
PHYSICAL REVIEW A 90, 022308 (2014)

Quantum and classical capacity boosted by a Lorentz transformation

Kamil Brádler,1,* Esteban Castro-Ruiz,2 and Eduardo Nahmad-Achar2

1Department of Astronomy and Physics, Saint Mary’s University, Halifax, Nova Scotia B3H 3C3, Canada
2Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico D.F., Mexico
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In this paper we show that the quantum channel between two inertial observers who transmit quantum
information by sending realistic photonic wave packets is a well-studied channel in quantum Shannon theory: the
Pauli channel. The parameters of the Pauli channel and therefore its classical and quantum capacity depend on
the magnitude of the Lorentz boost relating the two observers. The most striking consequence is that two inertial
observers whose Pauli channel has initially zero quantum capacity can achieve nonzero quantum communication
rates (reaching, in principle, its maximal value, equal to 1) by applying a boost in the right direction. This points
to a fundamental connection between quantum channel capacities and special relativity.
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Photons carrying quantum information encoded in the
polarization degrees of freedom between two inertial observers
were first studied in [1]. Photons were considered to be
momentum and helicity eigenstates but it soon became clear
that a more realistic description is given by localized wave
packets [2–4]. This discovery, however, uncovered many
problems, among which the definition of a polarization
density matrix is one of the most pressing. It turns out that,
apart from specially crafted wave packets [5], there is no
covariant definition of a polarization (helicity) density matrix.
The main reason lies in the nontrivial dependence of the
helicity on the momentum [6]. One of the consequences
is the impossibility to trace over the momentum degree of
freedom, leading to some interesting effects for two inertial
observers trying to communicate by sending such wave
packets [2].

Here we approach the problem from an entirely different
perspective. When it comes to quantum communication over a
noisy quantum channel, the important quantity is the classical
or quantum channel capacity studied in quantum Shannon
theory [7] (or [8] for more mathematically oriented readers).
Quantum channel capacities quantify the highest achievable
rate at which nearly perfect transmission of quantum or
classical messages through a noisy quantum channel is
possible [8,9]. Quantum codes prepared for this purpose by the
sender can be used for transmission of classical or quantum
information [8,9]. In order to establish the channel capacity,
it is necessary to identify the quantum channel first. This is
done by careful study of the physical scenario. In our case
we consider two inertial observers where, without loss of
generality, one of them is considered to be at rest and the
other is moving at a constant relativistic speed. Under these
conditions, the most suitable carriers of information seem
to be photons with helicity (circular polarization) degrees
of freedom. Our intention is to analyze a realistic scenario
where the photonic states are spatially localized polychromatic
wave packets whose momentum distribution is a reasonably
chosen square-integrable function. We do not rely on less
realistic schemes with momentum and helicity eigenstates
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[1] or linearly polarized wave packets [5]. The first step the
sender must take is to map a logical qubit ψ = α |0〉 +β |1〉
to a sufficiently realistic wave packet �0. The wave packet is
then Lorentz transformed to the receiver’s frame. An important
ingredient is therefore detection. We use the highly realistic
and simple detection mechanism proposed in [10]. As a
consequence, the two main reasons that jointly contribute to
the appearance of a noisy channel are (i) the Lorentz transfor-
mation itself and (ii) the detection process. Importantly, even
the sender in his own reference frame cannot simply undo the
mapping ψ �→ �0. The reason is the intentionally low level of
sophistication of the detection process [10].

We identify the induced quantum channel to be a Pauli
channel whose parameters are functions of the boost and the
wave-packet variance. We calculate the classical [11] and
quantum [12] capacities of the channel. More precisely, the
quantum capacity of a general Pauli channel is not known to
possess a calculable formula, but a lower bound on reliable
quantum communication is known (the hashing bound [13]),
and an upper bound on the zero quantum capacity based on
a no-cloning argument is known as well [14]. As one of
the consequences we conclude that for two observers whose
quantum capacity is initially 0 (due to a poorly prepared wave
packet), it can be increased arbitrarily close to its maximum
value by a boost in the right direction. The two observers
can be initially at rest or moving with respect to each other.
The amplification effect due to a Lorentz boost exists for the
classical capacity as well. This inexorably points to a deep
connection between quantum Shannon theory and special
relativity similar to that in classical Shannon theory [16].
We also clarify the reported occurrence of a non-completely
positive map in a similar situation [2] and show that, despite
its validity, it actually plays no role in realistic quantum
communication between two inertial observers.

The communication setup consists of three steps. The
sender first maps his logical qubit to a photonic wave
packet: ψ �→ �0. The general form of �0 reads [17] |�0〉 =∑

λ=±
∫
R3 fλ(k) |k,λ〉 dμ(k), where dμ(k) = d3k/[(2π )32k0]

is the Lorentz invariant integration measure and k = (k0,k)
is the four-momentum vector. We denote f+(k) = αf (k) and
f−(k) = βf (k) and choose f (k) to be a Gaussian momentum
distribution with an axial symmetry.
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The second step is the Lorentz transformation of the wave
packet. In this paper we focus on a Lorentz boost � = Bz(ζ ),
where ζ = arctanh vz is the rapidity (assuming c = 1) and
−1 < vz < 1 is the velocity. The induced unitary transfor-
mation of the wave packet is denoted U(�) and its action
U(�)�0 = �ζ results in the modification of the envelope
function f (�−1k). At this point we note that for realistic
wave packets it is natural to assume that the momentum
variance in the propagation direction is much smaller than
the radial variance (σz � σ ). This approximation gives rise to
the momentum distribution function used in this paper,

|f (�−1k)|2 = 1

N

exp
( − sin2 ϑ

�2(sinh ζ+cosh ζ cos ϑ)2

)
sinh ζ + cosh ζ cos ϑ

, (1)

where � is the wave-packet spread, ϑ is the polar angle of
k, and N is chosen such that the covariant normalization
condition

∫
R3 |f (k)|2dμ(k) = 1 is satisfied. The derivation of

(1) is presented in Appendix A in great detail. We emphasize
that the approximation is valid for all ζ ∈ R: If we take the
limit σz → 0 and then Lorentz transform, the result is identical
to Lorentz transforming the wave packet with finite σz and then
taking the limit σz → 0. It is in this sense that our wave packet
has a well-defined transformation (cf. Appendix A).

The final step is the recovery of the information encoded
in the helicity degree of freedom of the wave packet, leading
to the desired output density matrix: �ζ �→ 
ζ . It is far from
obvious how to achieve this goal because the momentum and
helicity degrees of freedom are not independent. A simple
partial trace over the momenta is not a correct description of
helicity states [2] because the helicity Hilbert space (Wigner’s
“little” space; see Appendix A) can be thought of as a fiber
of a coset space (the positive light cone minus the origin)
[18,19] and so each k the wave packet is constructed from
“carries” its own Hilbert space C2

k . However, we can define
an effective polarization density matrix 
ζ from the expected
values of measurements on the complete state �ζ . The
density matrix formed in this way contains all the information
regarding possible polarization measurements. We follow the
construction given by [10], where the detection is represented
by

W (k) =
⎡
⎣

cos φ cos ϑ√
1−cos2 φ sin2 ϑ

− sin φ√
1−cos2 φ sin2 ϑ

sin φ cos ϑ√
1−sin2 φ sin2 ϑ

cos φ√
1−sin2 φ sin2 ϑ

⎤
⎦. (2)

What is the meaning of this transformation? Consider a linear
polarizer whose axis is ẑ. Then W (k) is a transmission matrix
whose elements are wij = 〈k,i|k,j 〉, where i = {0,1} = {x̂,ŷ}
and j = {0,1} = {H,V }. The state |k,x̂〉 (|k,ŷ〉) is defined as
the state behind the device that is oriented along x̂ (ŷ). Given
W (k) for every k, the output polarization density matrix 
ζ is
formed by averaging the polarization vectors over all momenta.
Note that W (k) is neither a projector (or POVM) nor a unitary
matrix (except for ϑ = 0, where it behaves as a polarization
rotator). This is crucial because any form of measurement
would destroy quantum information and lead to zero quantum
capacity.

We can now put all the pieces together. Our task is to
investigate the character and properties of the overall map

FIG. 1. (Color online) The general wave packet can be thought of
as a collection of k vectors modulated by an envelope function. Each
vector has a (complex) helicity space attached whose real projection
can be visualized as an R2 plane perpendicular to the momentum
vector (represented by two tangential planes). The amplitudes a

and b of the real helicity vectors given by the projection of the
dashed (blue) arrows on the helicity basis vectors [light (green) solid
arrows] lying in the plane are identical for all k’s, but because the
momentum vectors point in different directions in momentum space,
the helicity vectors point in different directions in ambient R3 space
[see related discussion before Eqs. (2) and (4)]. To correct for this
effect, we “unrotate” the polarization vectors by applying Eq. (4). This
compensates the rotation of the k vector and is depicted in the plane
perpendicular to the vector k = k(ϑ,φ). But it works well only for
small ϑ . The unrotation becomes less effective as ϑ increases, and for
ϑ → π/2 it is useless since the helicity vector points “downwards.”
The important point is that, without the unrotation, reliable quantum
communication is impossible [see Eq. (7)].

P : ψ �→ 
ζ . The explicit form of 
ζ reads [10]


ζ =
∑

m,n=0,1

|m〉〈n|
∫
R3

|f (�−1k)|2(awm0 + bwm1)

× (awn0 + bwn1)dμ(k), (3)

where a = (α + β)/
√

2, b = i(α − β)/
√

2, and the bar de-
notes complex conjugation [the reason behind this transfor-
mation is that we work in the helicity basis, whereas W (k) is
written in the horizontal and vertical polarization basis]. We
can imagine the wave packet as a collection of k vectors each
with a perpendicular plane R2 attached. The plane contains the
real projections of the polarization vector a |k,H 〉 + b |k,V 〉.
In the ambient R3 space the real polarization projections
for different k’s point in different directions (see Fig. 1).
Consequently, such a wave packet is useless for sending
quantum information, as shown in Eq. (7), given that our
detection model is in terms of linear polarizers. This detection
model [Eq. (2)] is simple but sufficiently realistic. The intuitive
explanation for it is that W (k) essentially uniformly averages
over polarization vectors for all k and the coherence present in
the off-diagonal elements of |ψ〉〈ψ | is wiped out. Instead, we
engineer our wave packet such that the coefficients in Eq. (3)
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become [
a

b

]
�→

[
cos φ sin φ

−sin φ cos φ

][
a

b

]
. (4)

The transformation and its rationale are explained in Fig. 1.
The photon packet carries information whether or not Eq. (4) is
used in the preparation of the state. When this unrotation is not
used, we cannot extract useful information from the reduced
density operator constructed from our detection model since,
as mentioned above, although general and realistic in nature,
it uses linear polarization measurements. The use of Eq. (4) in
the preparation of the state, however, allows us to extract the
encoded information from such a reduced density matrix.

Remarkably, the sought-after map P turns out to be a Pauli
channel, P : 
 �→ p0
 + ∑3

i=1 piτi
τi , where τi are Pauli
matrices (using the convention {1,2,3} = {x,y,z}) and 0 �
pi � 1, satisfying

∑3
i=0 pi = 1. By suitably reparametrizing

the input state ψ using α = exp (−iχ ) cos (ξ/2) and β =
exp (iχ ) sin (ξ/2), the Pauli channel output reads

P(
)

= 1

2

[
1 + λ3 cos χ sin ξ λ1 sin χ sin ξ − iλ2 cos ξ

λ1 sin χ sin ξ + iλ2 cos ξ 1 − λ3 cos χ sin ξ

]
,

(5)

where λ1 = p0 + p1 − p2 − p3, λ2 = p0 − p1 + p2 − p3,
and λ3 = p0 − p1 − p2 + p3.

The fact that our physical setup becomes a Pauli channel is
highly nontrivial. It can be seen by comparing the elements of
the density matrix, (3), derived in Appendix A [Eqs. (A27)]
with Eq. (5). In addition, for this to be true, the following
identities must be satisfied for j = 1,2:∫ 2π

0

∫ ϑc

0
K(ϑ,ζ,�)

gj

1 − cos2 φ sin2 ϑ
dφdϑ

=
∫ 2π

0

∫ ϑc

0
K(ϑ,ζ,�)

(−)j+1gj+2

1 − sin2 φ sin2 ϑ
dφdϑ, (6)

where K(ϑ,ζ,�) is the kernel from Eq. (A15) and gj are
defined in Eqs. (A21). The validity of Eq. (6) is proved in
Eq. (A23) and in the paragraph that follows it. The origin of the
upper integration bound ϑc = arccos (−tanh ζ ) is explained
just before Eq. (A16).

The main consequence is that we do not need to evaluate
the density matrix integrals in (3). It is not even desirable: we
are interested in the channel and its capacities as functions of
ζ and � (certainly not of χ or ξ !) and the above identification
enables us to find analytic and perturbative expressions (in �)
for λi [as illustrated for ζ = 0 in Eqs. (B3), (B12), and (B4)].

Based on this insight, we are now ready to write down
an expression for the classical capacity and lower and upper
bounds of the quantum capacity. Following the prescription
given in [11] for general unital qubit channels, we write
C(P) = 1 − H (x) for the classical capacity of a Pauli channel
P , where H ({x,1 − x}) = −x log2 x − (1 − x) log2 (1 − x) is
the Shannon entropy, x = (1 + maxi |λi |)/2 and maxi |λi | =
λ1 in our case. For a lower bound on the quantum capacity
we use the hashing (random coding) bound [13] given
by Q↑(P) = 1 − H ({p0,p1,p2,p3}). On the other hand, the
quantum capacity of a Pauli channel is 0 if the following
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FIG. 2. (Color online) The classical capacity C(P) in bits per
channel (upper dashed curve) and a lower bound on the quantum
capacity Q↑(P) in bits per channel (lower curve) of a Pauli channel
plotted as a function of 1/�. The zero lower bound Q↑(P) becomes
true zero quantum capacity below Cerf’s bound where c0

↓ � 1/2 (to
the left of the vertical line).

condition is satisfied [14]: c0
↓

def= p1 + p2 + p3 + √
p1p2 +√

p2p3 + √
p1p3 � 1/2. This is an upper bound we draw our

main conclusion from, and together with C(P) and Q↑(P), it
is plotted in Fig. 2.

Assume an inertial observer who prepares a poor wave
packet �0 whose spread � leads to c0

↓ � 1/2. In this case, the
quantum capacity is exactly zero1 (recall that even the sender
himself, equipped with our realistic detection scheme, cannot
reverse the mapping ψ �→ �0), and therefore no quantum
communication is, in principle, possible (cf. Fig. 2). If,
however, one of the participants Lorentz boosts himself in such
a way that the envelope function, Eq. (1), becomes sufficiently
localized, then the hashing bound becomes strictly positive and
reliable quantum communication is possible. This is precisely
what we see in Fig. 3 for negative rapidity ζ , which means
that the sender and the receiver are approaching each other.
A similar increase as a consequence of the Lorentz boost is
witnessed for the classical capacity (not depicted). Moreover,
from the asymptotic behavior (� → 0 or ζ → −∞) of the λi

functions it follows that both communication rates approach
their maximal value, 1. This is because, in this limit, the
envelope function becomes a δ function with all the helicity
vectors aligned, turning the Pauli channel into a noiseless
channel.

We therefore demonstrate an intricate connection between
quantum Shannon theory and special relativity. This follows
the footsteps of Ref. [16], where the relation between classical
Shannon theory and special relativity is exposed. Several
comments are in place. First, here we consider a Lorentz
boost in the direction of propagation of the wave packet. A

1Note that another method useful to conclude that the quantum
capacity is 0 is to calculate whether the Pauli channel is entanglement
breaking [15]. However, it turns out that our Pauli channels become
entanglement breaking deep inside Cerf’s territory.
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FIG. 3. (Color online) The effect of a negative rapidity ζ in the z

direction (an approaching observer) on the quantum capacity’s lower
bound (in bits per channel) is illustrated for three initial wave packets.
Two wave packets whose quantum capacity is 0 (1/� = 0.005 and
1/� = 0.05; see Fig. 2) can be boosted to nonzero values. Already
for a nonzero value of quantum capacity (illustrated as 1/� = 0.3)
the boost further increases the communication rate.

more general Lorentz transformation would lead to a more
complicated behavior due to the presence of a nontrivial
Wigner phase [3]. Second, there is a gap between Cerf’s
bound and the nonzero hashing bound (see Fig. 2). The Pauli
channel in this area is not a one-Pauli channel (defined as
having any pair of {p1,p2,p3} equal to 0) for which the
hashing bound equals the quantum capacity itself [12]. Hence
it may happen that the method based on highly degenerate
quantum codes showing superadditivity of the optimized
coherent information for Pauli channels [12] can lead to
nonzero rates despite the hashing bound being 0. Third, if
a wave packet is used without the polarization unrotation,
Eq. (4) (see Fig. 1), the resulting channel turns out to be
D ◦ P2, where D is a qubit depolarizing channel [7] and P2 is
a one-Pauli channel with p1 = p3 = 0 and p0 = p2. Because
of the aforementioned property of the one-Pauli channels, we
have Q↑(P2) = Q(P2) = 1 − H ({p0,0,p0,0} = 0. By further
using the bottleneck inequality for the quantum capacity [8],
we finally obtain

Q(D ◦ P2) � min {Q(D),Q(P2)} = 0. (7)

Thus, reliable quantum transmission is impossible.
The physics behind the possibility of increasing the channel

capacity is the deformation of the wave packet due to the
relativistic aberration of light. Loosely speaking, the boost
reduces the relative width of the wave packet in the transverse
plane, which in turn allows for enhanced communication rates.
Note that the transverse component of the polarization vector
can be controlled via polarizing plates; it is the longitudinal
component of the polarization vector which is not controllable
by the observers. However, as we have shown, its detrimental
effect on information transmission can be reduced by an
appropriate Lorentz transformation.

Apart from rigorously quantifying the rate at which two
inertial observers can quantum communicate, our work also
sheds light on the intriguing observation made in [2] on the

0 ζ

ΨζΨ0ψ

non-CP

W

U(Λ)

WP ′

P

FIG. 4. Diagram describing the whole physical setup and the
emergence of a relativistic Pauli channel P (note that P ′ is P
for ζ = 0). For a detailed description see the paragraph preceding
Appendix A.

presence of non-completely positive (non-CP) dynamics in
relativistic transformations of photonic wave packets. Here
we conclude that it is more of a mathematical curiosity than
having a real physical impact. To see this, we summarize the
situation studied in this paper in the diagram in Fig. 4. We
first map a logical qubit ψ to a realistic photonic wave packet
�0. We either may decide to detect the wave packet using the
detection given by Eq. (2) (downward arrow labeled W ) and
obtain a helicity density matrix 
0 or can Lorentz boost �0 to
obtain �ζ = U(�)�0 (wavy line) and then detect. This yields
a density matrix 
ζ . It may indeed happen that the dotted line
connecting 
0 and 
ζ represents a non-CP map (depends on
the boost direction), but the important point is that once 
0 is
received, 
ζ cannot be obtained by a Lorentz boost, and vice
versa. The relativistic protocol ends by obtaining a helicity
density matrix; only wave packets are Lorentz transformed
(that is, transmitted). The Pauli channelsP ′ andP are mutually
exclusive.
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APPENDIX A: WAVE PACKET AND OUTPUT DENSITY
MATRIX CONSTRUCTION

The degrees of freedom suitable for information trans-
mission in free space are the helicity (circular polarization)
states. The reason we prefer helicity to horizontal and vertical
polarization is its conceptual clarity: the helicity is a Poincaré
invariant [17,18]. The two Casimir operators of the Poincaré
group are the squares of the four-momentum operator P μ and
the Pauli-Lubanski vector Wμ. However, their eigenvalues are
0 for massless fields and do not serve as “good” quantum
numbers. This is because, based on physical grounds, we
take only the SO(2) subgroup of the little group generated
by Wμ. Instead, we label the states carrying this particular
representation as |k,λ〉 by the eigenvalues of P μ and Wμ

themselves [note that P μ |k,λ〉 = kμ |k,λ〉 and Wμ |k,λ〉 =
λkμ |k,λ〉 [17,18], where k = (k0,k)]. The momentum and
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helicity eigenstates |k,λ〉 satisfy the standard normalization
condition 〈k,λ|k′,λ′〉 = (2π )3(2k0)δλλ′δ3(k − k′).

The ket notation for the eigenstates suggests that they are
elements of a Hilbert space but that is not really the case.
The explicit realization of a separable Hilbert space we are
interested in is the space of square-integrable functions. But
a momentum and helicity eigenstate is not square integrable
and real-world physical processes do not generate such states.
Realistic photonic states are wave packets whose spatial
localization is provided by a Fourier transformation of a
square-integrable momentum envelope function fλ(k). The
general form of such a state is

|�〉 =
∑
λ=±

∫
fλ(k)|k,λ〉dμ(k), (A1)

where dμ(k) is the relativistic volume element

dμ(k) = 1

(2π )3

1

2k0
d3k. (A2)

A Lorentz transformation � of wave packet (A1) induces a
unitary transformation U(�),

U(�)|�〉 =
∑
λ=±

∫
fλ(k)U(�)|k,λ〉dμ(k),

=
∑
λ=±

∫
eiλϑW (k,�)fλ(k)|�k,λ〉dμ(k)

=
∑
λ=±

∫
eiλϑW (k,�)fλ(�−1k)|k,λ〉dμ(k), (A3)

where ϑW (k,�) is Wigner’s angle [6], whose explicit form can
be found in [3] and [5]. For the special case of a boost in the
wave-packet propagation direction studied in this paper the
phase is 0. This can be explicitly shown as follows.

The little group for massless particles is the Euclidean
group in two dimensions E2, which is a semidirect product
of the rotation group in two dimensions SO(2) and the group
of translations in the plane T2. A general element W ∈ E2

can be written as W = T R, where T ∈ T2 and R ∈ SO(2)
[17]. A nontrivial representation of the translation group in
the Hilbert space of massless particles yields particle states
labeled by continuous internal degrees of freedom [20]. Since
no such particles are known to exist, the group T2 is represented
trivially and only the rotation part of the little-group element
plays a role in the transformation rule for the massless case.
In particular, one-particle photonic states transform as

U(�)|p,λ〉 = eiλϑ(�,p)|p,λ〉, (A4)

where λ = ±1. The labels p and λ denote, respectively, the
four-momentum and the helicity of the photon.

We now show that the Wigner angle ϑ(�,p) vanishes when
� is a pure boost along the z axis with velocity v = tanh ζ ,
with ζ ∈ R, and p = ω(1, cos φ sin θ, sin φ sin θ, cos θ )T is an
arbitrary (null) four-momentum vector. This is equivalent to
showing that the little-group element

W (�,p) = L−1
�p�Lp (A5)

is a pure translation for this choice of �.

The Lorentz transformation Lp takes the standard four-
vector k = (1,0,0,1)T to p and is defined by

Lp = R(p̂)Bz(ξ ), (A6)

where Bz(ξ ) is a pure boost along the z axis, with rapidity
ξ = − ln ω, which takes the four-vector k to the four-vector
(ω,0,0,ω)T , and R(p̂) is a rotation that takes the latter to p.
The rotation R(p̂) is defined as R(p̂) = Rz(φ)Ry(θ ), where
Rz(φ) is a rotation along the z axis by an angle φ, and Ry(θ )
is a rotation along the y axis by an angle θ .

On the other hand, the transformed four-vector p is given
by

�p = ω

⎡
⎢⎣

cosh ζ − sinh ζ cos θ

cos φ sin θ

sin φ sin θ

−sinh ζ + cosh ζ cos θ

⎤
⎥⎦, (A7)

so that the transformation L�p reads L�p = Rz(φ̃)Ry(θ̃)Bz(ξ̃ ),
where φ̃ = φ (a boost along z does not affect the azimuthal an-
gle), θ̃ = arcsin

[
(ω cosh ζ − ω sinh ζ cos θ )−1 sin θ

]
, and ξ̃ =

−ln(ω cosh ζ − ω sinh ζ cos θ ). Putting all the pieces together,
we find

W (�,p) = L−1
�p�Lp

= Bz(−ξ̃ )Ry(−θ̃ )Rz(φ)Bz(ζ )Rz(φ)Ry(θ )Bz(ξ )

= Bz(−ξ̃ )Ry(−θ̃ )Bz(ζ )Ry(θ )Bz(ξ ), (A8)

where we have used the fact that rotations and boosts along the
same axis commute. At this point it is clear that the little-group
element W (�,p) has no contribution from SO(2) since the
rotations along z have canceled out. Indeed, a direct calculation
shows

W (�,p) =

⎡
⎢⎢⎣

1 + 1
2 �a2 a1 a2 − 1

2 �a2

a1 1 0 −a1

a2 0 1 −a2
1
2 �a2 a1 a2 1 − 1

2 �a2

⎤
⎥⎥⎦, (A9)

where �a = (a1,a2)T , with a1 = (cothζ − cos θ )−1eξ sin θ , and
a2 = 0. This has the form of a pure translation by the vector �a
in the x-y plane [21]. Therefore, we have ϑ(�,p) = 0 as was
to be shown.

It is no surprise that boosts along the z axis induce a different
behavior of the Wigner phase in contrast to boosts in any other
direction, since the standard vector k is defined so that its
spatial part points in the z direction. We have here chosen the z

axis to be the main direction of propagation of the wave packet
for calculational convenience only. Any other choice of this
direction would of course yield the same results for appropriate
definitions of standard vector k and standard boosts Lp.

It is natural for the momentum distribution of a realistic
wave packet to possess axial symmetry. One such choice is a
Gaussian profile whose form reads

f (k) = 1

σzσ 2(2π )3/2
exp

(
−k2

1 + k2
2

2σ 2

)
exp

(
− (k3 − kp)2

2σ 2
z

)
,

(A10)

where kp > 0 is the mean value determining the average direc-
tion of wave packet propagation. This function is normalized
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in the following sense:∫ ∞

−∞
f (k)d3k = 1.

But this is not a covariant normalization. For the case of wave
packets used in relativistic situations (meaning that at least
one of the observers is moving at a relativistic speed), we are
interested in the following condition being satisfied:∫ ∞

−∞
|f (k)|2dμ(k) = 1, (A11)

where we have redefined the envelope function

|f (k)|2 = 1

N ′ exp

(
−k2

1 + k2
2

σ 2

)
exp

(
− (k3 − kp)2

σ 2
z

)
.

(A12)

Condition (A11) ensures that the overall probability is con-
served for a Lorentz transformed wave packet. There is no
need to find N ′ since we will make a physically motivated
approximation. In particular, we will assume that the variance
of the distribution in the z direction is much smaller than
the variance in the radial direction, i.e., σz/σ � 1. In the
end we have to work with the approximated wave packet
in spherical coordinates. So before we make the approxi-
mation, we transform Eq. (A11) to the desired coordinate
system. The four-vector kμ = (k0,k1,k2,k3) becomes kμ =
k0(1, sin ϑ cos φ, sin ϑ sin φ, cos ϑ), and after a Lorentz boost
has been applied we obtain k̃μ = (�−1)μνk

ν , where

�−1 ≡ B−1
z (ζ ) =

⎡
⎢⎣

cosh ζ 0 0 sinh ζ

0 1 0 0
0 0 1 0

sinh ζ 0 0 cosh ζ

⎤
⎥⎦, (A13)

with ζ = arctanh vz being the rapidity and vz the speed. Hence

k̃μ = k0

⎡
⎢⎣

cosh ζ + sinh ζ cos ϑ

sin ϑ cos φ

sin ϑ sin φ

sinh ζ + cosh ζ cos ϑ

⎤
⎥⎦, (A14)

and the Cartesian volume element becomes a spherical
“relativistic” volume element

dk1 ∧ dk2 ∧ dk3 = (k0)2 sin ϑ(cosh ζ + sinh ζ cos ϑ)

× dk0 ∧ dϑ ∧ dφ, (A15)

where ∧ stands for the wedge product. Consequently, Eq. (A2)
transforms into

dμ(k) = 1

(2π )3

k0 sin ϑ

2
dk0dϑdφ, (A16)

and Eq. (A12) becomes

|f (�−1k)|2 = 1

N ′ exp

(
− (k0)2 sin2 ϑ

σ 2

)

× exp

(
− (k0(sinh ζ + cosh ζ cos ϑ) − kp)2

σ 2
z

)
.

(A17)

At this point we introduce the aforementioned approximation
and set

|f (�−1k)|2 = 1

N
exp

(
− (k0)2 sin2 ϑ

σ 2

)

× δ(k0(sinh ζ + cosh ζ cos ϑ) − kp) (A18a)

= 1

N
exp

(
− (k0)2 sin2 ϑ

σ 2

)

× δ

(
k0 − kp

sinh ζ + cosh ζ cos ϑ

)

× kp

sinh ζ + cosh ζ cos ϑ
, (A18b)

where we have used the δ function identity: δ(ax) = δ(x)/|a|.
The integral over k0 yields

|f (�−1k)|2 = 1

N
exp

(
− sin2 ϑ

�2(sinh ζ + cosh ζ cos ϑ)2

)

× 1

sinh ζ + cosh ζ cos ϑ
, (A19)

where � = σ/kp. We find the normalization condition by
evaluating the complete integral

N

∫
|f (�−1k)|2dμ(k)

= kp

2(2π )3

∫ ϑc

0

∫ 2π

0
exp

(
− sin2 ϑ

�2(sinh ζ + cosh ζ cos ϑ)2

)

× sin ϑ

(sinh ζ + cosh ζ cos ϑ)2
dϑdφ, (A20)

where we have used Eqs. (A16) and (A19). We further define
the kernel K(ϑ,ζ,�) to be

K(ϑ,ζ,�)
def= exp

(
− sin2 ϑ

�2(sinh ζ + cosh ζ cos ϑ)2

)

× sin ϑ

(sinh ζ + cosh ζ cos ϑ)2
. (A21)

There are two covariant options for the upper bound angle
ϑc. Either it can be ϑc = π , which comes directly from the
change of variables given by the transformation in Eq. (A14),
or we can set

ϑc = arccos (−tanh ζ ). (A22)

In both cases the integral is relativistically invariant since the
normalization is given by

N = kp

(2π )3
�π

3
2 exp

(
− 1

�2

)(
1 − erf

1

�

)
(A23)

for ϑc = π and

N = kp

2(2π )3
�π

3
2 exp

(
− 1

�2

)(
1 − erf

1

�

)
(A24)

for ϑc = arccos (−tanh ζ ). A closer analysis of Eq. (A20)
reveals that the approximation leads to two Gaussian wave
packets (peaked at ±kp in the z momentum component)
and therefore moving in the opposite direction. We are,
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however, interested only in the one with a positive z com-
ponent of the momentum. Hence, the second option for ϑc

corresponds to the physically interesting situation of just a
single-direction traveling wave packet. Of course, the other
option would be to define the envelope function to be
identically 0 in the region corresponding to kp < 0 (before
applying a Lorentz transformation) and then we could set
ϑc = π .

The second angle [Eq. (A22)] can be derived from the usual
formulas for the relativistic aberration of light given by how a
polar angle ϑ̃ of one observer is perceived by another inertial
observer as a function of ζ :

ϑ̃ = arctan

(
sin ϑ

sinh ζ + cosh ζ cos ϑ

)
. (A25)

By setting ϑ̃ = π/2 we obtain the angle ϑc in Eq. (A22).
By plugging Eqs. (2), (4) and (A19) into Eq. (3) we obtain

the explicit expressions of the density matrix components of
Eq. (5):


ζ,00 = 1

N

∫ 2π

0

∫ ϑc

0
K(ϑ,ζ,�)

g1 + g2 cos χ sin ξ

1 − cos2 φ sin2 ϑ
dφdϑ,

(A26a)


ζ,11 = 1

N

∫ 2π

0

∫ ϑc

0
K(ϑ,ζ,�)

g3 + g4 cos χ sin ξ

1 − sin2 φ sin2 ϑ
dφdϑ,

(A26b)


ζ,01 = 1

N

∫ 2π

0

∫ ϑc

0
K(ϑ,ζ,�)

× g5 sin χ sin ξ + ig6 cos ξ√
1 − cos2 φ sin2 ϑ

√
1 − sin2 φ sin2 ϑ

dφdϑ,

(A26c)

where

g1 = 1
2 (cos2 φ cos2 ϑ + sin2 φ), (A27a)

g2 = 1
2 (cos2 φ cos 2φ cos2 ϑ − cos 2φ sin2 φ + cos ϑ sin2 2φ),

(A27b)

g3 = 1
2 (sin2 φ cos2 ϑ + cos2 φ), (A27c)

g4 = 1
2 (sin2 φ cos 2φ cos2 ϑ − cos 2φ cos2 φ − cos ϑ sin2 2φ),

(A27d)

g5 = 1
4 (2 cos2 2φ cos ϑ + sin2 2φ + cos2 ϑ sin2 2φ), (A27e)

g6 = − 1
2 cos ϑ. (A27f)

We can easily read off the λi parameters responsible for the
Pauli channel output structure Eq. (5):

λ1 = 2

N

∫ 2π

0

∫ ϑc

0
K(ϑ,ζ,�)

× g5√
1 − cos2 φ sin2 ϑ

√
1 − sin2 φ sin2 ϑ

dφdϑ,

(A28a)

λ2 = 2

N

∫ 2π

0

∫ ϑc

0
K(ϑ,ζ,�)

× g6√
1 − cos2 φ sin2 ϑ

√
1 − sin2 φ sin2 ϑ

dφdϑ,

(A28b)

λ3 = 2

N

∫ 2π

0

∫ ϑc

0
K(ϑ,ζ,�)

g2

1 − cos2 φ sin2 ϑ
dφdϑ. (A28c)

For λi to be the Pauli channel parameters one has to show that
condition (6) is satisfied. Indeed this is true. From the form of
gj functions in Eqs. (A27), one can see that for j = 1 we get

g1

1 − cos2 φ sin2 ϑ
= g3

1 − sin2 φ sin2 ϑ
= 1

2
. (A29)

For j = 2 the absolute values of the integrands in (6) are
not equal but, rather, shifted by π/2. This can be seen by
setting cos φ = sin φ′ (hence φ′ = φ + π/2 and dφ = dφ′),
and therefore cos 2φ = − cos 2φ′ and sin 2φ = − sin 2φ′. By
plugging these expressions into g2 we obtain −g4 and prove
identity (6) for all ζ ∈ R and arbitrary �.

APPENDIX B: DETAILED DERIVATION OF THE PAULI
CHANNEL PARAMETERS λi FOR ζ = 0

We derive analytic and perturbative expressions for the
coefficients λi of the Pauli channel for the observer at rest
where ζ = 0. The derivation of the Lorentz-boosted Pauli
channel follows a similar path but the complexity of the
calculations is far higher since the components of the output
density matrix themselves are not relativistically invariant.
The components of the density matrix are calculated from
Eq. (3) by using (4) and the kernel, Eq. (A21). We omit
the omnipresent constant kp/(2π )3 and start with the output
density matrix normalization

N = Tr[
] =
∫ ∞

0

exp (− s
�2 )

2
√

1 + s
ds = �π

3
2 exp

(
− 1

�2

)

×
(

1 − erf
1

�

)
. (B1)

This is an entirely independent confirmation of the
wave-packet normalization, Eq. (A24). For ζ = 0 we obtain
from Eqs. (A28)

λ1 = 2

N

∫ 2π

0

∫ π/2

0
e− tan ϑ2/�2 sin ϑ

cos2 ϑ

× g5√
1 − cos2 φ sin2 ϑ

√
1 − sin2 φ sin2 ϑ

dφdϑ, (B2a)

λ2 = 2

N

∫ 2π

0

∫ π/2

0
e− tan ϑ2/�2 sin ϑ

cos2 ϑ

× g6√
1 − cos2 φ sin2 ϑ

√
1 − sin2 φ sin2 ϑ

dφdϑ, (B2b)

λ3 = 2

N

∫ 2π

0

∫ π/2

0
e− tan ϑ2/�2 sin ϑ

cos2 ϑ

g2

1 − cos2 φ sin2 ϑ
dφdϑ.

(B2c)
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We start with λ3, whose form can be obtained analytically. By integrating over φ and using the substitution s = tan2 ϑ , we get

λ3 = 2π

N

∫ ∞

0
exp

(
− s

�2

)
2 + s − 2

√
1 + s

s2
ds.

This has the form of a Laplace transform (denoted L) but the double-pole at s = 0 is troublesome. To get rid of it we introduce an
auxiliary variable, p = 1/�2, and twice differentiate the integrand with respect to it, leading to f (s) = 2 + s − 2

√
1 + s. The

rest is a routine calculation provided by MATHEMATICA:

L(f (s))(p) = 1

p2
(1 − ep

√
2π erf

√
p).

We reverse the derivatives by two antiderivatives,

λ3 = 2π

N

∫
dp

∫
dp

(
1

p2
(1 − ep

√
2π erf

√
p)

)
+ c,

where c is an integration constant given by limp→∞ λ3 = 0 because of an exponential tail. We find that

λ3 = 4π

3N

⎛
⎝2p2

2F2

⎡
⎣ 1 1

; p
5
2 3

⎤
⎦ + 3(πi(2p − 1) erf i

√
p + 2

√
πp exp p − ln p + 2p(γ − 3 + ln 4p))

⎞
⎠ + c, (B3)

where pFq is a generalized hypergeometric function, γ is the Euler-Mascheroni constant, and

c = −2π (γ + 1 + ln 4).

For λ1 and λ2, a different strategy has to be used. We illustrate it in the calculation of λ1. Using the same substitution as before
and after integrating over φ, we obtain

λ1 = 2

N

∫ ∞

0
exp

(
− s

�2

)(
q1E

[
− s2

4(1 + s)

]
+ q2K

[
− s2

4(1 + s)

]
+ q3E

[
s2

(2 + s)2

]
+ q4K

[
s2

(2 + s)2

])
ds, (B4)

where K[z] and E[z] are the complete elliptic integrals of the first and second kind, respectively, and qi are polynomials,

q1 = −2
√

s + 1

s2
+ 2

s2(s + 1)
+ 3

s(s + 1)
+ 1

s + 1
, (B5)

q2 = 2

s2
√

s + 1
− 2

s2(s + 1)
+ 2

s
√

s + 1
+ 1

2
√

s + 1
− 3

s(s + 1)
− 1

s + 1
, (B6)

q3 = − 2

s2
+ 2

s2
√

s + 1
− 1

s
+ 2

s
√

s + 1
+ 1

2
√

s + 1
, (B7)

q4 = 2

s2
− 2

s2
√

s + 1
+ 1

s
− 2

s
√

s + 1
. (B8)

To get rid of singularities the derivative trick would work here as well, but unfortunately, after this step, we do not know how to
evaluate the Laplace transform of the elliptic functions with the arguments we have. Instead, we resolve the integral in a certain
asymptotic manner and express the result perturbatively in 1/�2. For this purpose we realize that we may take

λL
1 = 2

N

∫ L

0
exp

(
− s

�2

)(
q1E

[
− s2

4(1 + s)

]
+ q2K

[
− s2

4(1 + s)

]
+ q3E

[
s2

(2 + s)2

]
+ q4K

[
s2

(2 + s)2

])
ds, (B9)

where L is high enough to approximate the integral as close as one wishes. Then we may expand the exponential function in s

around 0 and are allowed to exchange the sum and integral,

λ̃L
1 = 2

N

∞∑
n=0

1

�2n
κn, (B10)

where

κn = (−)n

n!

∫ L

0
sn

(
q1E

[
− s2

4(1 + s)

]
+ q2K

[
− s2

4(1 + s)

]
+ q3E

[
s2

(2 + s)2

]
+ q4K

[
s2

(2 + s)2

])
ds. (B11)

The solution of the κn integrals is unknown to the authors either, but the important point is that they are mere coefficients of the
� expansion. Hence they do no depend on the channel parameter, and once they are calculated (numerically or otherwise) they
are valid for an arbitrary Lorentz boost.
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Similarly, we obtain

λ2 = 2

N

∫ ∞

0
exp

(
s

�2

)
1

2

(
1√

1 + s
K

[
− s2

4(1 + s)

]
− 1

2 + s
K

[
s2

(2 + s)2

])
ds (B12)

and define

λ̃L
2 = 2

N

∞∑
n=0

1

�2n
ιn, (B13)

where

ιn = (−)n

n!

∫ L

0
sn 1

2

(
1√

1 + s
K

[
− s2

4(1 + s)

]
+ 1

2 + s
K

[
s2

(2 + s)2

])
ds. (B14)
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