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We investigate quantum-computational complexity of calculating partition functions of Ising models. We
construct a quantum algorithm for an additive approximation of Ising partition functions on square lattices. To
this end, we utilize the overlap mapping developed by M. Van den Nest, W. Dür, and H. J. Briegel [Phys. Rev.
Lett. 98, 117207 (2007)] and its interpretation through measurement-based quantum computation (MBQC). We
specify an algorithmic domain, on which the proposed algorithm works, and an approximation scale, which
determines the accuracy of the approximation. We show that the proposed algorithm performs a nontrivial task,
which would be intractable on any classical computer, by showing that the problem that is solvable by the proposed
quantum algorithm is BQP-complete. In the construction of the BQP-complete problem coupling strengths and
magnetic fields take complex values. However, the Ising models that are of central interest in statistical physics
and computer science consist of real coupling strengths and magnetic fields. Thus we extend the algorithmic
domain of the proposed algorithm to such a real physical parameter region and calculate the approximation
scale explicitly. We found that the overlap mapping and its MBQC interpretation improve the approximation
scale exponentially compared to a straightforward constant-depth quantum algorithm. On the other hand, the
proposed quantum algorithm also provides partial evidence that there exist no efficient classical algorithm for
a multiplicative approximation of the Ising partition functions even on the square lattice. This result supports
the observation that the proposed quantum algorithm also performs a nontrivial task in the physical parameter
region.
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I. INTRODUCTION

Classical spin models have been widely studied in statistical
physics for a long time as simplified pictures of magnetic
materials. The Ising model is the simplest model consisting
of two-state discrete spin variables, up and down, but exhibits
a rich enough structure to be applied to not only magnetic
materials but also lattice gases [1], binary alloys, neural
systems [2], and economic models [3]. One of the main goals
is to calculate a partition function, which tells us statistical
properties of a system in thermodynamic equilibrium, such
as free energy, magnetization, specific heat, and so on. Many
techniques have been developed to calculate the Ising partition
functions in both exact and approximated manners. Only the
restricted type of Ising models, such as Ising models on two-
dimensional planar lattices without magnetic fields, are exactly
solvable [4,5]. In general, exact calculation of Ising partition
functions belongs to #P-hard problems, which are highly
intractable in classical computing [6]. Furthermore, even an
efficient (multiplicative) approximation of antiferromagnetic
Ising partition functions on general lattices does not exist
unless RP = NP [7,8], which is highly implausible [9,10].
It is a natural question how a quantum computer is useful in
this context [11,12].

Recently, quantum information theory shed new light on
the computational complexity of Ising partition functions.
Bravyi and Raussendorf argued the classical simulatability
of measurement-based quantum computation (MBQC) [13]
on a planar surface code by mapping it into an Ising partition
function on a planar lattice [14]. Van den Nest et al. established
a correspondence between the quantum-stabilizer formalism
and classical spin models [15]. In this mapping, a partition

function of a classical spin model is expressed as an overlap
between a stabilizer state and a product state. This overlap
mapping allows us to apply powerful results obtained in
the context of quantum information theory to statistical
physics [15,16]. Although a transfer matrix approach and a
state overlap have already appeared in an earlier work [12],
the overlap mapping makes the problem much more tractable,
allowing us to interpret the overlap as MBQC and associated
quantum circuits. For example, Van den Nest et al. showed
that the Ising model on a square lattice is complete in the
sense that a partition function of any classical spin model on
an arbitrary graph can be expressed as a certain instance of
it [17,18]. De las Cuevas et al. have shown that all classical
spin models can be unified as a four-dimensional lattice
gauge theory with real coupling constants [19,20]. Such a
unification has been achieved not only for the discrete spin
variables but also for the statistical models with continuous
variables [21]. Furthermore, by using the overlap mapping,
classical simulatability of MBQC on certain stabilizer states
provides an efficient classical algorithm to calculate the
corresponding partition functions [15,22].

Based on the overlap mapping, De las Cuevas et al.
have proposed a quantum algorithm to approximate partition
functions of classical spin models, such as Ising, Potts, vertex,
and gauge models, in a complex parameter regime [23].
Furthermore, they showed that additive approximations of
certain classical spin models are BQP-complete. (BQP stands
for bounded-error quantum polynomial time computation and
is a class of decision problems that can be efficiently solved
by a quantum computer.) This means that all problems that
are solvable by a quantum computer can be mapped into
these problems. The consequences of this result are twofold.
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First, at least for these types of classical spin models, we can
utilize a quantum computer to estimate their partition functions
efficiently. Second, BQP-completeness implies that there is
less of a possibility to do this task using a classical one. (If
it were possible, we could simulate a quantum computer by a
classical computer, which is highly implausible.)

In addition, the quantum-computational complexity of not
only Ising partition functions but also link invariants such
as Jones and Tutte polynomials has also been argued in the
circuit models [24–28], and their additive approximations
have been shown to be BQP-complete. Recently, a sampling
problem related to Ising partition functions was shown to
be classically intractable, although it can be done by using
commutable quantum circuits [29], so-called instantaneous
quantum polynomial time computation (IQP), which seems
to be much weaker than universal quantum computation [30].
These results provide a clue to understanding not only the
complexity of calculating classical spin partition functions but
also problems that are solvable by a quantum computer and
the origin of a quantum speedup.

In this paper, we further investigate the complexity of
calculating Ising partition functions based on the overlap map-
ping [15] and its interpretation through MBQC. We specifically
consider a quantum algorithm that approximates Ising partition
functions on square lattices, where each instance of the
problem is encoded into the coupling strengths and magnetic
fields. In this sense, the present work is complimentary to the
work done in Refs. [23,31], where instances of the problem
are encoded into the topology of the graphs while keeping the
coupling strengths and magnetic fields constant. Furthermore,
we specify a domain, in which the proposed quantum algorithm
works, and an approximation scale, which determines the
accuracy of the additive approximation. We also provide proof
that the problem solved by the proposed quantum algorithm is
BQP-hard. This indicates that the proposed quantum algorithm
performs a nontrivial task, which would be intractable on any
classical computer.

We also establish a way to approximate general Ising
partition functions including real coupling strengths and
magnetic fields, which are especially of interest in statistical
physics. The proposed quantum algorithm for the general Ising
partition functions on a square lattice allows us to approximate
partition functions of any classical spin model by virtue of
the universality result [17]. In a general parameter region,
however, the gate operations performed by MBQC are no
longer unitary and are linear operators in general. Thus we
construct a quantum algorithm that approximates such a linear
operator following the method used in Refs. [24,26]. This
allows us to calculate the approximation scale for general
coupling strengths and magnetic fields.

We should note that related work has recently been done
by Iblisdir et al. [28]. In their work, certain types of quantum
circuits are mapped into the Ising partition functions on square
lattices. Specifically, they utilize a transfer matrix approach
to map quantum circuits into the Ising partition functions.
(A similar approach was also taken in an earlier work [12].)
The construction of the quantum algorithm in this work can
be regarded as a measurement-based version of these earlier
studies, which would be simpler for people who are familiar
with MBQC. In Ref. [28], the authors have also considered

the approximation of the Ising partition functions with real
coupling strengths and magnetic fields, although a rather
different approach, analytic continuation, was taken (see also
a related work [11]). Instead of analytic continuation, here we
straightforwardly simulate linear operators by using unitary
circuits. Since the proposed quantum algorithm provides the
approximation scale explicitly for all parameter regions, the
proposed quantum algorithm allows us to compare the perfor-
mances. Furthermore, the quantum circuits that approximate
the physical Ising partition functions can also be written
down explicitly, which would be helpful for understanding
the performance of the proposed quantum algorithm in the
physical parameter region.

Unfortunately, it is still unknown whether or not the
proposed quantum algorithm performs a nontrivial task in the
physical parameter region. However, we also provide partial
evidence that a multiplicative approximation of the Ising
partition functions in the physical parameter region cannot
be attained by any classical computer unless the polynomial
hierarchy collapses at the third level. This result strongly
supports the fact that the proposed quantum algorithm actually
performs a nontrivial task even in the physical parameter
region. We believe these quantum algorithms in the real
parameter regime and their approximation scales provide
an essential clue to understanding the potential of quantum
computation in solving combinatorial optimization problems.

The rest of this paper is organized as follows. In Sec. II,
we review the correspondence between the quantum stabilizer
formalism and the Ising partition functions by defining the
notation. In Sec. III, we propose a quantum algorithm that
approximates the Ising partition functions on square lattices.
We also show that the proposed quantum algorithm solves
a BQP-complete problem and hence performs a nontrivial
task, which would be intractable on any classical computer.
In Sec. IV, we extend the domain of the proposed quantum
algorithm to general coupling strengths and magnetic fields,
which include real parameters. We calculate the approximation
scale of the quantum algorithm in this domain and demonstrate
the performance of the proposed quantum algorithm in the
physical parameter region. Section V is devoted to conclusions
and discussion.

II. QUANTUM FORMULATION OF THE ISING MODEL

In this section, we briefly review the correspondence
between the quantum-stabilizer formalism and Ising partition
functions by defining the notation. We consider a classical
Ising model defined on a graph G = (V,E), with V and E

being sets of vertices and edges, respectively. The Ising model
consists of classical two-state spin variables σa = ±1 defined
on each vertex a ∈ V of graph G. Two spins, σa and σb,
connected by an edge {a,b} ∈ E interact with each other by a
coupling strength Jab. Furthermore, each spin σa is subjected
to a local magnetic field ha . The Hamiltonian of the system is
given by

HG(σ ) = −
∑

{a,b}∈E

Jabσaσb −
∑
a∈V

haσa, (1)

022304-2



QUANTUM ALGORITHM FOR AN ADDITIVE . . . PHYSICAL REVIEW A 90, 022304 (2014)

FIG. 1. Graph G, the corresponding decorated graph G̃, and the decorated graph state |G̃〉 (from the left to the right). The partition function
of the Ising model on a graph G is related to an inner product between the graph state |G̃〉 and a product state |α〉 defined in Eqs. (6)–(8) with
an approximation scale �o.

where σ indicates a spin configuration. The partition function
is defined by

ZG =
∑

σ

e−βHG(σ ), (2)

where the summation
∑

σ is taken over all spin configurations
and β is the inverse temperature, β = 1/kBT , with kB

and T being the Boltzmann constant and the temperature,
respectively.

We express the partition function as an inner product
between a product state and a stabilizer state [17]. We first
define the stabilizer state, which is described as a graph state
associated with another graph G̃. Graph G̃ = (Ṽ ,Ẽ), which
we call a decorated graph, is defined by adding a vertex on
each edge of graph G, as shown in Fig. 1. The decorated
graph G̃ has |Ṽ | = |V | + |E| vertices and |Ẽ| = 2|E| edges.
The set of vertices Ṽ is defined by Ṽ = V ∪ VE , where VE =
{eab|{a,b} ∈ E} corresponds to the set of vertices added on the
edges. The set of edges Ẽ is defined by Ẽ = {{a,eab}|a,b ∈
V,eab ∈ VE}. Assigning a qubit on each vertex in Ṽ , we define
a |Ṽ |-qubit stabilizer state:

|ϕG̃〉 = 2−|V |/2
∑

s

⊗
eab∈VE

|sa ⊕ sb〉
⊗
a∈V

|sa〉, (3)

where sa = 0,1,
∑

s is taken over all configurations of s ≡
{sa}, and sa ⊕ sb indicates the addition modulo 2. The binary
variable sa = 0,1 is related to the Ising spin σa = ±1 below.
The qubits belonging to V and VE are referred to as vertex
and edge qubits, respectively. We can easily confirm |ϕG̃〉 is a
stabilizer state since it can be obtained as

|ϕG̃〉 =
⎡
⎣∏

a∈V

∏
e∈Ña

�a,e(X)

⎤
⎦⊗

a∈V

|+〉
⊗
e∈VE

|0〉, (4)

where �i,j (A) indicates the controlled-A gate between qubits i

(control) and j (target) and Ña ⊆ VE denotes the set of vertices
adjacent to vertex a ∈ V on the decorated graph G̃. Let |G̃〉
be the graph state associated with graph G̃ [32]. Using the
equality �i,j (X) = Hj�i,j (Z)Hj , |ϕG̃〉 is related to the graph
state |G̃〉 as follows:

|ϕG̃〉 =
⎛
⎝ ∏

eab∈VE

Heab

⎞
⎠
⎡
⎣∏

a∈V

∏
e∈Ña

�a,e(Z)

⎤
⎦ |+〉⊗|V |+|VE |

=
⎛
⎝ ∏

eab∈VE

Heab

⎞
⎠ |G̃〉, (5)

where Heab
is the Hadamard gate acting on edge qubit eab.

Next, we define a product state by which the stabilizer state
|ϕG̃〉 is taken as an inner product:

|α〉 =
⊗

eab∈VE

H |αeab
〉
⊗
a∈V

|αa〉, (6)

where the single-qubit states are defined as

〈αeab
| = eβJab 〈0|eab

+ e−βJab 〈1|eab√
|eβJab |2 + |e−βJab |2

, (7)

〈αa| = eβha 〈0|a + e−βha 〈1|a√
|eβha |2 + |e−βha |2

(8)

for all vertices eab ∈ VE and a ∈ V .
Now, we relate the Ising partition function to the inner

product between the product state |α〉 and the graph state |G̃〉
as follows:

ZG = �o

⎛
⎝⊗

eab∈VE

〈αeab
|
⊗
a∈V

〈αa|
⎞
⎠ |ϕG̃〉 = �o〈α|G̃〉, (9)

where the approximation scale �o is defined by

�o = 2|V |/2
∏

{a,b}∈E

√
|eβJab |2 + |e−βJab |2

×
∏
a∈V

√
|eβha |2 + |e−βha |2. (10)

Equation (9) can be understood as follows. The stabilizer
state |ϕG̃〉 (or the graph state |G̃〉) has information about the
geometry of the Ising interactions. More precisely, each vertex
qubit has a superposition of spin-up and -down states, and each
edge qubit encodes the information about whether the two
spins interacting with each other are parallel or antiparallel.
Depending on the state of the vertex and edge qubits, weights
e±βha and e±βJab are assigned by the product state through
the inner product. Then, the superposition of all spin states is
reduced to the summation over all spin configurations, which
recovers the partition functions ZG on the left-hand side (lhs)
of Eq. (9).

Next, we translate the overlap equation (9) into quantum
computation, which is one of the most important tasks to
establish a bridge between quantum computation and Ising
partition functions. States 〈αeab

| and 〈αa| can be expressed by
using unitary gates Aeab

and Aa acting on the computational
basis state, respectively,

〈αeab
| = 〈0|Aeab

, 〈αa| = 〈0|Aa, (11)
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FIG. 2. The Hadamard test to estimate a matrix element 〈0|⊗nU |0〉⊗n with an additive error 1/poly(n). The real and imaginary parts
of the matrix element, Re(〈0|⊗nU |0〉⊗n) and Im(〈0|⊗nU |0〉⊗n), respectively, are estimated from the probability distributions of the Z-basis
measurements in the circuits in (a) and (b), respectively. Here Re(·) and Im(·) indicate the real and imaginary parts, respectively.

where we define single-qubit unitary gates

Aeab
= 1√

|eβJab |2 + |e−βJab |2
(

eβJab e−βJab

(e−βJab )∗ −(eβJab )∗

)
, (12)

Aa = 1√
|eβha |2 + |e−βha |2

(
eβha e−βha

(e−βha )∗ −(eβha )∗

)
. (13)

Then, the product state 〈α| can be rewritten as

〈α| = 〈0|⊗|V |+|E|

⎛
⎝⊗

eab∈VE

Aeab
H

⎞
⎠(⊗

a∈V

Aa

)
≡ 〈0|⊗|Ṽ |A,

(14)

where A is defined as the tensor product of the single-qubit
gates. On the other hand, by virtue of the properties of the
graph state [33], there exists a |Ṽ |-qubit unitary gate F such
that

|G̃〉 = F |0〉⊗|Ṽ |. (15)

Specifically, if the degree of graph G̃ is finite, as considered
here, F is a constant-depth Clifford circuit consisting of
Hadamard gates and controlled-Z gates. Then, Eq. (9) is
rewritten as

ZG = �o〈0|⊗|Ṽ |AF |0〉⊗|Ṽ |. (16)

The quantum circuit AF consisting of only poly(|Ṽ |) quan-
tum gates can be efficiently implemented on a quantum
computer. The matrix element of AF can be estimated
using the Hadamard test (see, e.g., [24–26]), as shown in
Fig. 2. More precisely, we can obtain an approximation c of
〈0|⊗|Ṽ |AF |0〉⊗|Ṽ | within the following additive error:

|c − 〈0|⊗|Ṽ |AF |0〉⊗|Ṽ || � 1

poly(|Ṽ |) . (17)

Accordingly, the partition function ZG can efficiently be
approximated with an additive error �o/poly(|Ṽ |).

The approximation scale �o of the above quantum algo-
rithm is far from optimal since we utilized only constant
depth quantum circuits. By using the idea of MBQC, we

can compress the number of qubits employed utilizing non-
constant-depth quantum circuits. This allows us to improve the
approximation scale as follows. The overlap 〈α|G̃〉 is regarded
as an MBQC implemented by the sequence of projections
〈α| on the resource state |G̃〉. If the projection 〈α| satisfies a
certain condition such that the MBQC interpretation works
appropriately, we can rewrite the overlap as teleportation-
based n-qubit quantum computation,

〈α|G̃〉 = 2−(|Ṽ |−n)/2〈0|⊗nU |0〉⊗n, (18)

where U is a non-constant-depth quantum circuit. Note the
number n of qubits on the right-hand side (rhs) are reduced
compared to |Ṽ | on the lhs. By using this identity, Eq. (9) can
be rewritten as

ZG = �〈0|⊗nU |0〉⊗n, (19)

where an approximation scale is defined as � ≡ �o2−(|Ṽ |−n)/2.
By using the Hadamard test to evaluate the rhs, the partition
function ZG is approximated by an additive error �/poly(n).
Note that the approximation scale � is exponentially improved
from �o. On the other hand, computation time is increased
only polynomially. Thus we can still obtain an exponential
improvement of the accuracy of the approximation taking into
account the computation time. The improved approximation
scale and the algorithmic domain can be calculated according
to the details of how to embed the Ising models in MBQC as
done below.

III. A QUANTUM ALGORITHM FOR ISING
PARTITION FUNCTIONS

In this section, we propose a quantum algorithm to
approximate the partition function of the Ising model by
establishing a mapping between a class of Ising models and
MBQC.

We consider an Ising model on an n × m square lattice
Gn×m with m = poly(n) [see Fig. 3(a)]. We define vertical
and horizontal coupling strengths, J v

ab and J h
ab, for the vertical

and horizontal edges {a,b}, respectively. The Hamiltonian is
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FIG. 3. (Color online) (a) The graph Gn×m on which the Ising
model is defined. (b) The corresponding decorated graph state |G̃n×m〉.
(c) The brickwork state |bw〉 consisting of two-dimensional (2D)
unit cells and one-dimensional (1D) unit cells at the top and bottom
boundaries.

given by

HGn×m(σ ) = −
∑

{a,b}∈Ev

J v
abσaσb −

∑
{a,b}∈Eh

J h
abσaσb

−
∑
a∈V

haσa, (20)

where Ev and Eh are the sets of vertical and horizontal edges,
respectively. Specifically, we consider the following problem:

Problem 1 (approximation of Ising partition functions).
Consider an Ising model on an n × m square lattice, where
m = poly(n). The magnetic fields {βha} and the vertical
coupling strengths {βJ v

ab} are arbitrary imaginary numbers,
and the horizontal coupling strengths {βJ h

ab} are given by
{rab + i(2kab + 1)π/4}, where rab is a real number and kab is
an integer. The problem is defined as an approximation of the
partition function ZGn×m of the given Ising Hamiltonian HGn×m

with an additive error �/poly(n), where the approximation
scale � is given by � = 2n(m+1)/2∏

{a,b}∈Eh

√
cosh(2rab).

In the following sections, we will show two theorems:

Theorem 1 (quantum algorithm). There exists an efficient
quantum algorithm that solves Problem 1.

Theorem 2 (BQP-hardness). Problem 1 is BQP-hard.
By combining these results, we will conclude the following

theorem:
Theorem 3 (BQP-completeness). Consider Problem 1 and

note that |ZGn×m | is promised to be either ��/3 or �2�/3.
Then the problem to decide whether or not |ZGn×m | � �/3 is
BQP-complete.

A. Construction of a quantum algorithm (proof of Theorem 1)

In this section, we prove Theorem 1. We first construct
a quantum algorithm which solves Problem 1. To this end,
we interpret horizontal edges of graph Gn×m as wires of an
n-qubit quantum circuit. According to the coupling strengths
and magnetic fields, quantum gates are assigned on the wires
from the left to the right as follows [see Fig. 4(a)]:

(i) H⊗n are assigned as initial gates.
(ii) According to the vertical coupling strength βJ v

ab, a
two-qubit gate Ueab

≡ eβJ v
abZiZj is assigned on the correspond-

ing ith and j th wires. Since βJ v
ab is an imaginary number,

Ueab
is a two-qubit unitary gate. Specifically, if βJ v

ab = 0, an
identity gate is assigned.

(iii) According to the magnetic field βha , a single-qubit
gate Ua ≡ HeβhaZj is assigned on the corresponding j th wire.
Since βha is an imaginary number, Ua is a single-qubit unitary
gate.

(iv) According to the horizontal coupling strength βJ h
ab,

we assign a single-qubit gate Ueab
≡ ei(2kab+1)π/4HeiξabZj on

the corresponding j th wire. Here ξab ∈ [−π/2,π/2] is an
angle that satisfies sin ξab = (−1)kab+1e−rab /

√
2 cosh(2rab).

[Recall that βJ h
ab = rab + i(2kab + 1)π/4.]

(v) Repeat steps (ii)–(iv) for each column of the decorated
graph G̃n×m from left to right.

After the above procedure, we obtain a quantum circuit

C =
⎛
⎝ →∏

η∈Ṽ n×m

Uη

⎞
⎠H⊗n, (21)

where the multiplication ∏
η∈Ṽ n×m is performed over all

vertices η ∈ Ṽ n×m of the decorated graph G̃n×m from the left
to right columns. In the same column, the multiplications for
vertical edge qubits are taken first, and those for vertex qubits
are taken second.

Next, we will show that the quantum circuit C is related to
the partition function as

ZGn×m ∝ 〈α|G̃n×m〉 ∝ 〈0|⊗nC|0〉⊗n. (22)

We interpret the projection by 〈α| as a sequence of mea-
surements in MBQC, whose resource state is given by the
graph state |G̃n×m〉. The measurements are assumed to be
performed from left to right. (In the projection 〈α|, the
measurement outcomes are always determined, and there is
no feed-forward in the present MBQC interpretation. Thus
we chose a convenient measurement order, from left to right,
without loss of generality.) As shown below, the projection
by 〈α| induces a sequence of unitary gates in a measurement-
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FIG. 4. (Color online) The left column shows the parameters of the Ising model. The middle column shows the projections made on the
graph state. The right column shows the resulting quantum gates. (a) The whole picture of constructing the quantum circuits. (b) The vertical
coupling strength and the resulting two-qubit gate. (c) The magnetic field and the resulting single-qubit gate. (d) The horizontal coupling
strength and the resulting single-qubit gate.

based way, which corresponds to the n-qubit quantum circuit
C constructed.

The projection 〈αeab
|H = (eβJ v

ab 〈0| + e−βJ v
ab 〈1|)H/

√
2 on

the vertical edge qubit can be written as

〈αeab
|Heab

�a,eab
(Z)�b,eab

(Z)|+〉eab
|G̃n×m\eab〉

= 1√
2
Ueab

|G̃n×m\eab〉. (23)

Here |G̃n×m\eab〉 indicates a graph state associated with the
decorated graph, where vertex eab and adjacent edges are
deleted. This tells us that the projection on the vertical edge
qubit on eab can be replaced by the two-qubit gate Ueab

=
eβJ v

abZiZj on the corresponding wires, as shown in Fig. 4(b).
The projection on the vertex qubit is regarded as quantum

teleportation, which propagates quantum information from left
to right with a single-qubit unitary gate. The standard argument
for MBQC [13] tells us the projection by 〈αa| = (eβha 〈0| +
e−βha 〈1|)/√2 results in the single-qubit gate Ua = HeβhaZj .
The projection on the horizontal edge qubit is done with the
Hadamard gate:

〈αeab
|H = [

cosh
(
βJ h

ab

)〈0| + sinh
(
βJ h

ab

)〈1|] /√cosh(2rab)

= ei(2kab+1)π/4
(
eiξab 〈0| + e−iξab 〈1|) /√2. (24)

Recall that ξab ∈ [−π/2,π/2] and satisfies sin ξab =
(−1)kab+1e−rab /

√
2 cosh(2rab). Similar to the previous case,

this projection results in a single-qubit gate Ueab
=

ei(2kab+1)π/4HeiξabZj .

By repeatedly using the above arguments, we obtain a
unitary gate

∏
a∈Vr

U †
a

⎛
⎝ →∏

η∈Ṽ n×m

Uη

⎞
⎠ , (25)

where Vr is the set of n vertices of the right boundary of
G. The initial state of MBQC is |+〉⊗n = H⊗n|0〉⊗n, and
hence the Hadamard gates are implemented on |0〉⊗n as
initial gates. The readout of the output qubits is done by the
projections

⊗
a∈Vr

〈αa| =⊗a∈Vr
(〈0|Aa) on vertex qubits at

the right boundary. Since Aa = Ua = HeβhaZj , U †
a and Aa are

canceled out. This yields the following relation:

ZGn×m = �o〈α|G̃n×m〉 ∝ 〈0|⊗nC|0〉⊗n, (26)

where �o = 2|V |+|VE |/2∏
{a,b}∈Eh

√
cosh(2rab). Since the prob-

ability amplitude of the resource state is reduced by 2−1/2 for
each projection in MBQC, we obtain

〈α|G̃n×m〉 = 2−(|V |+|VE |−n)/2〈0|⊗nC|0〉⊗n. (27)

Thus we conclude that

ZGn×m = �〈0|⊗nC|0〉⊗n, (28)

where we defined the approximation scale

� ≡ �o2−(|V |+|VE |−n)/2

= 2|V |/2+n/2
∏

{a,b}∈Eh

√
cosh(2rab). (29)

The matrix element 〈0|⊗nC|0〉⊗n can be estimated with an
additive error 1/poly(n) using the Hadamard test (see Fig. 2),
which utilizes the controlled-C gate. Accordingly, the quantum
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algorithm consisting of the (n + 1)-qubit controlled-C gate
and the single-qubit measurement for the Hadamard test
approximates the partition function ZGn×m with an additive
error �/poly(n). While the approximation scale is improved
exponentially compared to �o for the constant-depth al-
gorithm, it is still unclear whether or not the constructed
quantum algorithm performs a nontrivial task, which would
be intractable on any classical computer. To provide such
evidence, in the next section, we will show Problem 1 is
BQP-hard (Theorem 2). That is, we can simulate an arbitrary
quantum computation by calculating a partition function with
a specific parameter in Problem 1.

B. BQP-hardness (proof of Theorem 2)

In this section, we will prove Theorem 2, that is, BQP-
hardness of Problem 1. We define a subproblem of Problem
1:

Problem 2 (BQP-hard subproblem). Consider an Ising
model on Gn×m and the corresponding decorated graph state
|G̃n×m〉. The magnetic fields are taken homogeneously as
βha = iπ/4. The vertical coupling strengths {βJ v

ab} are chosen
to be 0 or iπ/4. The horizontal coupling strengths {βJ h

ab}
are chosen to be iπ/4 or � ≡ ln(

√
2 + 1)/2 + iπ/4. Then

the problem is defined as an approximation of the partition
function ZGn×m of the given Ising Hamiltonian HGn×m with an
additive error �/poly(n). The approximation scale is defined
as � = 2n(m+1)/2+#�/4, with #� being the number of horizontal
couplings of �.

Below, we will show Problem 2 is BQP-hard. We use the
fact that the approximation of a matrix element 〈0|⊗nU |0〉⊗n

of an n-qubit unitary circuit U with an additive error
O(1/poly(n)) is BQP-hard [24,34,35]. This is also the case
when U consists of a polynomial number of nearest-neighbor
two-qubit gates acting on a one-dimensional array of qubits.
We have already established the relation between the partition
function ZGn×m and the quantum circuit C as given in Eq. (28).
Thus the goal here is to show that an arbitrary unitary circuit
U can be constructed by C with specific coupling strengths
and magnetic fields. This can be shown by using universality
of MBQC on certain resource states with a restricted type
of projection, which is available in Problem 2. A brickwork
state [36,37], a type of graph state, as shown in Fig. 5, is useful
for this purpose since we can show universality of MBQC on
it with a restricted type of single-qubit measurement. Also,
in blind quantum computation, the single-qubit measurements
that Alice can command Bob to do in secret are restricted.
Thus a brickwork state is utilized to show the capability of

FIG. 5. An example of the brickwork states.

FIG. 6. The rules for transformations of graph states by Pauli-
basis projections. (a) Projection 〈0| on a vertical edge qubit. (b)
Projection 〈Yj | on an edge qubit. State 〈Yj | (j = 0,1) is an eigenstate
of the Pauli-Y operator with an eigenvalue (−1)j , i.e., 〈Yj | ≡ [〈0| −
(−1)j i〈1|]/√2. The local Clifford gate SZj ⊗ SZj is applied as a
by-product depending on the projected state 〈Yj |. (c) A sequence of
Y projections connects the neighboring qubits directly to the Pauli-Z
by-products.

universal blind quantum computation using such a restricted
type of measurement [37,38].

In order to obtain the brickwork state, we transform the
graph state using the Pauli-basis projections [33,39]. The
transformation rules are summarized in Fig. 6. For example,
the Z-basis projection (with eigenvalue +1) removes the qubit
from the graph state, as shown in Fig. 6(a). The Y -basis
projection (with eigenvalue +1) connects the adjacent qubits
directly to the local Clifford by-product operator S ⊗ S,
as shown in Fig. 6(b), where S = diag(1,i). Specifically, a
sequence of Y -basis projections on three neighboring qubits
connects the adjacent qubits directly to the local Z operator,
as shown in Fig. 6(c).

We decompose 〈α| into 〈α| = 〈γ | ⊗ 〈δ|, where the pro-
jection 〈γ | is used to transform the graph state |G̃n×m〉 into
a brickwork state as follows. Let us consider a unit cell
G2×15 of the square lattice Gn×m and the corresponding

FIG. 7. (Color online) (a) The unit cell G2×15. (b) The corre-
sponding decorated graph state |G̃2×15〉. (c) Qubits colored green
(light gray) are deleted by the projections 〈0|. (d) Qubits colored by
red (medium gray) and blue (dark gray), corresponding to vertex and
edge qubits, are projected by 〈Y0| and 〈Y1|, respectively. (e) After the
projections, we obtain the 2D unit cell of the brickwork state up to
local Clifford gates shown.
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FIG. 8. (Color online) (left) The MBQC interpretation of the projections on the brickwork state. (right) The projections on the 1D and
2D unit cells are translated into one- and two-qubit gates, respectively. The qubits colored red (medium gray) are projected by 〈Y1| =
〈+|S = (〈0| + i〈1|)/√2, which corresponds to the coupling strength βJ h

ab = iπ/4. The qubits colored blue (dark gray) are projected by
〈+|T = (〈0| + eiπ/4〈1|)/√2, which corresponds to the coupling strength βJ h

ab = �.

decorated graph state |G̃〉, as shown in Figs. 7(a) and 7(b),
respectively. We perform the Z-basis projections on certain
vertical edge qubits, which are colored green (light gray)
in Fig. 7(c), to cut the corresponding edges. This is done
by choosing the corresponding vertical coupling strengths to
be βJ v

ab = 0. Next, we perform the Y -basis projections on
those qubits colored red (medium gray) and blue (dark gray)
in Fig. 7(d). Specifically, the red (medium gray) and blue
(dark gray) qubits are projected by 〈Y0| ≡ (〈0| − i〈1|)/√2
and 〈Y1| ≡ (〈0| + i〈1|)/√2, respectively. This is done by
choosing the corresponding magnetic fields and coupling
strengths to be βha = iπ/4 and βJ

h,v
ab = iπ/4, respectively.

By using the transformation rules shown in Fig. 6, we obtain
a two-dimensional (2D) unit cell of the brickwork state as
shown in Fig. 7(e) up to local Clifford gates. If the above
projections are made on the square lattice Gn×m, the brickwork
state with local Clifford gates is prepared as shown in Fig. 3(c),
which we define as |bw〉. At the top and bottom boundaries,
one-dimensional (1D) unit cells also appear. (We can also
consider a square lattice with a periodic boundary condition.)

These projections are described as

〈α|G̃n×m〉 = (〈γ | ⊗ 〈δ|)|G̃n×m〉 = �t〈δ|bw〉, (30)

where �t = 2−#γ /2, with #γ being the number of the qubits
in 〈γ |, and 〈δ| is a tensor product of the remaining horizontal
edge qubits on the brickwork state.

The brickwork state |bw〉 can be shown to be a universal
resource for MBQC using a restricted type of measurement
available in Problem 2:

Lemma 1 (universality of the brickwork state). Let U be an
arbitrary quantum circuit consisting of a polynomial number
of nearest-neighbor two-qubit gates in one dimension. We can
always find the horizontal coupling strengths βJ h

ab ∈ {iπ/4,�}
for the unmeasured qubits, such that the projection 〈δ| on them

satisfies ∣∣〈0|⊗nU |0〉⊗n − �−1
c 〈δ|bw〉∣∣ � 1

poly(n)
, (31)

where �c = 2−(#δ−n)/2, with #δ being the number of the qubits
in 〈δ|.

Proof of Lemma 1. It is sufficient to show that a universal set
of gates can be implemented by choosing the remaining hori-
zontal coupling strengths βJ h

ab from {iπ/4,�}. The horizontal
coupling strength βJ h

ab = iπ/4 corresponds to the projections
by 〈αeab

|H = 〈+|S, which results in an HS gate through
gate teleportation. Similarly, the horizontal coupling strength
βJ h

ab = ln(
√

2 + 1)/2 + iπ/4 corresponds to the projections
by 〈αeab

|H = 〈+|T , with T = diag(1,eiπ/4), which results in
a HT gate through gate teleportation. [This can be confirmed
by considering special instances of the previous case, as shown
in Fig. 4(d).]

As for the 1D unit cell of the brickwork state lying at the
boundaries, we can choose the coupling strengths such that
the resulting single-qubit gate is an identity gate, as shown in
Fig. 8(a). Patterns of the horizontal coupling strengths for the
2D unit cell and the resulting two-qubit gates are shown in
Figs. 8(b)–8(e). Specifically, the following two-qubit gates are
realized:

U1 = Z ⊗ Z, (32)

U2 = (Z ⊗ Z)

[
Z

(
−π

4

)
⊗ I

]
, (33)

U3 = (Z ⊗ Z)

[
X

(
−π

4

)
⊗ I

]
, (34)

U4 = (S† ⊗ Z)�(Z)

[
X

(
−π

4

)
⊗ I

]
�(Z)(S† ⊗ I ), (35)
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where X(θ ) ≡ e−iθX/2 and Z(θ ) ≡ e−iθZ/2. By using these
two-qubit gates, the identity gate is constructed as U1

2. The
single-qubit π/8 gate is constructed as T = (U1U2)7 up to
a global phase. Z(kπ/4) and X(kπ/4) gates for an integer
k = 0,1, . . . ,7 are constructed as Z(kπ/4) = (U1U2)8−k and
X(kπ/4) = (U1U3)8−k , respectively. The Hadamard gate is
constructed as H = Z(π/2)X(π/2)Z(π/2). The controlled-
NOT gate is constructed as

�2,1(X) =
[
X

(
π

2

)
⊗ I

] [
Z

(
π

2

)
⊗ Z

(
−π

2

)]
U4U1U4

×
[
Z

(
π

2

)
⊗ I

]
. (36)

Since a universal gate set {T ,H,�(X)} [35] is constructed,
the gate set {U1,U2,U3,U4} is also a universal set of gates.
This guarantees that the matrix element 〈0|⊗nU |0〉⊗n can be
decomposed into a polynomial number of elementary gates
{U1,U2,U3,U4} in the sense of an approximation by the Kitaev-
Solovay algorithm [35]. This yields

∣∣〈0|⊗nU |0〉⊗n − �−1
c 〈δ|bw〉∣∣ � 1

poly(n)
, (37)

where �c = 2−(#δ−n)/2, meaning that the probability amplitude
is factored by 2−1/2 at each projection except for the projections
for the final readouts of n qubits. �

By using Lemma 1 and Eqs. (9) and (30), we conclude that

|�−1ZGn×m − 〈0|⊗nU |0〉⊗n| � 1

poly(n)
, (38)

with � = �c�t�o = 2|V |/2+#�/4+n/2. This indicates that if we
have an approximation Z

ap
Gn×m of the partition function ZGn×m

with an additive error �/poly(n), it satisfies

∣∣�−1Z
ap
Gn×m − 〈0|⊗nU |0〉⊗n

∣∣ � 1

poly(n)
. (39)

This indicates that Problem 2 is BQP-hard and hence can
simulate an arbitrary quantum computation. This completes
the proof of Theorem 2.

From Theorems 1 and 2, we conclude that Problem 1 (and
also Problem 2), the approximation of the partition functions
of the Ising model on a square lattice with an additive error
�/poly(n), is BQP-complete.

Problem 2 seems to be tight in the sense that some coupling
strengths are prohibited; we could not show BQP-hardness.
If the horizontal coupling strength � is prohibited, the
corresponding quantum circuit C becomes a Clifford circuit
and hence is classically simulatable [35]. Similarly, if the ver-
tical coupling strength iπ/4 is prohibited, the corresponding
quantum circuit C is decomposed into single-qubit rotations
without any interactions, which apparently is classically
simulatable. If the vertical coupling strength βJ v

ab = 0 is
prohibited, each qubit interacts with nearest-neighbor qubits at
every step. Even in such a case, there is a possibility of showing
universality by using, for example, the scheme developed by
Raussendorf [36], where spatially homogeneous operations
with temporal modulations are cleverly employed for universal
quantum computation. BQP-hardness in such a case is an open
problem for a future work.

Finally, we mention another subproblem of Problem 1,
which can also be utilized to show BQP-hardness:

Probelm 3 (another BQP-hard subproblem). The horizontal
coupling strengths are chosen to be βJ h

ab = iπ/4. The vertical
coupling strengths are chosen to be βJ h

ab = 0 or = iπ/4.
The magnetic fields βha are chosen from {0,iπ/4,iπ/8}.
The problem is defined as an approximation of the partition
function ZGn×m of the given Ising Hamiltonian HGn×m with an
additive error �/poly(n), where the approximation scale is
defined as � = 2n(m+1)/2.

Problem 3 is apparently a subproblem of Problem 1. We can
also show the BQP-hardness of Problem 3 straightforwardly
by following the strategy developed above.

IV. EXTENSION TO GENERAL COUPLING STRENGTHS
AND MAGNETIC FIELDS

In the previous section, we formulated the quantum algo-
rithm to approximate the Ising partition functions by using
the overlap mapping and its MBQC interpretation, reducing
the approximation scale. Unfortunately, the coupling strengths
and magnetic fields in Problem 1 take complex values. In
this section, we extend the domain of the proposed quantum
algorithm to general coupling strengths and magnetic fields,
including physical Ising models with real parameters, which
are of central interest in statistical physics and computer
science. In such a case, the projections are not always mapped
into unitary quantum circuits, and nonunitary operations
appear. Below we will first explain how to simulate nonunitary
operations originating from MBQC in the general parameter
region by introducing ancilla qubits. Based on this strategy, the
approximation scale � for the general domain is calculated.
We will confirm that the approximation scale in the previous
unitary case can also be obtained as a special case. If coupling
strengths and magnetic fields are finite, the approximation
scale � is always smaller than �o for the constant-depth
circuits obtained solely from the overlap mapping.

Unfortunately, we cannot show BQP-hardness inside the
physical region with real coupling strengths and magnetic
fields. Thus it is still not known if the proposed algorithm
performs a nontrivial task inside this domain. However, the
extended quantum algorithm also provides partial evidence
that there is no efficient multiplicative approximation of the
Ising partition functions with the real physical parameters.
This result strongly supports the observation that the proposed
quantum algorithm performs a nontrivial task even in the
physical parameter region.

A. Simulation of linear operators

We first explain how to simulate general liner operators
using ancilla qubits and unitary gates, following the scheme
developed in Refs. [24,26]. Let M be an arbitrary d × d

matrix acting on a d-dimensional space. The singular value
decomposition yields M = WDP †, where W and P are
unitary matrices. D = diag(r1, . . . ,rd ) is a diagonal matrix
whose diagonal elements are real nonnegative values subject
to r1 � r2 � · · · � rd � 0. The eigenstate with the eigenvalue
ri is denoted |i〉 for all i = 1,2, . . . ,d. If d is finite, it is
obvious that W and P † can be implemented by a quantum
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computer. Thus it is sufficient to consider an implementation
of the diagonal operator D on a d-dimensional space.

In order to simulate D we utilize an ancilla qubit |0〉 and a
unitary operation D̃ on the composite system,

D̃ =
d∑

i=1

|i〉〈i| ⊗
[

ri

r1

(
|0〉〈0| + |1〉〈1|

)

+
√

1 −
(

ri

r1

)2

(−|0〉〈1| + |1〉〈0|)
]

≡
d∑

i=1

|i〉〈i| ⊗ Y (θi), (40)

where Y (θi) ≡ e−iθiY/2 is a Y -rotation gate on the ancilla qubit
with an angle θi ≡ 2 arccos(ri/r1) ∈ [0,π ]. Since Y (θ1) = I ,
the unitary operator D̃ acts like a controlled-Y -rotation gate,
which is controlled by the d-dimensional system. Denoting the
input state as |ψ〉|0〉 = (

∑d
i=1 ci |i〉)|0〉, this unitary operation

yields

D̃

d∑
i=1

ci |i〉 ⊗ |0〉 =
d∑

i=1

ci |i〉 ⊗
[

ri

r1
|0〉 +

√
1 −

(
ri

r1

)2

|1〉
]
.

(41)

By projecting the ancilla qubit to |0〉, we obtain

(I ⊗ 〈0|)D̃
d∑

i=1

ci |i〉 ⊗ |0〉 =
d∑

i=1

ri

r1
ci |i〉 = 1

‖M‖D

d∑
i=1

ci |i〉,

(42)

where ‖M‖ ≡ r1 is an operator one-norm. Thus the linear
operator M is simulated as

(I ⊗ 〈0|)WD̃P †(|ψ〉 ⊗ |0〉) = 1

‖M‖M|ψ〉, (43)

up to the factor 1/ ‖M‖. The simulation of linear operators
succeeds only when the ancilla qubit is projected by 〈0|.
However, in the proposed quantum algorithm no postselection
is required since the matrix element of a unitary circuit
including ancilla qubits is estimated by using the Hadamard
test, as shown below.

B. Extended quantum algorithm

Now we return to the quantum algorithm for the Ising
models with the general parameter regions. The projections
in the MBQC interpretation of the overlap Eq. (9) can be
classified into two types, types I and II, as depicted in Figs. 9(a)
and 9(b), respectively.

Let us first consider a type-I projection with 〈x| = x0〈0| +
x1〈1|, where x0 and x1 are complex numbers with |x0|2 +
|x1|2 = 1. For an arbitrary single-qubit input state |ψ〉, this
projection yields

(〈x| ⊗ I )�(Z)(|ψ〉 ⊗ |+〉) = 1√
2
HM|ψ〉, (44)

where the resultant operator

M =
√

2 diag(x0,x1) (45)

is not a unitary gate in general [see Fig. 9(a)]. The operator one-
norm ‖M‖ is given by ‖M‖ = √

2 max(|x0|,|x1|). To simulate
this operator M on a quantum computer, we decompose it into
M = DW , where D is a positive diagonal operator and W is
a unitary operator,

D =
√

2 diag(|x0|,|x1|), W = diag(eiφx0 ,eiφx1 ). (46)

Here φx0,1 = arg x0,1 (i.e., x0 = eiφx0 |x0| and x1 = eiφx1 |x1|).
We introduce an indicator function

l =
{

0 if
∣∣ x0
x1

∣∣ � 1,

1 if
∣∣ x0
x1

∣∣ < 1.
(47)

A Y -rotation gate is defined as

Y (θ ) =
(

cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

)

≡

⎛
⎜⎝

∣∣ x1
x0

∣∣(−1)l −
√

1 − ∣∣ x1
x0

∣∣2(−1)l

√
1 − ∣∣ x1

x0

∣∣2(−1)l ∣∣ x1
x0

∣∣(−1)l

⎞
⎟⎠, (48)

where the angle θ ∈ [0,π ] is given by

θ = 2 arccos

(∣∣∣∣x1

x0

∣∣∣∣
(−1)l

)
. (49)

As previously mentioned, we can simulate M by using the
controlled-Y (θ ) gate �(Y (θ )) as follows:

1

‖M‖HM|ψ〉 = 〈0|2H1X
l
1�1,2(Y (θ ))Xl

1W1|ψ〉1|0〉2

≡ 〈0|2Q|ψ〉1|0〉2, (50)

where the sequence of the unitary gates is denoted by Q [see
the circuit diagram in Fig. 9(a)]. From Eqs. (44) and (50) we
obtain

〈x|1�1,2(Z)|ψ〉1|+〉2 = ‖M‖√
2

〈0|2Q|ψ〉1|0〉2. (51)

The type-I projections are made on the vertex qubits and
horizontal edge qubits. Specifically, the projection 〈x| on the
vertex qubit is described as

〈x| = x0〈0| + x1〈1| = eβha 〈0| + e−βha 〈1|√
|eβha |2 + |e−βha |2

. (52)

The indicator function, angle of the Y rotation, and norm are
calculated for each vertex qubit a ∈ V as

la =
{

0 if |e2βha | � 1,

1 if |e2βha | < 1,
(53)

θa = 2 arccos(|e−(−1)la 2βha |), (54)

‖Ma‖ =
√

2|e(−1)la βha |√
|eβha |2 + |e−βha |2

. (55)
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FIG. 9. (left) Projections on the graph states, (middle) the resultant linear operations, and (right) the quantum circuits that simulate the
corresponding linear operations. The middle column shows a circuit representation of MBQC of the left column. (a) Projection on vertex and
horizontal edge qubits, which we refer to as type-I projection. (b) Projection on a horizontal edge qubit, which we refer to as type-II projection.

In the case of a horizontal edge qubit, the projection is made
with the Hadamard gate:

〈x| = x0〈0| + x1〈1| = eβJ h
ab 〈0| + e−βJ h

ab 〈1|√
|eβJ h

ab |2 + |e−βJ h
ab |2

H. (56)

Similar to the previous case, the indicator function, angle of
the Y rotation, and norm are calculated for each horizontal
edge qubit {a,b} ∈ Eh as follows:

lab =
{

0 if
∣∣coth

(
βJ h

ab

)∣∣ � 1,

1 if
∣∣coth

(
βJ h

ab

)∣∣ < 1,
(57)

θab = 2 arccos
[∣∣{ tanh

(
βJ h

ab

)}(−1)lab ∣∣], (58)

‖Mab‖ =
∣∣eβJ h

ab + (−1)lab e−βJ h
ab

∣∣√∣∣eβJ h
ab

∣∣2 + |e−βJ h
ab

∣∣2 . (59)

Next, we consider the type-II projection, as shown in
Fig. 9(b). A type-II projection with 〈x| = x0〈0| + x1〈1| on
an arbitrary two-qubit input state |ψ〉1,2 yields

(I1,2 ⊗ 〈x|3)�2,3(Z)�1,3(Z)(|ψ〉1,2 ⊗ |+〉3) = 1√
2
M|ψ〉1,2,

(60)
where M is given by

M = diag(x0 + x1,x0 − x1,x0 − x1,x0 + x1) (61)

and ‖M‖ = max(|x0 + x1| , |x0 − x1|) [see Fig. 9(b)]. The
operator M is decomposed into a positive diagonal operator D

and a unitary operator W :

D = diag(|x0 + x1| , |x0 − x1| , |x0 − x1| , |x0 + x1|), (62)

W = diag(eiφx0+x1 ,eiφx0−x1 ,eiφx0−x1 ,eiφx0+x1 ), (63)

where φx0±x1 ≡ arg(x0 ± x1) (i.e., x0 + x1 = eiφx0+x1 |x0 + x1|
and x0 − x1 = eiφx0−x1 |x0 − x1|). We introduce an indicator
function

l =
{

0 if
∣∣ x0+x1
x0−x1

∣∣ � 1,

1 if
∣∣ x0+x1
x0−x1

∣∣ < 1,
(64)

and a Y -rotation gate

Y (θ ) ≡

⎛
⎜⎝

∣∣ x0−x1
x0+x1

∣∣(−1)l −
√

1 − ∣∣ x0−x1
x0+x1

∣∣2(−1)l

√
1 − ∣∣ x0−x1

x0+x1

∣∣2(−1)l ∣∣ x0−x1
x0+x1

∣∣(−1)l

⎞
⎟⎠, (65)

where the angle θ ∈ [0,π ] is given by

θ = 2 arccos

(∣∣∣∣x0 − x1

x0 + x1

∣∣∣∣
(−1)l

)
. (66)

Then, the linear operator M is simulated [see the circuit
diagram in Fig. 9(b)] as follows:

1

‖M‖M|ψ〉1,2

= 〈0|3Xl
1�2,3(Y (−θ ))�1,3(Y (θ ))Xl

1W1,2|ψ〉1,2|0〉3

≡ 〈0|3Q|ψ〉1,2|0〉3. (67)

From Eqs. (60) and (67) we obtain

〈x|3�2,3(Z)�1,3(Z)|ψ〉1,2|+〉3 = ‖M‖√
2

〈0|3Q|ψ〉1,2|0〉3.

(68)

[In a mild abuse of the notation, the two types of circuits shown
in Figs. 9(a) and 9(b) are both denoted by Q. In the following,
the subscript η of Qη identifies which of these two types of
circuits is adopted.]

The type-II projection corresponds to the projection on
vertical edge qubits. The projection for each vertical edge
qubit is done using

〈x| = x0〈0| + x1〈1| = eβJ v
ab 〈0| + e−βJ v

ab 〈1|√
|eβJ v

ab |2 + |e−βJ v
ab |2

H. (69)

The indicator function, angle of the Y rotation, and norm are
calculated for each vertical edge qubit {a,b} ∈ Ev as follows:

lab =
{

0 if
∣∣e2βJ v

ab

∣∣ � 1,

1 if |e2βJ v
ab | < 1,

(70)

θab = 2 arccos
(∣∣e−(−1)lab 2βJ v

ab

∣∣), (71)
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‖Mab‖ =
√

2
∣∣e(−1)lab βJ v

ab

∣∣√∣∣eβJ v
ab

∣∣2 + ∣∣e−βJ v
ab

∣∣2 . (72)

We have constructed quantum circuits Qη (η ∈ V ∪ Eh ∪
Ev) that simulate linear operators arising from the MBQC
interpretation with the general parameters. Each projection in
the overlap mapping equation (9) is replaced with a unitary
circuit Qη, as shown in Fig. 9 (right). Including the initial state
and the final readout, this yields

ZGn×m = �o〈α|G̃n×m〉 = �〈0|⊗|Ṽ |C|0〉⊗|Ṽ |, (73)

where the quantum circuit C is given by

C =
⊗
a∈Vr

Aa

⎛
⎝ →∏

η∈Ṽ \Vr

Qη

⎞
⎠ (H⊗n ⊗ I⊗|Ṽ −n|). (74)

The product ∏
η∈Ṽ \Vr

is taken over all qubits on the decorated
graph state |G̃〉 from left to right except for the vertex qubits
at the right boundary. The approximation scale is calculated as

� = �o

∏
v∈V \Vr

‖Mv‖√
2

∏
e∈Eh

‖Me‖√
2

∏
e∈Ev

‖Me‖√
2

, (75)

where the multiplication
∏

v∈V \Vr
is taken except for the right

boundary.
Similar to the unitary case, we can evaluate the matrix

element 〈0|⊗|Ṽ |C|0〉⊗|Ṽ | by using the Hadamard test. Thus,
by using a quantum computer, the partition function ZGn×m

with the general coupling strengths and magnetic fields can
be approximated with an additive error �/poly(n). This
concludes the extension of the algorithmic domain of the
proposed quantum algorithm.

Let us discuss the behavior of the approximation scale.
The norm ‖Mη‖ is subject to 1 � ‖Mη‖ �

√
2 for all η ∈

V ∪ Eh ∪ Ev. If ‖Mη‖ = 1 for all η ∈ V ∪ Eh ∪ Ev, the
multiplication of ‖Mη‖ is the smallest. In order to achieve
this, the coupling strengths and magnetic fields have to satisfy

Re(βha) = 0,

Re
(
βJ v

ab

) = 0, (76)

Im
(
βJ h

ab

) ∈ {(2k + 1)π/4|k ∈ Z},
where Re(·) and Im(·) indicate the real and imaginary parts,
respectively. These conditions reproduce the algorithmic do-
main and the approximation scale in the unitary case defined
in Problem 1. This is because in the unitary parameter region
in Problem 1, the diagonal matrix D becomes an identity, and
hence the angle θ of the Y rotation is zero. This decouples the
ancilla qubits from the circuits. Then, the unitary gates W

and H , as shown in Fig. 9, constitute the unitary circuit
constructed in the previous section. When the parameters
are changed continuously, the approximation scale � is
also changed continuously. Thus we expect that an efficient
approximation with this approximation scale is also hard for a
classical computer around the parameters in Problem 1.

On the other hand, if ‖Mη‖ = √
2 for all η ∈ V ∪ Eh ∪

Ev, we obtain �o = �, which means that the accuracy of
the approximation of the proposed quantum algorithm is

equivalent to that of the constant-depth algorithm mentioned in
Sec. II. The conditions on the coupling strengths and magnetic
fields read

Re(βha) → ±∞,

Re
(
βJ v

ab

) → ±∞, (77)

Re
(
βJ h

ab

) = 0 ∧ Im
(
βJ h

ab

) ∈ {kπ/2|k ∈ Z}.
If the parameters are chosen to be finite, then the approximation
scale � is always smaller than �o of the constant-depth algo-
rithm. This indicates that the constructed quantum algorithm
gives a better approximation than the constant-depth algorithm
in almost all parameter regions.

Let us examine a representative example with ha = 1,
J v

ab = ±1, and J h
ab = ±1. The partition function is given as

a function of the inverse temperature Z(β). The signs of the
Ising interactions are chosen randomly with a probability of
1/2. In this case, we can calculate the approximation scale
explicitly as follows:

� = 2nme(2nm−n−m)β [cosh(β)]nm−n[cosh(2β)]n/2. (78)

Accordingly, we can approximate the free energy per site
F (β) = ln Z(β)/(nmβ) with an additive error,

ε(β) ≡ ln{1 + �/[poly(n)Z(β)]}/(nmβ). (79)

Unfortunately, the approximation scale � still depends on the
size n of the system. Thus an approximation of the free energy
per site with an additive error 1/poly(n) cannot be achieved,
although this is also the case for other quantum algorithms
approximating the Ising partition functions [11,24,28,40].

The accuracy of the proposed algorithm is comparable
to that in Ref. [28] (at least in the size of the lattice
mentioned), which utilizes an analytical continuation in order
to estimate the partition function with real parameters. In the
ferromagnetic case without magnetic fields, the scheme in
Ref. [28] does a better approximation at lower temperature.
This is because the scheme in Ref. [28] intrinsically takes
into account the duality between low and high temperatures.
On the other hand, the proposed algorithm does not take it
into account. For harder instances without any symmetry, we
expect that both schemes result in a comparable accuracy.

One advantage of the proposed algorithm is that the
approximation scale � can be calculated easily. This property
would be helpful for comparing other approaches to ap-
proximate Ising partition functions. Furthermore, the explicit
construction of the unitary circuits that approximate the Ising
partition function with the physical parameter region also
provides a clue to obtain a classical hardness result, as
discussed in the next section.

C. Partial evidence of classical hardness
of a multiplicative approximation

We have established a quantum algorithm that approximates
the Ising partition functions with the general coupling strengths
and magnetic fields. While Problem 1 has been shown to
be BQP-complete, it is still unknown whether or not the
proposed quantum algorithm performs a nontrivial task in the
physical parameter region with real coupling strengths and
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magnetic fields. Thus there remains a possibility that a clas-
sical algorithm achieves a much better approximation in the
physical parameter region. To reduce this possibility, we show
partial evidence that an efficient multiplicative approximation
cannot be attained by using a classical computer, unless the
polynomial hierarchy collapses at the third level, which is
highly implausible.

Suppose we have a classical algorithm that approximates
the Ising partition functions with an additive error:∣∣ZGn×m − Z

ap
Gn×m

∣∣ � ε�

poly(n)
. (80)

Here ε indicates the improvement made by the classical
algorithm. If ε�/[ZGn×mpoly(n)] � c with a constant c, we
can approximate the partition function with a multiplicative
error as follows:

(1 − c)ZGn×m � Z
ap
Gn×m � (1 + c)ZGn×m . (81)

Below we will show partial evidence that there is no classical
algorithm that achieves an improvement ε such that c � 1 −
2−1/4. To this end, we show the following theorem bridging
the physical Ising partition functions and a class of quantum
computation, the so-called instantaneous quantum polynomial
time computation (IQP) [29,30]:

Definition 1 (IQP). Let n be the number of qubits. A
commuting gate is defined by

D(θj ,Sj ) ≡ exp

[
iθj

∏
k∈Sj

Zk

]
, (82)

where θj ∈ [0,2π ) is a real number meaning the rotational
angle and {Sj } is a set of subsets of {1,2, . . . ,n}, on which
the commuting gates act. We refer to a poly(n) number of
commuting gates, including the input state |+〉⊗n and the X-
basis measurements, as an IQP circuit. IQP is defined as a
sampling problem from the IQP circuit, whose probability
distribution is given by

PIQP({si}|{θj },{Sj }) ≡
∣∣∣∣∣∣

n⊗
i=1

〈+si
|
∏
j

D(θj ,Sj )|+〉⊗n

∣∣∣∣∣∣
2

, (83)

where si ∈ {0,1} is the measurement outcome and |+si
〉 =

Zsi |+〉.
Theorem 4 (Ising partition functions and IQP). The parti-

tion function ZGn×m of an Ising model on the square lattice
Gn×m with real coupling strengths and magnetic fields is
equivalent to a probability amplitude of an instance of IQP
up to the scale factor

�IQP ≡ �o2(|V |+|Eh|)/2
∏
v∈V

‖Mv‖√
2

∏
e∈Eh

‖Me‖√
2

∏
e∈Ev

‖Me‖√
2

.

(84)

Proof. Here we consider another quantum circuit

C ′ =
→∏

η∈Ṽ

Qη, (85)

acting on n + |Ṽ | qubits, where the initial and final states
are |+〉⊗n|0〉⊗|Ṽ | and 〈+|⊗n〈0|⊗|Ṽ |, respectively. This quantum
circuit also satisfies

ZGn×m = �′〈+|⊗n〈0|⊗|Ṽ |C ′|+〉⊗n|0〉⊗|Ṽ |, (86)

with the approximation scale

�′ = �o2n/2
∏
v∈V

‖Mv‖√
2

∏
e∈Eh

‖Me‖√
2

∏
e∈Ev

‖Me‖√
2

. (87)

(In contrast to the previous case, the final projection is also
simulated in C ′, and hence the approximation scale �′ is
slightly different from �.)

The quantum circuit C ′ consists of single-qubit gates
{Xl,H }, and two-qubit gates �(Y (θ )) since W becomes an
identity gate in the physical parameter region. By using a
single-qubit Clifford gate R = (X + Z + Y + iI )/2, the Y

rotation can be transformed into a Z rotation Z(θ ) = e−iθZ/2

[see Fig. 10(a)]. Then the initial and final states of the ancilla
qubit are transformed into |+〉 and 〈+|, respectively. Thus we
obtain

ZGn×m = �′〈+|⊗n+|Ṽ |D|+〉⊗n+|Ṽ |, (88)

FIG. 10. (a) A circuit equivalence between controlled-Y and controlled-Z rotation gates. (b) Transforming a controlled-Z gate to rotational
gates with respect to the operators Z and Z ⊗ Z, where Xl is taken in the rotational angle. (c) A measurement-based implementation of the
Hadamard gate.
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where D is obtained from C ′ by replacing all controlled-Y
rotations �(Y (θ )) with controlled-Z rotations �(Z(θ )).

The controlled-Z rotation is decomposed into single- and
two-qubit Z rotations:

�a,b(Z(θ )) = eiθZaZb/4e−iθZb/4. (89)

The two Xl
a gates before and after �a,b(Z(θ )) are absorbed

into the rotational angles [see Fig. 10(b)],

Xl
a�a,b(Z(θ ))Xl

a = e(−1)l iθZaZb/4e−iθZb/4. (90)

The Hadamard gate can be implemented using an ancilla qubit
|+〉, the two-qubit gate �(Z), and the projection 〈+| in a
teleportation-based way [see Fig. 10(c)]. The �(Z) gate can
also be represented as single- and two-qubit Z rotations:

�a,a′ (Z) = e−iπ/4eiπZaZa′ /4e−iπZa/4e−iπZa′ /4, (91)

where the subscripts a and a′ denote the labels of the input
and output qubits of the gate teleportation.

Accordingly, the circuit D can be reformulated as a
commuting circuit D′ acting on the qubits on graph G′ as
shown in Fig. 11:

〈+|⊗n+|Ṽ |D|+〉⊗n+|Ṽ |

= 2(|V |+|Eh|−n)/2〈+|⊗|Ṽ |+|V |+|Eh|D′|+〉⊗|Ṽ |+|V |+|Eh|, (92)

where the final Hadamard gates are taken by the final state 〈+|
without teleportation and the number of qubits is equal to that
of vertices |V ′| = |Ṽ | + |V | + |Eh| of G′. The commuting
circuit D′ consists of only single- and two-qubit Z rotations
with appropriately chosen angles {θ̃ab,θ̃a} (see also Fig. 12):

D′ =
∏

{a,b}∈E′
eiθ̃abZaZb

∏
a∈V ′

eiθ̃aZa , (93)

where the multiplication is taken over the set of edges E′ and
the set of vertices V ′ of graph G′. The matrix element on
the rhs of Eq. (92) is regarded as a probability amplitude of an
instance of the IQP circuit. Specifically, the corresponding IQP
circuit consists of single-qubit and nearest-neighbor two-qubit
commuting gates acting on a 2D graph G′. Then, we obtain
the correspondence between the Ising partition function and
the probability amplitude of the IQP circuit,

ZGn×m = �′2(|V |+|Eh|−n)/2〈+|⊗|V ′|D′|+〉⊗|V ′|. (94)

�
Suppose the partition function ZGn×m can be approximated

with a multiplicative error 21/4, that is,

2−1/4ZGn×m � Z
ap
Gn×m � 21/4ZGn×m. (95)

Due to Theorem 4, this means that we can approximate the
probability of the output of the corresponding IQP circuit with
a multiplicative error

√
2. On the other hand, as shown in

Refs. [29,30], even a weak simulation of a large class of IQP
circuits with the multiplicative error

√
2 is hard for a classical

computer unless the polynomial hierarchy collapses at the third
level, which is highly implausible. A strong simulation, the
calculation of a probability distribution, is much harder than
a weak simulation, which samples the outcomes according
to the distribution [41]. Thus we reasonably conjecture that
there is no efficient classical algorithm that approximates

the Ising partition functions in the physical parameter region
with a multiplicative error 21/4. (By considering a polynomial
number of replicas of ZGn×m , the multiplicative error can be
improved to be 21/poly(n), although the following final result
does not change.) If this conjecture is true, the classical
improvement of the approximation scale ε is limited to
ε � (1 − 2−1/4)poly(n)ZGn×m/�. Since we are interested only
in the exponential behavior, a possible improvement of the
approximation scale by a classical algorithm is ε ∼ ZGn×m/�.

For the ferromagnetic Ising models with a constant mag-
netic field on arbitrary graphs, a fully polynomial randomized
approximation scheme (FPRAS) has been shown to exist [9].
However, under the random magnetic fields, approximation
of ferromagnetic Ising partition functions belong, under an
approximation-preserving reduction, to the class #BIS, which
is defined as a counting problem of the number of independent
sets of a bipartite graph [42]. The class #BIS is known to
lie in between FPRAS and #SAT under an approximation-
preserving reduction. Here #SAT indicates a counting problem
of the number of satisfying configurations and does not have
an efficient (polynomial) multiplicative approximation unless
NP = PR [7]. Moreover, it has been shown that a multiplicative
approximation of antiferromagnetic Ising partition functions
on d-regular graphs (d � 3) are NP-hard [43]. While an
efficient approximation of Ising partition functions on the
square lattices would still not be excluded, these facts and the
above partial evidence support the possibility that the proposed
quantum algorithm of an additive approximation performs a
nontrivial task even in the physical parameter region.

There is also another interesting corollary of Theorem 4.
Corollary 1 (real-imaginary correspondence). An arbitrary

Ising partition function ZGn×m on a square lattice Gn×m with
real parameters can be mapped into an Ising partition function
ZG′ on a lattice G′, shown in Fig. 11(b), with imaginary
parameters with a scale factor �′2−5nm+2n+m:

ZGn×m = �′2−5nm+2n+mZG′ . (96)

Proof. In Ref. [29], a correspondence between IQP and
Ising partition functions with imaginary parameters has been
established. It indicates that the matrix element on the rhs of
Eq. (94) is equivalent to an Ising partition function ZG′ on a
lattice G′ with imaginary parameters with a scale factor 2|V ′|:

ZG′ = 2|V ′|〈+|⊗|V ′|D′|+〉⊗|V ′|. (97)

Combining Eq. (97) with Theorem 4, we obtain

ZGn×m = �′2(|V |+|Eh|−n)/22−|V ′|ZG′ = �′2−5nm+2n+mZG′ .

(98)

�
There has been a transformation, such as a duality transfor-

mation [44], that maps an Ising partition function with a real
coupling strength into an imaginary one for a restricted case.
However, Corollary 1 can be applied for Ising models with
arbitrary real coupling strengths and magnetic fields. Since
imaginary and real Ising partition functions have been well
studied in quantum and classical information, respectively, the
real-imaginary correspondence would be useful to bridge these
two fields.
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FIG. 11. (a) Graph G, on which the Ising model with real
parameters is defined. (b) Graph G′, on which the commuting circuits
for IQP are defined. The Ising model with imaginary parameters is
also defined on graph G′.

V. CONCLUSIONS AND DISCUSSION

We have constructed a quantum algorithm for an additive
approximation of the partition functions of Ising models
on square lattices. Specifically, we have argued both BQP-
completeness [23,31] and the extension toward the physical
parameter region [24] within the same model. This allows
us to calculate the approximation scale explicitly and to
investigate the behavior of the approximation scale penetrating
from the unitary case (Problem 1), which includes the BQP-
complete problem, to the physical parameter region, which is

of central interest in statistical physics and computer science.
We have shown that the MBQC interpretation always provides
a better approximation than the constant-depth straightforward
quantum algorithm as long as the coupling strengths and
magnetic fields are finite.

The overlap mapping and the MBQC interpretation are
quite useful for translating the partition functions into quantum
circuits and calculating the resultant approximation scale.
While we have only considered square lattices, this method
could also be generalized to the Ising models on general
lattice structures. In such a case, the MBQC interpretation is
made on general graph states. In this context, flow theory and
its generalization, gflow [45,46], would provide an efficient
scheme to construct the corresponding quantum circuits.

Compared to the recent related work [28] based on an
analytical continuation, the proposed construction with linear
operator simulations provides a comparable approximation
error for the random-bond Ising models with magnetic fields
(at least with the size mentioned in Ref. [28]). One advantage
of the proposed algorithm in the physical parameter region
is that the approximation scale can be easily obtained, which
allows us to compare the performance with other approaches.

We have also provided partial evidence that there is no
efficient classical algorithm for a multiplicative approximation
of the Ising partition functions in the physical parameter

FIG. 12. The correspondence between the Ising models with real and imaginary parameters on a square lattice G and another lattice
G′, respectively. (a)–(d) A 1D lattice with magnetic fields and horizontal couplings (i.e., n = 1). (a) A 1D lattice G. (b) The corresponding
decorated graph state |G̃〉. (c) A quantum circuit D′, which is decomposed into single- and two-qubit Z-rotation gates, as shown in Fig. 10. (d)
Graph G′, on which the Ising model with imaginary parameters is defined. (e) A vertical coupling for the case of a square lattice G. (f) The
corresponding decorated graph state |G̃〉. (g) The corresponding unitary gate in D′. (h) The corresponding part of graph G′, on which the Ising
model with imaginary parameters is defined. By combining (a)–(d) and (e)–(h) we can obtain Theorem 4.
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region. This has been shown by relating the quantum circuit
that corresponds to the Ising partition functions to an IQP
circuit. On the other hand, in the unitary case, the problem
(Problem 1) that can be solved by the proposed quantum
algorithm is BQP-complete. These facts strongly support the
observation that the proposed quantum algorithm performs a
nontrivial task even in the physical parameter regime with real
coupling strengths and magnetic fields.

Unfortunately, it is still not known whether the proposed
quantum algorithm performs a nontrivial task inside the
physical parameter region. However, the problems that we
have to tackle are now made clear. First, we have to rigorously
prove that classical simulation (strong simulation with a
multiplicative error) of the related IQP circuits is hard.
This could be solved by clarifying whether or not the IQP
circuits become universal for quantum computation with the

help of postselection [29,30]. Second, we have to find a
quantum algorithm or instances of the parameters that attain
a multiplicative approximation. Otherwise, we have to show
that an additive approximation with the approximation scale �

is still hard for a classical computer. In doing so, the quantum
circuits we have constructed would provide us with a clue. If
these problems were solved, we could have another nontrivial
quantum algorithm that solves quite important problems in
statistical mechanics and computer science.
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