〉
+ |0010111〉 + |0001111〉 + |1111000〉 + |1110100〉 + |1110010〉 + |1101100〉 + |1101010〉 + |1100110〉
+ |1011100〉 + |1011010〉 + |1010110〉 + |1001110〉 + |0111100〉 + |0111010〉 + |0110110〉 + |0101110〉
+ |0011110〉 + |1111101〉 + |1111011〉 + |1110111〉 + |1101111〉 + |1011111〉 + |0111111〉 + |1111110〉, (B5)

is symmetric with respect to permutations and it has all its
two-, three-, four-, five-, and six-qubit reductions identically
equal. That is, every subsystem of N ′ < 7 qubits contains the
same physical information. Moreover, these reductions have
rank 2 independently of the size of the reduction. Thus, the
above seven-qubit state is a genuine multipartite entangled
state but the entanglement of its parties is weak. The strong
regularity observed in the reductions of this state is due to
the high strength k = 6 of the orthogonal array OA(64,7,2,6).
That is, every subset of six columns of the OA contains the 26

possible combinations of the symbols along the 64 rows.

Note that most of the 1-uniform states presented are
symmetric under permutation of qubits. It has been proven
that a k-uniform state is symmetric if k � 1 [20]. Therefore,
k-uniform states cannot be symmetric for k � 2. This means
that neither 2-uniform the states constructed from Table IV
nor those appearing in Appendix B are symmetric. Inter-
estingly, this property can be also applied to OAs of index
unity through Theorem 2: An OA of index unity, N runs, and
two levels is invariant under permutation of columns if it has
strength k = 1. Indeed, given that r = λ2k , an OA of index
λ = 1 and k = 1 have r = 2 runs. Thus, the only symmetric
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TABLE IV. Orthogonal arrays of index λ = 1 allowing for a direct
construction of 2-uniform states.

Orthogonal array r N d

OA(9,4,3,2) 9 4 3
OA(16,5,4,2) 16 5 4
OA(25,6,5,2) 25 6 5
OA(49,8,7,2) 49 8 7
OA(64,9,8,2) 64 9 8
OA(81,10,9,2) 81 10 9
OA(100,4,10,2) 100 4 10
OA(121,12,11,2) 121 12 11
OA(144,7,12,2) 144 7 12
OA(169,14,13,2) 169 14 13
OA(256,17,16,2) 256 17 16
OA(289,18,17,2) 289 18 17

OA of index unity are one-to-one connected to the GHZ
states.

Table IV provides a list of some OAs of index λ = 1 [33]. As
we have shown along the work, they can be used for a direct
construction of 2-uniform quantum states of N subsystems,
with d levels each: Note that in most cases the values of the
parameter r in the above OA is a power of a prime, as these
arrays were obtained with Theorem 1. However, the cases of
OA(64,6,4,3), OA(100,4,10,2), and OA(144,7,12,2) have been
probably constructed by computing simulations. We remark
here that there is no simple way to generate OAs of index
λ = 1 for non-prime-power values d. However, they might
exist. Construction of OAs of strength k = 3 and index λ = 1
is implied by the following theorem [60].

Theorem 10 (Kounias). For any even d every orthogonal ar-
ray OA(d3,d + 1,d,3) can be extended to OA(d3,d + 2,d,3).

This theorem can be restated in the context of multipartite
quantum states.

Proposition 5. For any even d every 3-uniform state of
d + 1 qudits generated by OA(d3,d + 1,d,3) can be extended
to a 3-uniform state of d + 2 qudits.

Unfortunately, in current libraries of OAs we could not find
a suitable example to illustrate this proposition.

APPENDIX C: CONSTRUCTION OF k-UNIFORM STATES
WITH NONPOSITIVE TERMS

Some orthogonal arrays OA(r,N,d,k) satisfying k � N/2
do not lead us to a k-uniform state of positive terms. This is
because some rows within sets of N − k columns are repeated
and, consequently, the reductions to k qudits are not diagonal.
However, sometimes it is possible to introduce minus signs in
some terms of the state such that it becomes a k-uniform state.
Here we carefully illustrate this procedure for a 2-uniform
state of five qubits obtained from the Hadamard matrix H8.
Despite that this patch can be applied in many cases we
cannot prove the existence of k-uniform states of N qudits for
every k and N such that k � N/2. For example, we could find
neither 3-uniform states of seven qubits nor 4-uniform states
of eight qubits. As already mentioned, the problem relies on
the violation of the diagonality condition (B).

Let us consider the last five columns of the Hadamard
matrix H8 given in Eq. (A1). Here, N = 5 and κ = 8, so
inequality (51) does not hold. Let us define the state

|�′
5〉 = |11111〉 + |01010〉 + |01100〉 + |11001〉 + |10000〉

+ |00101〉 + |00011〉 + |10110〉, (C1)

which is not a 2-uniform state. In order to find a 2-uniform
state we start by adding some unimodular complex numbers
in the terms of |�′

5〉:
|�′′

5〉(�α) = (−1)α0 |11111〉 + (−1)α1 |01010〉 + (−1)α2 |01100〉
+ (−1)α3 |11001〉 + (−1)α4 |10000〉
+ (−1)α5 |00101〉 + (−1)α6 |00011〉
+ (−1)α7 |10110〉. (C2)

So, from every nonmaximally mixed reduction we obtain a
linear system of equations for the phases {αr}. If this system
is compatible, then there exists states of the form given in
Eq. (C2) such that all its reductions are diagonal. Additionally,
as we consider OAs the reductions are maximally mixed. On
the other hand, the linear system of equations is incompatible
when k > N/2.

For |�′
5〉 the only nonmaximally mixed reductions are

ρ34 = Tr125(ρ12345) and ρ25 = Tr134(ρ12345). In the three tables

4 5 1 2 3
1 1 1 1 1
1 0 0 1 0
0 0 0 1 1
0 1 1 1 0
0 0 1 0 0
0 1 0 0 1
1 1 0 0 0
1 0 1 0 1

3 4 1 2 5
1 1 1 1 1
0 1 0 1 0
1 0 0 1 0
0 0 1 1 1
0 0 1 0 0
1 0 0 0 1
0 1 0 0 1
1 1 1 0 0

2 5 1 3 4
1 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 1 1 0 0
0 0 1 0 0
0 1 0 1 0
0 1 0 0 1
0 0 1 1 1

we can see the OA version of the process to obtain the
reductions ρ45 = Tr123(ρ12345), ρ34 = Tr125(ρ12345), and ρ25 =
Tr134(ρ12345). The first table corresponds to the analysis
of the reduction ρ45 = I/4. Note that the binary numbers
determined by columns 4 and 5 cover exactly 2 times the
four pairs {(0,0); (0,1); (1,0); (1,1)}. This happens in every
pair of columns because the OA has strength k = 2. Also, the
frequency of appearance of every pair is 2 given that the OA
has index λ = 2. Therefore, the diagonal of the reduced state
ρ45 is uniform. Additionally, this reduction is diagonal because
the rows determined by columns 1, 2, and 3 are different. In
the second table we analyze the reduction ρ34. Here columns 3
and 4 determine a uniform diagonal of the reduction. However,
columns 1, 2, and 5 are repeated, so ρ34 is not a diagonal matrix.
So is the case for the third table corresponding to ρ25. These
are the reasons why |�′

5〉 is not a 2-uniform state. In what
follows, we explain how to modify this construction allowing
for negative terms in |�′

5〉 to satisfy the 2-uniform property.
In higher dimensions, possibly complex phases are required
as k-uniform states containing all terms with real weights may
not exist. Basically, the nondiagonal terms in the reductions
arise from an even number of terms. If we consider OAs, all
these contributions are positive. Therefore, one can change
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the sign of some terms of the state |�〉 in order to achieve
that all the reduced states are diagonal. Let us concentrate
in the middle array in the above table. Making use of the
definition

ρA = TrB(ρAB)

=
∑
i,j,k,l

ai,j,k,lTrB(|i〉A|j 〉BA〈k|B〈l|)

=
∑
i,j,k,l

ai,j,k,l 〈l|j 〉 |i〉A〈k| (C3)

and the data from the table above one can construct the
following reduction:

ρ34 =

⎛
⎜⎝

00 01 10 11
00 1/4 0 0 1/4
01 0 1/4 1/4 0
10 0 1/4 1/4 0
11 1/4 0 0 1/4

⎞
⎟⎠. (C4)

Therefore, assuming that

|�′′
5〉 = |11111〉 + (−1)α1 |01010〉 + (−1)α2 |01100〉

+ (−1)α3 |11001〉 + (−1)α4 |10000〉
+ (−1)α5 |00101〉 + (−1)α6 |00011〉
+ (−1)α7 |10110〉, (C5)

we have the following linear system of equations:

α0 + α3 + α4 + α7 + 1 = 0,
(C6)

α1 + α2 + α5 + α6 + 1 = 0.

Interestingly, the same linear equations appear for the
reduction ρ25. For example, a solution arises from considering
that the only non-null phases are α6 = α7 = 1. Consequently,
the state

|�′′
5〉 = |11111〉 + |01010〉 + |01100〉 + |11001〉

+|10000〉 + |00101〉 − |00011〉 − |10110〉 (C7)

is a 2-uniform state of N = 5 qubits consisting of eight terms,
of which two are negative.
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