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Quantum interference as a resource for quantum speedup
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Quantum states can, in a sense, be thought of as generalizations of classical probability distributions, but are
more powerful than probability distributions when used for computation or communication. Quantum speedup
therefore requires some feature of quantum states that classical probability distributions lack. One such feature
is interference. We quantify interference and show that there can be no quantum speedup due to a small number
of operations incapable of generating large amounts of interference (although large numbers of such operations
can, in fact, lead to quantum speedup). Low-interference operations include sparse unitaries, Grover reflections,
short-time and low-energy Hamiltonian evolutions, and the Haar wavelet transform. Circuits built from such
operations can be classically simulated via a Monte Carlo technique making use of a convex combination of two
Markov chains. Applications to query complexity, communication complexity, and the Wigner representation are
discussed.
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I. INTRODUCTION

It is well known that certain quantum algorithms, such as
Shor’s and Grover’s, provide a speedup compared to classical
algorithms. However, the source of such quantum speedup
is still somewhat of a mystery. Insight can be gained by
determining necessary resources. Suppose that any quantum
circuit not making use of some resource X can be efficiently
simulated. Being efficiently simulated, such circuits do not
exhibit quantum speedup. One can then conclude that resource
X is necessary for quantum speedup. Many such resources
have been identified. For circuits on pure states there is no
quantum speedup if at all times (i.e., before and after every
unitary) the state has a small Schmidt rank [1] or factors into
a product state on small subsystems [2]. For qubit circuits
there is no quantum speedup if the discord across all bipartite
cuts is zero at all times [3]. There is no quantum speedup for
circuits that use only Clifford gates [4], or matchgates [5],
that have small tree width [6,7], or that use only operations
having non-negative Wigner representation [8–10]. For a brief
overview of resources identified as important for quantum
speedup, see Sec. 9 of [11].

A tempting but naive explanation for quantum speedup is
the exponentially large dimensionality of Hilbert space (2n

for n qubits), combined with “quantum parallelism.” Shor’s
algorithm begins by preparing a state

√
2−n

∑
x |x〉 ⊗ |f (x)〉,

which can be interpreted as simultaneously evaluating f for all
2n values of x. However, this is not a satisfactory explanation
for quantum speedup since classical probability distributions
over n bits can also be considered as vectors of dimension
2n and allow a similar sort of parallelism. We show that
the quantum speedup is connected to interference, something
which classical probability distributions lack. Prior works
have mentioned interference as being important for quantum
speedup but without offering a quantitative definition [12–15]
or have quantified interference without providing a strong
connection to speedup [16].
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We consider quantum circuits composed of an initial state,
followed by several unitary operators, and terminated by
measurement of a Hermitian observable. The expectation value
of this measurement can be written as a sum of Feynman-like
paths in the computational basis, and this sum can be estimated
via a Monte Carlo technique that considers an ensemble of
paths drawn according to a suitable probability distribution.
The required size of the ensemble is lower bounded by the
square of the interference, which we define as a sum of
absolute values of the path amplitudes (Definition 1). We are
not able to reach this lower bound; however, by using a convex
combination of a pair of Markov chains we are able to provide a
simulation algorithm that runs in time quadratic in the product
of the interference-producing capacities of each operator in
the circuit, defined as the largest amount of interference an
operator is capable of producing (Definition 2). This ends up
being equal to the largest singular value of the entrywise abso-
lute value of the operator in the computational basis. Briefly,
we can estimate expressions of the form 〈ψ |A · · · Z|φ〉, of
which quantum circuits 〈ψ |U (1)† · · · U (T )†MU (T ) · · ·U (1)|ψ〉
are a special case, in time proportional to ‖Ā‖2

2 · · · ‖Z̄‖2
2, where

‖ · ‖2 denotes maximum singular value and where a bar over an
operator denotes entrywise absolute value in the computational
basis. This work was inspired by, and extends, Ref. [15], which
provides an efficient simulation when A, . . . ,Z are all sparse.

Operations with small interference-producing capacity
include the efficiently computable sparse operations as defined
in [15] (e.g., permutation matrices and gates acting on a
constant number of qubits), as well as the Grover reflection
operation, short-time and low-energy Hamiltonian evolutions,
and the Haar wavelet transform. Our simulation algorithm will
generally be exponentially slow in the length of the circuit, but
for the classes of gates listed in the previous sentence it has only
polynomial dependence on the number of qubits. An example
of a circuit that apparently uses much “quantum magic,” but
which can nevertheless be simulated in a time polynomial in
the number of qubits, is depicted in Fig. 1.

We (of course) cannot efficiently simulate Shor’s algorithm.
However, replacing the Fourier transform with the Haar
transform, which has low interference-producing capacity,
yields a circuit that we can simulate (Fig. 2). We show that
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FIG. 1. An example of the type of circuit that can be simulated in poly(n) time using the techniques of this paper. The circuit is divided
into four sections: The first section is considered to be the initial state, the middle two sections are unitary matrices, and the last section is a
projector. The block labeled y = g(x) represents a classical computation step that outputs “yes” if the first and second measurement operations
result in values that are related by an arbitrary [but poly(n) time computable] function g.

there is no quantum advantage for communication protocols
that use small interference, although curiously this result
does not apply to one-round communication protocols. To
our knowledge, interference-producing capacity is the first
continuous-valued quantity that has been shown necessary
for quantum speedup, escaping the theorem of [17], which
shows that a large class of continuous-valued quantities, such
as entanglement and discord, are not necessary for quantum
speedup.

In Secs. II and III we explain our method for estimating
expectation values using a Monte Carlo technique with Markov
chains. In Sec. IV we formalize and extend this technique and
provide guarantees on runtime. In Sec. V we characterize the
types of quantum circuits that our technique can efficiently
simulate, and explore a variety of circuits that we cannot
efficiently simulate. Section VI discusses further applica-
tions, including the Wigner representation and communication
complexity. In Sec. VII we formalize our conjecture that
interference, rather than interference-producing capacity, is
required for quantum speedup. Nontrivial proofs are deferred
to Appendices.

II. MONTE CARLO TECHNIQUE

A. Sampling of paths

We make use of the following circuit model. Let ρ be an
initial density operator. This state is acted upon by a sequence

of unitaries U (1), . . . ,U (T ). Finally, a Hermitian observable
(e.g., a projector) M is measured. It is not assumed that the
unitary operations or the final observable are local; they can be
arbitrary operations potentially involving all qubits or qudits
(e.g., a quantum Fourier transform). The expectation value of
this final measurement is

Tr{U (1)† · · · U (T )†MU (T ) · · ·U (1)ρ}. (1)

Our goal is to estimate this expectation value to within
small additive error, using a classical computer. We allow the
unitaries to be oracle operations (as in Grover’s algorithm),
in which case we grant the classical computer that runs
the simulation access to an equivalent oracle (this is further
discussed in Sec. IV C).

This is not the most general type of simulation. In particular,
we do not consider the case of a many-outcome measurement
(e.g., individual measurements on several qubits or a mea-
surement given by a projective decomposition of the identity)
in which the simulation is required to produce individual
outcomes according to the same probability distribution with
which the quantum circuit produces those outcomes. The
ability to estimate the expectation value of a projector to
within small multiplicative error would allow simulation of
such sampling, as discussed in [18]; however, the algorithm of
the present paper only estimates to within additive error.

Although our primary goal is to estimate expressions of the
form (1), we generalize the task by considering products of the

(a) |+〉⊗n
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Fourier
Measure
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|0〉⊗n

Modular
exponentiation

Haar
Measure
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FIG. 2. (a) A depiction of the decisional version of Shor’s algorithm, which outputs “yes” if there is a prime factor within some given
range. (b) The Haar wavelet transform (Definition 10 ) plays a similar role as the Fourier transform in classical signal processing. However,
substituting the Haar transform for the Fourier transform in Shor’s algorithm yields a circuit that can be efficiently simulated on a classical
computer. Note that the resulting circuit will not factor numbers and, in fact, probably has no practical use.
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form Tr{A(1) · · ·A(S)σ }, where σ and the A(s) are matrices, not
necessarily unitary or Hermitian, and possibly rectangular (we
label σ separately from the A(s) in anticipation of the results
of the next section). This product can be written as a sum over
paths,

Tr{A(1) · · · A(S)σ } =
∑
i0··· iS

A
(1)
i0i1

· · · A(S)
iS−1iS

σiS i0 . (2)

Or, by defining the tuple index π = (i0 · · · iS), this can be
written as

Tr{A(1) · · ·A(S)σ } =
∑
π

V (π ), (3)

V (π ) = A
(1)
i0i1

· · · A(S)
iS−1iS

σiS i0 . (4)

Our strategy is to estimate this sum by drawing a reasonably
small number of paths π according to a probability distribu-
tion, denoted R(π ). Any probability distribution can be used,
although some are more suitable than others. Finding a good
R(π ) will be a central goal of this section and the next. Denote
by � a random variable that takes value π with probability
R(π ). Consider the expectation value of V (�)/R(�):

E

[
V (�)

R(�)

]
=
∑
π

V (π )

R(π )
R(π ) (5)

=
∑
π

V (π ). (6)

By the weak law of large numbers,
∑

π V (π ) can be
approximated to arbitrary accuracy by computing the mean
of sufficiently many samples of V (�)/R(�); however, the
efficiency of this strategy hinges on two things. First, it must
be possible using a classical computer to efficiently draw
random samples according to the probability distribution R(π )
and to compute the corresponding values V (π )/R(π ). This
is an important point to which we return to throughout the
paper. Second, the sample mean of V (�)/R(�) must rapidly
converge to its expectation value. The Chernoff-Hoeffding
bound states that for a random variable whose magnitude is
bounded by b, the mean of O(ε−2b2) samples is very likely to
approximate the expectation value to within additive error ε.
Thus, there is rapid convergence when maxπ {|V (π )|/R(π )} is
small. Note that this is a sufficient but not necessary condition
for rapid convergence; for example, considering the variance
of V (�)/R(�) could in some cases reveal that convergence
happens more rapidly.

We now present the Chernoff-Hoeffding bound in one of
its standard forms, along with a corollary that adapts it to our
application.

Theorem 1. Chernoff-Hoeffding bound [19]. Let
X1, . . . ,XK be independent identically distributed real-valued
random variables with expectation value E[X] and satisfying
|Xk| � b. Let ε > 0. Then

Pr

{∣∣∣∣∣ 1

K

K∑
k=1

Xk − E[X]

∣∣∣∣∣ > ε

}
� 2e−Kε2/2b2

. (7)

Corollary 1. Let V (π ) be a complex valued function of π

and R(π ) be a probability distribution. Define

bmax = max
π

{ |V (π )|
R(π )

}
. (8)

Let ε,δ > 0. Then, with probability less than δ of exceeding
the error bound,

∑
π V (π ) can be estimated to within additive

error ε using O( log2(δ−1)ε−2b2
max) draws from the distribution

R(π ) and the same number of evaluations of V (π )/R(π ).
Proof. It can be shown1 that Theorem 1 can be extended to

complex variables at the expense of replacing the right-hand
side of (7) by 4e−Kε2/4b2

. Define the independent identically
distributed random variables Xk = V (�k)/R(�k) with k ∈
{1, . . . ,K}. Applying the complex valued version of Theo-
rem 1, and noting that |Xk| � bmax and E[V (�)/R(�)] =∑

π V (π ), we get

Pr

{∣∣∣∣∣ 1

K

K∑
k=1

V (�k)

R(�k)
−
∑
π

V (π )

∣∣∣∣∣ > ε

}
� 4e−Kε2/4b2

max . (9)

Setting K = ln(4/δ)4ε−2b2
max = O( log2(δ−1)ε−2b2

max) makes
the right hand side of (9) equal to δ. �

Since the number of samples needed depends only log-
arithmically on δ, it is possible to choose δ to be extremely
small (say, 1 × 10−9) while having only minimal impact on the
number of samples needed. With such a small δ, the estimate
will be very likely to be within additive error ε.

The number of samples needed for an accurate estimate
is quadratic in bmax, so finding an R(π ) for which bmax is
small is of crucial importance. However, feasibility of the
simulation also depends on the difficulty of drawing random
paths π according to the distribution R(π ) and computing the
corresponding values V (π )/R(π ). We denote by the letter
f the time needed to carry out these operations. Specifi-
cally, we require that sampling from R(π ) and computing
V (π )/R(π ) can be carried out in average time O(f ), where
f is some function of the dimension or number of qubits
of a quantum circuit. Since

∑
π V (π ) can be estimated by

averaging O( log2(δ−1)ε−2b2
max) samples of V (�)/R(�), each

of which can be computed in time O(f ), the total runtime of
the algorithm is O( log2(δ−1)ε−2b2

maxf ).
Some probability distributions are easier to sample from

than others, and this needs to be decided on a case-by-case
basis. For example, consider R(i) = |ψi |2, where |ψ〉 is a
quantum state. If |ψ〉 is a computational basis state, then R(i)
is rather trivial and can be sampled by simply outputting the
sole index i for which R(i) �= 0. If |ψ〉 is a graph state on n

qubits, then R(i) is the uniform distribution over the 2n basis
states. This can be sampled in time O(n) by tossing a fair
coin n times, once for each qubit, so in this case f = n. On
the other hand, if |ψ〉 is defined as being the state just before
the final measurement in Shor’s algorithm, then it is probably
not feasible to sample from R(i) efficiently on a classical
computer.

1This is shown by applying Theorem 1 separately to the real and
imaginary parts and using the fact that the sample mean is within
additive error ε of the expectation value as long as both the real and
the imaginary parts are within ε/

√
2.
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For simplicity we assume that all operations can be carried
out with perfect computational accuracy, including the degree
to which the probability distribution of the generated samples
π agrees with an ideal distribution R(π ), and the precision
of the computed V (π )/R(π ) values. Of course, computers
can only compute with finite precision. However, since we
are concerned only with approximating expectation values to
within additive error ε, carrying out the computations to finite
but high precision is sufficient as long as the total accumulated
computational error is small compared to the error tolerance
ε. This is discussed in more detail in Appendix A of [15].

B. Interference

An efficient simulation requires choosing a probability
distribution R(π ) for which bmax of (8) is not large. A tempting
choice is

Ropt(π ) := |V (π )|∑
π ′ |V (π ′)| . (10)

It can be shown2 that this is the unique distribution yielding
the minimum possible value of bmax,

bopt = ∑
π |V (π )|. (11)

Being the lowest possible value of bmax, (11) represents a lower
bound on the number of samples needed as guaranteed by the
Chernoff-Hoeffding bound, although a more careful analysis
of variances, for instance, could show that the algorithm
actually produces a faster-than-expected convergence.

An efficient algorithm requires both that bmax be small and
that R(π ) can be sampled from efficiently. We do not know of a
way to efficiently sample from the probability distribution (10)
in general, so this is not useful for computing the expectation
value. Nevertheless, it is worthwhile to discuss for a moment
the case where the one condition is met (small bmax) even if the
other condition is not met (ability to efficiently draw samples).
For concreteness, consider a simple quantum circuit with only
one unitary, Tr{U †MUρ}. This can be written as a sum over
paths,

Tr{U †MUρ} =
∑
π

V (π ), (12)

with π = (i,j,k,l) and V (i,j,k,l) = U
†
ijMjkUklρli . Plugging

this into (11) gives

bopt = Tr{Ū †M̄Ū ρ̄}, (13)

where a bar over a vector or matrix denotes entrywise absolute
value in the computational basis, a notation that is used
throughout this paper. This generalizes in the obvious way
for circuits with more than one unitary.

Comparing (11) and (12), both are sums over paths but
the latter involves an absolute value for each path. The sum
(12) has magnitude bounded by 1 if the observable M has
eigenvalues bounded in magnitude by 1. The sum (11), on
the other hand, can take a much larger value than (12)

2Let R(π ) be any probability distribution that differs from Ropt(π )
of (10). Then there must be a π ′ such that R(π ′) < Ropt(π ′). It follows
that maxπ {|V (π )|/R(π )} > |V (π ′)|/Ropt(π ′) = ∑

π |V (π )|.

when the terms in the latter sum exhibit cancellations due
to destructive interference. For example, consider the case
|ψ〉 = N−1/2 ∑

i |i〉, U the Fourier transform, and M the
identity, giving bopt = √

N .
It may be enlightening to consider a physical example.

To this end, we introduce a simple toy-model version of
Young’s double-slit experiment. Let states |0〉 and |1〉 represent
a particle immediately exiting the upper and lower slits,
respectively, and let |x〉 represent a particle impacting the
detector at position x. The transfer operator representing
passage of the particle from the slits to the detector will be some
unitary U satisfying U (α|0〉 + β|1〉) = ∫

x
(αψx + βφx)|x〉dx.

A particle passing through the upper slit will impact the
detector at position x with probability density |ψx |2; for a
particle passing through the lower slit the probability density
is |φx |2. A particle in a superposition of passing through upper
and lower slits, in state |+〉 = (|0〉 + |1〉)/√2, will impact the
screen at x with probability density∣∣∣∣ 1√

2
ψx + 1√

2
φx

∣∣∣∣
2

= 1

2
|ψx |2 + 1

2
|φx |2 + Re(ψ∗

x φx). (14)

The first two terms on the right-hand side represent the
probability that would be expected if the particle were in a
classical stochastic mixture of passing through one slit or the
other. The third is the interference term. Integrating this term
over x yields zero, as it must in order for the probabilities to
sum to 1. The total amount of interference can be quantified by
instead integrating the absolute value of this term. Similarly, if
we were interested in only part of the detector, say x ∈ [0,1],
the interference associated with that region could be defined
by integrating only over this range. It turns out to be more
mathematically convenient to include all three terms in the
definition of interference; for one thing, the resulting quantity
will be multiplicative when considering a system composed
of noninteracting subsystems. The |ψx |2/2 + |φx |2/2 terms
contribute at most 1 (exactly 1 if integrating over the entire
range). In summary, we may define the interference associated
with the x ∈ [0,1] region of the detector as

I =
∫

x∈[0,1]

(
1

2
|ψx |2 + 1

2
|φx |2 + |ψ∗

x φx |
)

dx. (15)

This is essentially what is done in (13). Specifically, setting
ρ = |+〉〈+| and M = ∫

x∈[0,1] |x〉〈x|dx in (13) yields

bopt =
∫

x∈[0,1]

(
1√
2
|ψx | + 1√

2
|φx |

)2

dx (16)

=
∫

x∈[0,1]

(
1

2
|ψx |2 + 1

2
|φx |2 + |ψ∗

x φx |
)

dx. (17)

Note that (13) depends upon the choice of basis since the
entrywise absolute value is basis dependent. Typically, one
has some canonical basis in mind; for example, when one
says that the double-slit experiment exhibits interference, this
is relative to the position basis. For quantum circuits there is
the computational basis, although in the interest of efficient
simulation one may choose to use some other basis.

For a more complicated apparatus, such as a network
of beam splitters, similar arguments apply: We quantify
interference by computing a sum over paths, summing the
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absolute value of each path contribution. This definition
depends upon a choice of course graining. For instance, a box
which simply passes a photon from input to output undisturbed
could be said to contribute no interference. On the other hand, if
one were to take a more detailed view of this box—suppose, for
example, that it contains a perfectly balanced Mach-Zehnder
interferometer—then one could conclude that there is, in
fact, interference. The same applies to simulation of quantum
circuits. Although our simulation technique has difficulty
simulating the Fourier transform, a Fourier transform followed
by its inverse presents no difficulty if one course grains the
circuit by replacing F †F with the identity.

The above considerations lead to the following definition.
Definition 1. The interference of a quantum circuit with ini-

tial state ρ, unitary operators U (1), . . . ,U (T ), and measurement
M is

I(U (1)†, . . . ,U (T )†,M,U (T ), . . . ,U (1),ρ)

= Tr{Ū (1)† · · · Ū (T )†M̄Ū (T ) · · · Ū (1)ρ̄}. (18)

More generally, the interference of an arbitrary expression of
the form Tr{A(1) · · · A(S)σ } is

I(A(1), . . . ,A(S),σ ) = Tr{Ā(1) · · · Ā(S)σ̄ }. (19)

This definition depends on the choice of basis. Unless
otherwise specified, the standard (aka computational) basis
is used.

With this definition, we have that bmax � I(U †,M,U,ρ) in
(8) for any choice of probability distribution, with equality
when the distribution (10) is used. Since the number of
samples needed to estimate the expectation value using our
technique is proportional to b2

max, any quantum circuit with
very large interference could never feasibly be simulated with
our technique, no matter the choice of R(π ).

While we do not know how to efficiently sample from
the optimal probability distribution (10), we conjecture that
there is still some way to efficiently estimate the expectation
value of a quantum circuit in cases where the interference
is low. The precise statement of this conjecture is a delicate
matter taken up in Sec. VII. We, however, show, by the end
of the next section, that it is possible to simulate circuits in
which each unitary as well as the final observable has a low
interference-producing capacity (Definition 2).

A connection between I and the decoherence functional of
Gell-Mann and Hartle is discussed in Sec. VI D.

III. MARKOV CHAINS

A. Introduction

The problem with the probability distribution (10) is that
there is no obvious way to efficiently sample from it using a
classical computer. So while only O( log2(δ−1)ε−2I2) samples
are needed (with I given by Definition 1), each sample may be
very complicated to evaluate. The essence of the difficulty is
that this distribution treats the circuit holistically, so drawing
samples apparently requires an understanding of how all the
factors of (2) interact with each other. In order to avoid this
problem, we instead use a probability distribution defined in
terms of a time-inhomogeneous Markov chain with a transition
corresponding to each operator in (2). More precisely, we take

the convex combination of two (unrelated) Markov chains,
one proceeding left to right and the other proceeding right
to left. This way, it is only necessary to understand each
individual operator, not the interactions between operators.
The computation time of this simulation will end up being
related not to the interference I but rather the product of the
interference-producing capacities of each factor (a term that is
defined at the end of this section).

The end result of this section is an algorithm for estimating
products of the form Tr{A(1) · · · A(S)σ }, where σ and the
A(t) are matrices, not necessarily unitary or Hermitian and
possibly rectangular. This includes as a special case quantum
circuits of the form Tr{U (1)† · · · U (T )†MU (T ) · · · U (1)ρ}. We
build the algorithm step by step, considering first an example
that demonstrates why a convex combination of probability
distributions is needed, considering second an example that
explains how the Markov chains are built, and using finally a
convex combination of Markov chains. The exposition in this
section is meant to be instructive; formal theorems are taken
up in Sec. IV.

B. Inner product

Consider the task of estimating the inner product 〈ψ |φ〉 =∑
i ψ

∗
i φi , where the two vectors satisfy the property ‖ψ‖p =

‖φ‖q = 1 with 1/p + 1/q = 1.3 In the context of quantum
circuits p = q = 2 is the natural choice; however, we allow
general �p norms because the case p = 1, q = ∞ is also
important and because the general case may be of independent
interest. Here, as in the more general case that follows, the key
is to find a probability distribution R(i) that will be suitable
for application of Corollary 1 . It is needed that

bmax = max
i

{ |V (i)|
R(i)

}
= max

i

{ |ψ∗
i φi |

R(i)

}
(20)

is not large. There are two obvious choices for the probability
distribution: P (i) = |ψi |p and Q(i) = |φi |q . Unfortunately,
neither of these will guarantee a small bmax. However, for
each i at least one of the distributions P (i) or Q(i) will work
well. The solution is to take a convex combination of these
two distributions,

R(i) = 1

p
P (i) + 1

q
Q(i). (21)

The algorithm that follows is an adaptation of one that
appears in [15] (they used p = q = 2 and a slightly different
technique). We present it as a formal theorem, in order
to demonstrate how to carefully track the algorithm’s time
complexity.

Example 1. Let 1 � p � ∞ and 1/p + 1/q = 1. Let |ψ〉
and |φ〉 be vectors with ‖ψ‖p = ‖φ‖q = 1. Suppose that
it is possible to sample from the probability distributions
P (i) = |ψi |p and Q(i) = |φi |q and to compute entries ψi and
φi in average time O(f ) for some f . It is possible, with
probability less than δ > 0 of exceeding the error bound, to

3The �p norm, ‖ · ‖p , is defined as ‖ψ‖p = (
∑

i |ψi |p)1/p when 1 �
p < ∞ and ‖ψ‖p = maxi |ψi | when p = ∞. When 1/p + 1/q = 1,
the norms ‖ · ‖p and ‖ · ‖q are dual to each other.
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estimate 〈ψ |φ〉 to within additive error ε > 0 in average time
O( log2(δ−1)ε−2f ).

Proof. Let V (i) = ψ∗
i φi and R(i) = P (i)/p + Q(i)/q.

To apply Corollary 1 we need to bound bmax =
maxi{|V (i)|/R(i)}. Making use of the (weighted) inequality
of arithmetic and geometric means4

bmax = max
i

{|V (i)|/R(i)} (22)

= max
i

{|ψ∗
i φi |/[P (i)/p + Q(i)/q]} (23)

� max
i

{|ψ∗
i φi |/[P (i)1/pQ(i)1/q]} (24)

= 1. (25)

By Corollary 1, 〈ψ |φ〉 = ∑
i V (i) can be estimated at the

cost of drawing O( log2(δ−1)ε−2) samples i according to R(i)
and computing the corresponding V (i)/R(i) values. Sampling
from R(i) can be accomplished as follows: Flip a biased coin
that lands heads up with probability 1/p. If it lands heads
up, then draw i from P (i), otherwise draw i from Q(i). By
assumption, this takes an average time O(f ). Next, V (i)/R(i)
can be computed directly from ψi and φi , each of which can, in
turn, be computed in average time O(f ). The O( log2(δ−1)ε−2)
samples (as well as their mean) can therefore be computed in
average time O( log2(δ−1)ε−2f ). �

C. Nearly stochastic matrices

We now move to a more general case, the estimation of
〈ψ |A(1) · · ·A(S)|φ〉. For the sake of simplicity, suppose that
there are only two operators (i.e., S = 2) so that the goal is to
estimate 〈ψ |AB|φ〉. This can be written as a sum over paths
as in (2),

〈ψ |AB|φ〉 =
∑
ijk

ψ∗
i AijBjkφk. (26)

To apply Corollary 1 to this problem, set π = (i,j,k) and
V (i,j,k) = ψ∗

i AijBjkφk . For efficient simulation it suffices to
find a probability distribution P (i,j,k) from which we can
efficiently draw samples using a classical computer, for which
V (i,j,k)/P (i,j,k) can be efficiently computed and for which

bmax = max
ijk

{ |ψ∗
i AijBjkφk|
P (i,j,k)

}
(27)

is small enough that the estimation will converge reasonably
fast. As discussed in the previous section, a tempting choice for
the probability distribution is given by (10); however, it is not
clear how one would efficiently draw samples from this since
doing so apparently requires an understanding of how 〈ψ |, A,
B, and |φ〉 interact with each other. To avoid this problem,
we define P (i,j,k) in terms of a time-inhomogeneous Markov
chain,

P (i,j,k) = Pψ (i)PA(j |i)PB(k|j ), (28)

4The weighted inequality of arithmetic and geometric means is a
generalization of the more familiar inequality x/2 + y/2 � √

xy. If
1 � p � ∞ and 1/p + 1/q = 1, then x/p + y/q � x1/py1/q .

with each transition depending on only one of the components
of 〈ψ |AB|φ〉. Plugging this into (27) gives

bmax = max
ijk

{ |ψ∗
i AijBjkφk|

Pψ (i)PA(j |i)PB(k|j )

}
(29)

= max
ijk

{ |ψ∗
i |

Pψ (i)

|Aij |
PA(j |i)

|Bjk|
PB(k|j )

|φk|
}

(30)

� max
i

{ |ψ∗
i |

Pψ (i)

}
max

ij

{ |Aij |
PA(j |i)

}

× max
jk

{ |Bjk|
PB(k|j )

}
max

k
{|φk|}. (31)

The goal is then to find Pψ (i), PA(j |i), and PB(k|j ) that
minimize the terms of (31). Consider first the case where 〈ψ |
is a probability distribution, the matrices A and B are right-
stochastic matrices,5 and |φ〉 has small entries (say, ‖φ‖∞ �
1). We can set Pψ (i) = ψi , PA(j |i) = Aij , and PB (k|j ) = Bjk ,
with the result that each factor in (31) is bounded by 1.
If |φ〉 is not a probability distribution, we can turn it into
one by defining Pψ (i) = |ψi |/‖ψ‖1; similarly, if A is not a
right-stochastic matrix, we can set PA(j |i) = |Aij |/

∑
j ′ |Aij ′ |

(and likewise for B). Then (31) becomes

bmax � ‖ψ‖1 max
i

⎧⎨
⎩
∑
j ′

|Aij ′ |
⎫⎬
⎭max

j

{∑
k′

|Bjk′ |
}

‖φ‖∞

(32)

= ‖ψ‖1‖Ā‖∞‖B̄‖∞‖φ‖∞. (33)

Here, as in the rest of the paper, we use the induced norm
for operators: ‖A‖p = maxu ‖Au‖p/‖u‖p (we do not use the
entrywise or Schatten norms). Under this notation, ‖M‖2 is the
largest singular value of M , ‖M‖1 is the maximum absolute
column sum, and ‖M‖∞ is the maximum absolute row sum.
By Corollary 1, the value of 〈ψ |AB|φ〉 can be estimated by
drawing

O
(

log2(δ−1)ε−2b2
max

)
� O

(
log2(δ−1)ε−2‖ψ‖2

1‖Ā‖2
∞‖B̄‖2

∞‖φ‖2
∞
)

(34)

samples (i,j,k) from P (i,j,k) and averaging the corresponding
V (i,j,k)/P (i,j,k).

D. General p,q

In the case of quantum circuits, it is the �2- norm that
is relevant. Instead of bmax � ‖ψ‖1‖Ā‖∞‖B̄‖∞‖φ‖∞ from
the previous example, we want bmax � ‖ψ‖2‖Ā‖2‖B̄‖2‖φ‖2.
For the sake of generality, we allow arbitrary p,q satisfying
1/p + 1/q = 1. The goal is to find a probability distribution
that yields bmax � ‖ψ‖p‖Ā‖q‖B̄‖q‖φ‖q . As in Sec. III B, the
way to proceed is by taking a convex combination of two
probability distributions, R(i,j,k) = P (i,j,k)/p + Q(i,j,k).

5A right-stochastic matrix is a non-negative matrix with each row
summing to 1; a left-stochastic matrix has each column summing to
1. We do not require stochastic matrices to be square.
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Here P (i,j,k) will be a time-inhomogeneous Markov chain
proceeding in the i → j → k direction and Q(i,j,k) a dif-
ferent Markov chain proceeding in the k → j → i direction.
Again the inequality of arithmetic and geometric means plays
a crucial role, giving

R(i,j,k) = P (i,j,k)/p + Q(i,j,k)/q (35)

� P (i,j,k)1/pQ(i,j,k)1/q (36)

= [Pψ (i)PA(j |i)PB(k|j )]1/p

× [QA(i|j )QB(j |k)Qφ(k)]1/q . (37)

With this we have

bmax = max
ijk

{ |ψ∗
i AijBjkφk|
R(i,j,k)

}
(38)

� max
ijk

{ |ψ∗
i AijBjkφk|

P (i,j,k)1/pQ(i,j,k)1/q

}
(39)

= max
ijk

{ |ψ∗
i |

Pψ (i)1/p

|Aij |
PA(j |i)1/pQA(i|j )1/q

× |Bjk|
PB(k|j )1/pQB(j |k)1/q

|φk|
Qφ(k)1/q

}
(40)

� max
i

{ |ψ∗
i |

Pψ (i)1/p

}
max

ij

{ |Aij |
PA(j |i)1/pQA(i|j )1/q

}

× max
jk

{ |Bjk|
PB(k|j )1/pQB(j |k)1/q

}
max

k

{ |φk|
Qφ(k)1/q

}
(41)

= bψbAbBbφ, (42)

where bψ , bA, bB , and bφ label the four factors of (41). By
Corollary 1, the number of samples needed in order to estimate
〈ψ |AB|φ〉 is O( log2(δ−1)ε−2b2

ψb2
Ab2

Bb2
φ). The quantities bψ ,

bA, bB , and bφ are therefore identified as being the simulation
cost due to each of the components of 〈ψ |AB|φ〉. We show in
Appendix A (Theorem 9 ) that for any choice of probability
distribution bA � ‖Ā‖q and that there are optimal probability
distributions achieving bA = ‖Ā‖q (and similarly for B, ψ ,
and φ). Using these gives

bmax � ‖ψ‖p‖Ā‖q‖B̄‖q‖φ‖q . (43)

Whether these optimal probability distributions can be effi-
ciently sampled from is a matter that needs to be considered
on a case-by-case basis; however, we show in Sec. V that this is
indeed the case for a wide range of matrices, both unitary and
Hermitian. Additionally, in terms of query complexity rather
than time complexity these efficient sampling requirements
can, for the most part, be ignored, as we discuss further in
Sec. IV C.

E. Dyads and density operators

It is possible to further generalize to expressions of the form
Tr{ABσ }. The special case 〈ψ |AB|φ〉 is obtained by setting
σ = |φ〉〈ψ |. The above derivation is easily adapted by writing
σki , Pσ (i), and Qσ (k) instead of φkψ

∗
i , Pψ (i) and Qφ(k). With

these substitutions, (38)–(42) become

bmax = max
ijk

{ |AijBjkσki |
R(i,j,k)

}
(44)

� max
ijk

{ |Aij |
PA(j |i)1/pQA(i|j )1/q

|Bjk|
PB(k|j )1/pQB(j |k)1/q

× |σki |
Pσ (i)1/pQσ (k)1/q

}
(45)

� max
ij

{ |Aij |
PA(j |i)1/pQA(i|j )1/q

}

× max
jk

{ |Bjk|
PB(k|j )1/pQB(j |k)1/q

}

× max
ki

{ |σki |
Pσ (i)1/pQσ (k)1/q

}
(46)

= bAbBbσ . (47)

The bσ factor differs from the other two in that the probability
distributions are not conditional. This stems from the fact
that σ represents the starting point of the Markov chains. If
σ = |φ〉〈ψ | then taking the probability distributions Pσ (i) =
|ψi |p/‖ψ‖p and Qσ (k) = |φk|q/‖φ‖q gives bσ = ‖ψ‖p‖φ‖q

as in (43). If p = q = 2 and if σ is a density operator
(positive semidefinite and trace 1), then taking the probability
distributions Pσ (i) = Qσ (i) = σii gives bσ = 1 due to the
inequality |σki | � √

σkkσii , which is satisfied by positive
semidefinite matrices.

F. Interference-producing capacity

In Sec. II B we interpreted the lowest possible bmax

value, obtained by using the holistic probability dis-
tribution (10), as being the interference of a quan-
tum circuit. Although this probability distribution achieves
the lowest bmax, there is no clear way to draw sam-
ples efficiently and for this reason the Markov chain
technique of this section was developed. The result was a
strategy that depends only on properties of the individual
operators rather than on the expression as a whole. The bmax

value for this strategy is upper bounded by (47).
Consider now the minimum possible value of one of the

factors in (47), for instance bA. In Appendix A (Theorem 9 )
we show that the best possible choice of PA(j |i) and QA(i|j )
yields bA = ‖Ā‖q . In the case of quantum circuits the relevant
norm is p = q = 2, so this becomes6

bA = ‖Ā‖2. (48)

This can be interpreted in terms of interference: It is the largest
possible contribution A can make to the interference I of
Definition 1 . Specifically, since ‖ · ‖2 gives the maximum
singular value of its argument, we have

I(A(1), . . . ,A(S),|φ〉〈ψ |) � ‖Ā(1)‖2 · · · ‖Ā(S)‖2‖φ‖2‖ψ‖2.

(49)

6We focus here on the case p = 2 of relevance to quantum circuits,
although the entire section could easily be generalized to p �= 2.
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TABLE I. The Imax value for various matrices. Operators with
larger Imax value are harder to simulate using our technique. Proofs
for the nontrivial cases are presented in Appendix C .

Matrix Imax

Fourier or Hadamard transform on n qubits 2n/2

Arbitrary gate on n qudits No more than dn/2

Haar wavelet transform on n qubits
√

1 + n

k-sparse unitary No more than
√

k

Grover reflection Imax → 3 as n → ∞
Permutation in computational basis 1
Pauli matrices 1
Rank 1 projector 1

Furthermore, for any operator A we have

max
‖ψ‖2=‖φ‖2=1

I(A,|φ〉〈ψ |) = ‖Ā‖2. (50)

For this reason, we interpret ‖Ā‖2 as being the interference
producing capacity of A.7

Definition 2. The interference-producing capacity of a
matrix A is

Imax(A) = ‖Ā‖2. (51)

This definition, like Definition 1, is basis dependent. Here
the basis dependence arises from the entrywise absolute value.
Unless otherwise specified, we work in the computational
basis. In the next sections we show the product of the Imax

values for the operations and final measurement of a circuit to
be a necessary resource for quantum speedup: If this quantity
is low, then a circuit can be classically simulated. The same
claim applies also for other bases and even for more exotic
representations (as we show in Sec. VI A). The situation is
not so much different from, for instance, Gottesman-Knill
theorem which claims that stabilizer circuits may be efficiently
simulated [4]. Although a circuit may at first not appear to be
a stabilizer circuit, it may be so after a change of basis (i.e.,
after conjugating the initial state, all unitary operations, and
all measurements by some unitary).

The Imax values for various operators are listed in Table I.
As shown informally in this section, and more formally in
the next section, it is possible to efficiently simulate quantum
circuits when the product of the Imax values of all operators
is not large. So, one may interpret a small Imax value to mean
that a unitary operator contributes only minimally to quantum
speedup. On the high end of the table are the Fourier and
Hadamard transforms, having the maximum possible value
of Imax; these are difficult for us to simulate (at least in
the computational basis). On the low end are the Pauli and
the permutation matrices, having Imax = 1; these contribute
nothing to quantum speedup (relative to our simulation
scheme). Among unitaries, the only operators with Imax = 1
are permutations with phases, U = ∑

j eiθj |σ (j )〉〈j |.

7Our measure of interference is different from, and seemingly
unrelated to, the one defined in [16], which in the case of unitary
matrices reduces to N −∑

ij |Uij |4.

IV. EPS AND EHT OPERATORS

A. Definitions

We now present two definitions codifying the requirements
operators must meet in order that products of the form
Tr{A(1) · · ·A(S)σ } can be estimated using the techniques of
the previous section. In the previous section, using a pair of
Markov chains yielded a simulation strategy in which each
component of Tr(ABσ ) can be treated independently, with
A, B, and σ contributing costs bA, bB , and bσ to the total
number of samples needed as per (47). Each sample requires
drawing a random path according to the distribution R(i,j,k)
and then computing V (i,j,k)/R(i,j,k). Drawing the random
path requires considering only one operator at a time since
R(i,j,k) is defined in terms of Markov chains. Similarly,
computing V (i,j,k)/R(i,j,k) can be done considering one
operator at a time since

V (i,j,k)

R(i,j,k)
= AijBjkσki

P (i,j,k)/p + Q(i,j,k)/q
(52)

=
{

1

p

P (i,j,k)

AijBjkσki

+ 1

q

Q(i,j,k)

AijBjkσki

}−1

(53)

=
{

1

p

PA(j |i)
Aij

PB(k|j )

Bjk

Pσ (i)

σki

+ 1

q

QA(i|j )

Aij

QB(j |k)

Bjk

Qσ (k)

σki

}−1

. (54)

Focusing on a single component, say A, conditions for efficient
simulation can be identified (note that σ requires slightly
different conditions, which we deal with later). First, the
quantity bA of (47) should be small in order that the number
of samples required be small. Second, it must be possible to
efficiently sample from the probability distributions PA(j |i)
and QA(i|j ) and to compute the contributions due to A

in (54), namely, PA(j |i)/Aij and QA(i|j )/Aij . We express
these conditions as a definition. However, it will be useful to
generalize by allowing an extra index k in the definition below
(not related to the k that appears above). If k takes only a single
value (say, k = 0) the definition below exactly encompasses
the conditions outlined above. The extra freedom granted by
k will allow, as we show shortly, treatment of sums, products,
and exponentials of matrices (Theorem 4 ). In the case p = 1,
q = ∞ it was the matrices resembling stochastic matrices that
could be efficiently simulated. For this reason, for general p,q

we give the name efficient pseudostochastic (EPS) to matrices
that we can efficiently simulate.

Definition 3. EPS. Let 1 � p � ∞, 1/p + 1/q = 1, and
b < ∞. An M × N matrix A is EPSp(b,f ) if there is a finite or
countable set K , values αmnk ∈ C, and conditional probability
distributions P (n,k|m) and Q(m,k|n), with m ∈ {1, . . . ,M},
n ∈ {1, . . . ,N}, and k ∈ K , satisfying the following condi-
tions:

(a)
∑

k∈K αmnk = Amn;8

8We show in Appendix B (Lemma 4 ) that this series converges
absolutely, so there is no ambiguity regarding the way that an infinite
K is enumerated.
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(b)

max
mnk

{ |αmnk|
P (n,k|m)1/pQ(m,k|n)1/q

}
� b, (55)

with the convention that 0/0 = 0;
(c) given any m, it is possible in average time O(f )

on a classical computer to sample n,k from the probability
distribution P (n,k|m) and then compute αmnk/P (n,k|m) and
αmnk/Q(m,k|n);

(d) given any n, it is possible in average time O(f ) on
a classical computer to sample m,k from the probability
distribution Q(m,k|n) and then compute αmnk/P (n,k|m) and
αmnk/Q(m,k|n).

This definition is related to interference-producing capacity
in the following way. It is always possible to satisfy conditions
(a) and (b) with b = ‖Ā‖q , and it is impossible to do better.
This is proved in Appendix A . So, for the case p = q = 2
the optimal value of b is equal to the interference-producing
capacity of A. Since b (multiplied for all operators in a
circuit) determines how many samples will be required for
our simulation technique, this connects interference-producing
capacity to difficulty of simulation.

Although conditions (a) and (b) can always be satisfied
with b = ‖Ā‖q for some αmnk , P (n,k|m), and Q(m,k|n), it
could be the case that these do not satisfy (c) and (d). In
other words, it may be time consuming to sample from these
probability distributions. An example would be a permutation
matrix A|x〉 = |g(x)〉. Such a matrix has ‖Ā‖q = 1, so it has
no interference-producing capacity. Nevertheless, it would be
difficult to simulate if the function g were difficult to calculate.
In some sense (c) and (d) constitute a requirement that the
matrix A be well understood from a computational perspective.
In practice, (c) and (d) have not presented an obstacle for any
of the operators that we have considered. If one is concerned
with query complexity rather than time complexity, then
(c) and (d) can mostly be ignored. This will be explored in
Sec. IV C.

There is a subtlety in conditions (c) and (d) that deserves
discussion. It is required that the operations be carried out
in average time O(f ). It is allowed that αmnk/P (n,k|m) and
αmnk/Q(m,k|n) be difficult to compute for some m,n,k triples
as long as those occur rarely when sampling from P (n,k|m) or
Q(m,k|n). In our implementation of exponentials of operators
[Theorem 4(c)], the time required is proportional to k, and
so is unbounded since k ∈ {0,1, . . . }; however, P (n,k|m)
and Q(m,k|n) decay exponentially in k so the average time
is small.

We now present a definition that embodies the conditions
that σ must satisfy in order to yield an efficient simulation.
Looking to (46) and (54), the difference between the factors
relating to σ and those relating to A are that the latter involve
conditional probability distributions. This stems from the fact
that the Markov chains begin at σ and so have no index to
condition upon. With this difference in mind, we provide a
definition analogous to Definition 3 but with nonconditional
probability distributions. Since the Markov chains begin and
end at σ , we name the suitable matrices efficient head/tail
(EHT) matrices.

Definition 4. EHT. Let 1 � p � ∞, 1/p + 1/q = 1, and
b < ∞. An M × N matrix σ is EHTp(b,f ) if there is a

finite or countable set K , values αmnk ∈ C, and probability
distributions P (n,k) and Q(m,k) with m ∈ {1, . . . ,M}, n ∈
{1, . . . ,N}, and k ∈ K , satisfying the following conditions:

(a)
∑

k∈K αmnk = σmn;
(b)

max
mnk

{ |αmnk|
P (n,k)1/pQ(m,k)1/q

}
� b, (56)

with the convention that 0/0 = 0;
(c) it is possible in average time O(f ) on a classical

computer to sample n,k from the probability distribution
P (n,k) and then, given any m ∈ {1, . . . ,M}, to compute
αmnk/P (n,k) and αmnk/Q(m,k);

(d) it is possible in average time O(f ) on a classical
computer to sample m,k from the probability distribution
Q(m,k) and then, given any n ∈ {1, . . . ,N}, to compute
αmnk/P (n,k) and αmnk/Q(m,k).

This definition does not relate to interference. For the
case of quantum circuits we can assume σ to be a density
operator. In Sec. IV D we show that for density operators it
is always possible to achieve b = 1 in the above definition
as long as one can simulate measurements in the computa-
tional basis and compute individual matrix entries in average
time O(f ).

The definition of EHT is more strict than that of EPS:
Any EHT operator can be seen to also be EPS by using the
probability distributions P (n,k|m) = P (n,k) and Q(m,k|n) =
Q(m,k). Therefore, since it is not possible to have b < ‖Ā‖q

for EPS operators, it is also not possible to have b < ‖σ̄‖q

for EHT operators. As mentioned above, in the case of EPS it
is always possible to satisfy conditions (a) and (b) with b =
‖Ā‖q ; however, since EHT is more strict, there are operators σ

for which it is not possible to have b = ‖σ̄‖q . Theorem 9(d) in
Appendix A gives that b = ‖σ̄‖Tr is possible when p = q = 2,
where ‖ · ‖Tr is the trace norm (and a generalization is provided
for p �= 2).

In Sec. V we consider the case p = q = 2, which is the
norm relevant to quantum circuits, and give several examples
of states that are EHT2(b,f ) and operators that are EPS2(b,f ),
where b is small and f is polynomial in the number of qubits
(or polylog2 in the dimension of the system). Expectation
values of circuits built from such states and operators can
be efficiently simulated. Specifically, we have the following
theorem, the central theorem of this paper, whose proof is
deferred until after Lemma 1.

Theorem 2. Efficient simulation. Let σ be EHTp(bσ ,fσ )
and for t ∈ {1, . . . ,S} let A(t) be EPSp(bt ,ft ). Then, with
probability less than δ > 0 of exceeding the error bound,
Tr{A(1) · · ·A(S)σ } can be estimated to within additive error ε >

0 in average time O( log2(δ−1)ε−2b2f ), where b = bσ

∏
t bt

and f = fσ +∑
t ft .

B. Operations that preserve EPS/EHT properties

We now discuss mathematical operations that preserve the
EPS and EHT properties. These include scaling, transpose, ad-
joint, multiplication, addition, and exponentiation (Theorems 3
and 4 ). The first three follow immediately from the definitions,
so the following theorem is presented without proof.
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Theorem 3. Let A be EPSp(b,f ) and σ be EHTp(b,f ). Let
s ∈ C be a scalar. Then

(a) σ is EPSp(b,f );
(b) sA is EPSp(|s|b,f );
(c) sσ is EHTp(|s|b,f );
(d) A and A† are EPSp(b,f );
(e) σ and σ † are EHTp(b,f ).

The presence of the k index in Definition 3 allows
treatment of sums and products of operators. Consider,
for instance, the product AB. The two factors of (45)
relating to A and B can be combined to match the con-
ditions of Definition 3 as follows. Begin by relabeling
the indices of (45) from i,j,k to m,k,n and proceed as
follows:

bmax � max
mnk

{ |σnm|
Pσ (m)1/pQσ (n)1/q

|Amk|
PA(k|m)1/pQA(m|k)1/q

|Bkn|
PB(n|k)1/pQB(k|n)1/q

}
(57)

� max
mn

{ |σnm|
Pσ (m)1/pQσ (n)1/q

}
max
mnk

{ |Amk|
PA(k|m)1/pQA(m|k)1/q

|Bkn|
PB(n|k)1/pQB(k|n)1/q

}
(58)

� max
mn

{ |σnm|
Pσ (m)1/pQσ (n)1/q

}
max
mnk

{ |AmkBkn|
[PA(k|m)PB(n|k)]1/p[QA(m|k)QB(k|n)]1/q

}
(59)

= bσ bAB. (60)

Defining PAB(n,k|m) = PA(k|m)PB(n|k), QAB(m,k|n) =
QB(k|n)QA(m|k), and αmnk = AmkBkn, the bAB factor reduces
to

bAB = max
mnk

{ |αmnk|
PAB(n,k|m)1/pQAB(m,k|n)1/q

}
. (61)

This resembles the factors involving A or B that appear in
(46) but with the addition of an extra index k appearing in both
the numerator and in the probability distributions. Allowing
such an extra index enables treatment of AB in the same
manner as the individual factors A and B. This is formalized by
Theorem 4(b) below, which states that the product of EPS
matrices is EPS. In the general case, this procedure is slightly
complicated by the fact that A and B may in turn have their
own extra indices k′ and k′′, which must be inherited by the
product AB.

Sums are handled in a similar way. An expression such as
Tr[(A + B)σ ] is estimated by using A for a fraction of the
samples and B for the remainder. This works since Tr[(A +
B)σ ] is twice the average of Tr(Aσ ) and Tr(Bσ ). The k index
is used to randomly choose between A or B for each sample.
Exponentials are treated by applying these sum and product
rules to eA = ∑∞

j=0 Aj/j !.
Theorem 4. Operations on EPS. Let A be a matrix that is

EPSp(bA,fA) and let B be a matrix that is EPSp(bB,fB). Then,
assuming in each case that A and B have a compatible number
of rows and columns, the following hold:

(a) A + B is EPSp(bA + bB, max{fA,fB});
(b) AB is EPSp(bAbB,fA + fB);
(c) eA is EPSp(eb,bf ).
Proof. The proofs are in Appendix B . Rule (a) is a special

case of Theorem 13, which treats finite or infinite linear
combinations. �

Since the value b in Definition 3 (with p = q = 2) is lower
bounded by interference producing capacity Imax, Theorem 4
has the following interpretation. By (a), Imax is convex. By
(b), it is submultiplicative. By (c), the interference-producing
capacity of a Hamiltonian evolution eiHt is at most exponential
in tImax(H ).

We now prove Theorem 2, regarding estimation of
Tr{A(1) · · ·A(S)σ }. While this can be proved directly using
Markov chains, as was done in Sec. III, this would be
notationally tedious. It is much easier to first repeatedly apply
the product rule, Theorem 4(b), to show that A = A(1) · · ·A(S)

is EPSp(
∏

t bt ,
∑

t ft ). It then suffices to show that Tr(Aσ )
can be estimated. Although this may seem like a slightly
nonconstructive proof, this strategy arose due to object-
oriented techniques (C++) used during actual implementation
of the algorithm. Unrolling the proof of the product theorem,
as well as the proof of the theorem that follows, gives an
argument very similar to that presented in Sec. III.

Lemma 1. Let σ be an N × M matrix that is EHTp(bσ ,fσ ).
Let A be an M × N matrix that is EPSp(bA,fA). It is
possible to estimate Tr(Aσ ) to within additive error ε > 0,
with probability less than δ > 0 of exceeding the error bound,
in average time O( log2(δ−1)ε−2b2

σ b2
A(fσ + fA)).

Proof. The proof is in Appendix B and follows along the
lines of the techniques developed in Sec. III. �

Proof of Theorem 2 . By iterated application of The-
orem 4(b), A = A(1) · · ·A(S) is EPSp(

∏
t bt ,

∑
t ft ). By

Lemma 1 the value of Tr(Aσ ) can be estimated in time
O( log2(δ−1)ε−2b2f ), where b = bσ

∏
t bt and f = fσ +∑

t ft . �

C. Query complexity

The simulation algorithm of this paper involves sampling
a number of paths via Markov chains, each path evaluation in
turn requiring certain operations to be performed. Definitions
3 and 4 each consist of two pairs of conditions, (a) and (b),
relating to the number of paths that need to be evaluated
(quantified by b), and (c) and (d), concerning tasks that
need to be performed for each path (quantified by f ). In
Appendix A we show (Theorem 9 ) that there are always
αmnk , P (n,k|m), and Q(m,k|n) satisfying conditions (a) and
(b) with b = ‖Ā‖q (and, in fact, smaller b is not possible).
However, these probability distributions may not satisfy (c)
and (d), which require that the distributions can be sampled
from efficiently. It is difficult to make any general statement
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regarding satisfaction of (c) and (d), since time complexity of
computation is, in general, a difficult problem; satisfaction of
these two conditions needs to be considered on a case-by-case
basis. However, when considering query complexity rather
than time complexity, (c) and (d) can for the most part
be ignored as we now explain. Note that communication
complexity (discussed in Sec. VI B) offers another context in
which (c) and (d) can be ignored, since there, too, computation
time is free.

Consider the situation where an algorithm is required to
answer some question about an oracle, which is to be thought
of as a black box provided to the algorithm (Grover’s algorithm
is a prominent example). For a classical (i.e., nonquantum)
algorithm the oracle can be any function between two finite
sets, say g : X → Y . It is convenient to consider sets of
integers, X = {0,1, . . . ,|X| − 1} and Y = {0,1, . . . ,|Y | − 1}.
The algorithm can query the oracle by providing it a value x ∈
X, and the oracle responds with g(x). This is the only allowed
way to gain information about g. The query complexity
of the algorithm is defined to be the number of times it
queries the oracle. In particular, the query complexity is not
affected by the amount of time spent performing computations
between queries; computation, even lengthy computation, is
not charged for.

Quantum circuits are provided access to an oracle in the
form of a unitary operator,9

Og =
∑

x∈X,y∈Y

|x〉〈x| ⊗ |y + g(x)〉〈y|, (62)

where |x〉 ⊗ |y〉 ∈ C|X| ⊗ C|Y | are computational basis vectors
and where the addition y + g(x) is modulo |Y |. The query
complexity of a quantum circuit is defined to be the number
of times Og appears in the circuit. For example, Grover’s
algorithm has query complexity O(

√
N ).

Computational complexity classes can be analyzed by
comparing how two classes perform when given access to
equivalent oracles. For example, oracles have been constructed
relative to which quantum computers perform exponentially
more efficiently than classical computers (e.g., Simon’s prob-
lem [20]), whereas proving that quantum computers are faster
than classical computers in the absence of an oracle is an
extremely difficult open problem.

Considering query complexity rather than time complexity
simplifies the analysis of the present paper. Suppose we wish
to simulate a quantum circuit containing at least one instance
of an oracle Og (e.g., Grover’s algorithm) on a classical
computer that also has oracle access to g. Simulation of the
quantum circuit on the classical computer will require making
queries to g and we can ask how many queries are needed,
ignoring the amount of computational time used. We do this
by modifying conditions (c) and (d) of Definitions 3 and 4 to
require that the sampling and computation tasks be completed
using O(f ) queries to g, rather than requiring O(f ) time (time

9Sometimes an alternate definition, O′
g =∑

x∈X,y∈Y e2πig(x)y/|Y ||x〉〈x| ⊗ |y〉〈y|, is used. All claims apply
to this definition as well, requiring only a modification of (63)–(66).

now being a resource that is not charged for). We refer to such
modified definitions by invoking the phrase “in terms of query
complexity.”

We now show that, in terms of query complexity, Og is
EPSp(1,1). Since this unitary operates on two subsystems,
C|X| ⊗ C|Y |, the indices m and n in Definition 3 are tuple
valued. We write m = (x,y) ∈ X × Y and n = (x ′,y ′) ∈ X ×
Y . Take K to be the singleton set {0} and define

α(x,y)(x ′,y ′)k : = P ((x ′,y ′),k|(x,y)) (63)

: = Q((x,y),k|(x ′,y ′)) (64)

: = 〈xy|Og|x ′y ′〉 (65)

= δ(x,x ′)δ(y + g(x),y ′), (66)

where δ is the Kronecker δ. It is easy to see that these satisfy
conditions (a) and (b) of Definition 3 with b = 1. Sampling
from these probability distributions and computing the values
of any of these quantities can be done with a single query
of g (note that the conditional probability distributions are
deterministic); therefore, conditions (c) and (d) are satisfied
with f = 1.

On the other hand, for matrices that are not defined in terms
of the oracle g, such as the I − 2|+〉〈+| reflection operators
in Grover’s algorithm, the operations required by conditions
(c) and (d) can be carried out using zero queries. Therefore,
conditions (c) and (d) can be completely ignored, and we can
take f = 0. We are then free to focus on determining the
probability distributions, giving the smallest possible value of
b in conditions (a) and (b) without regard to whether these can
be efficiently sampled from (since we are charging for queries
only and time is free). It is desirable to make b as small as
possible, since this determines the number of paths that need
to be sampled. The number of paths sampled matters, because
each will require evaluating the entire Markov chain, which
involves every operator. At least one of these operators involves
the oracle, so at least one query needs to be made for each path
that is sampled. The total number of oracle queries will be
the number of paths sampled times the number of queries per
path. In Appendix A we show (Theorem 9 ) the existence
of probability distributions which satisfy conditions (a) and
(b) with b = ‖Ā‖q . So, in terms of query complexity, any
matrix A not defined in terms of an oracle is EPSp(‖Ā‖q,0).
In the case p = q = 2 of relevance to quantum circuits, we
have ‖Ā‖2 = Imax(A), the interference-producing capacity of
A. Theorem 9 also shows that any σ not defined in terms of
an oracle is EHT2(‖σ‖Tr,0), where ‖ · ‖Tr is the trace norm (a
generalization is provided for p �= 2).

D. Sufficient conditions for EPS/EHT

We now present theorems that can be used to show that
specific operators are EPS or EHT. As stated above, if one
is only interested in query complexity, then any matrix A not
depending on an oracle is guaranteed to be EPSp(‖Ā‖q,0).
However, in terms of time complexity it is possible that the
probability distributions that achieve b = ‖Ā‖q cannot be
sampled from efficiently (giving large f ). For this reason it is
worthwhile to introduce probability distributions that are more
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likely to be efficiently sampled and which in some cases still
achieve a small b. In the theorem below each row and column
of A is treated as a probability distribution, correcting for
phases and normalization. This works well when the absolute
row and column sums of A are small.

Theorem 5. Let 1 � p � ∞ and 1/p + 1/q = 1. Let A be
an M × N matrix. Define the probability distributions

P (n|m) = |Amn|∑
n′ |Amn′ | , Q(m|n) = |Amn|∑

m′ |Am′n| . (67)

Suppose that it is possible in average time O(f ) on a classical
computer to perform the following operations:

(a) Given m, sample n from the probability distribution
P (n|m);

(b) given n, sample m from the probability distribution
Q(m|n);

(c) given m,n, compute Amn,
∑

n′ |Amn′ |, and
∑

m′ |Am′n|.
Then A is EPSp(b,f ) with b = ‖A‖1/p

∞ ‖A‖1/q

1 . Note that
b is the weighted geometric mean of the maximum row and
column sums of A.

Proof. This follows directly from plugging the probability
distributions (67) into Definition 3, with K = {0} (i.e., not
making use of the index k). Note that ‖A‖∞ is the maximum
absolute row sum and ‖A‖1 is the maximum absolute column
sum of A. �

Finally, we present theorems that cover the two most
important examples of EHT operators: dyads and density
operators.

Theorem 6. Dyads are EHT. Let |φ〉 and 〈ψ | be vectors
such that the probability distributions P (n) = |ψn|p/‖ψ‖p

p

and Q(m) = |φm|q/‖φ‖q
q can be sampled from and the

corresponding ψn and φm can be computed, in average time
O(f ). Then the dyad |φ〉〈ψ | is EHTp(‖ψ‖p‖φ‖q,f ).

Proof. This can be seen immediately by plugging the given
probability distributions into Definition 4, with K = {0} (i.e.,
without making use of index k). This is the best possible value
of b, which can be seen by applying Theorem 9(a) and using
‖(|φ〉〈ψ |)‖q = ‖ψ‖p‖φ‖q . �

Corollary 2. Estimate matrix entries. Let A be EPSp(b,f ).
Then, given any indices i,j , the value of the matrix entry
Aij can be estimated to within additive error ε > 0, with
probability less than δ > 0 of exceeding the error bound, in
average time O( log2(δ−1)ε−2b2f ).

Proof. By Theorem 6 the dyad of computational basis
vectors |j 〉〈i| is EHTp(1, log2(N )). Note: f � log2(N ) in all
cases (unless one is dealing with query complexity) since it
takes O( log2(N )) time to even write down the indices i and j ,
which are log2(N ) bits long. By Lemma 1, Aij = Tr(A|j 〉〈i|)
can be estimated in time O( log2(δ−1)ε−2b2[f + log2(N )]) =
O( log2(δ−1)ε−2b2f ). �

Theorem 7. Density operators are EHT. Let σ be a density
operator. Suppose that it is possible to sample from the
probability distribution P (n) = σnn in average time O(f ) and,
given i,j , to compute σij in average time O(f ). Then σ is
EHT2(1,f ).

Proof. This follows from plugging the probability distribu-
tions P (n) = σnn and Q(m) = σmm into Definition 4 and using

the inequality |σmn| � √
σmmσnn, which is satisfied by positive

semidefinite matrices. �

V. SIMULATION OF QUANTUM CIRCUITS

A. Efficiently simulated states and operators

In this section we take up the case p = q = 2, which is
relevant to quantum circuits, and list several examples of
EHT2(b,f ) states and EPS2(b,f ) operators where b is small
and f � polylog2(N ) where N is the dimension of the system
(i.e., N = 2n where n is the number of qubits). By Theorem
2, circuits made of such states and operators can be efficiently
simulated. For example, the circuit depicted in Fig. 1 can
be simulated in polylog2(N ) time. After providing several
examples of such states and operators, we discuss a few circuits
that cannot be efficiently simulated using our technique.

The initial states we are able to efficiently simulate
include the computationally tractable (CT) states of [15]. We
reproduce the definition here.10

Definition 5. A normalized state |ψ〉 of dimension N is
called CT if the following conditions hold:

(a) It is possible to sample in polylog2(N ) time with
classical means from the probability distribution P (i) = |ψi |2;

(b) upon input of any i ∈ {0, . . . ,N − 1}, the coefficient
ψi can be computed in polylog2(N ) time on a classical
computer.

It follows immediately from Theorem 6 that if |ψ〉 is
a CT state then ρ = |ψ〉〈ψ | is EHT2(1,polylog2(N )). For
convenience we present here a brief list of examples of such
states from [15] and refer the reader to their paper for details:

(i) product states of qubits (we allow also qudits);
(ii) stabilizer states;
(iii) states of the form |ψ〉 = 1√

N

∑N−1
x=0 eiθ(x)|x〉, where

eiθ(x) for a given x can be computed in polylog2(N ) time;
(iv) matrix product states of polynomial bond dimension;
(v) states obtained by applying a polynomial sized nearest-

neighbor matchgate circuit to a computational basis state;
(vi) states obtained by applying the quantum Fourier

transform to a product state;
(vii) the output of quantum circuits with logarithmically

scaling tree-width acting on product input states.
We present a list of examples of EPS2(b,f ) operators with b

small and f � polylog2(N ). All proofs are in Appendix C.
(i) If A is EPSp(b,f ), then I ⊗ · · · ⊗ I ⊗ A ⊗ I ⊗ · · · ⊗ I

is EPSp(b, max{f, log2
2(N )}) (Corollary 5 ). In other words,

EPS operations on subsystems are EPS. The log2
2(N ) is due

to the amount of time needed to convert indices of I ⊗ · · · ⊗
I ⊗ A ⊗ I ⊗ · · · ⊗ I to indices of A.

(ii) Any operator A on a constant number of qubits or
qudits is EPS2(Imax(A),1), where Imax(A) = ‖Ā‖2 is the
interference-producing capacity of A. In other words, the
simulation cost due to such an operator is equal to the fourth
power of its interference-producing capacity [because of the
b4

t term in (69)].

10Their definition referred to qubits. We generalize slightly to the
abstract case where the decomposition into subsystems is not defined;
only the total dimension of the space matters.
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(iii) If A is an M × M matrix with maximum singular
value bounded by 1 [e.g., a unitary, projector, or positive
operator-valued measure (POVM) element], then Imax(A) �√

M . This inequality is saturated when A is a unitary with
rows forming a basis mutually unbiased to the computational
basis (e.g., a Hadamard or Fourier transform).

(iv) In terms of query complexity rather than time com-
plexity, any operator A not depending on an oracle is
EPS2(Imax(A),0) by Theorem 9. The oracles themselves are
EPS2(1,1).

(v) Efficiently computable sparse matrices as defined
in [15] are EPSp(polylog2(N ),polylog2(N )) (Theorem 14).
These include the following.

(a) Permutation matrices are EPSp(1,f ) as long as the
permutation and its inverse can be computed in time O(f ).

(b) Diagonal unitary matrices are EPSp(1,f ) as long as
the phases can be computed in time O(f ).

(c) Pauli matrices are EPSp(1,1).
(vi) Grover reflections I − 2(|+〉〈+|)⊗n are EPS2(3,n)

(Theorem 16).
(vii) The Haar wavelet transform on n qubits (Definition

10 ) is EPS2(
√

n + 1,n) (Theorem 17).
(viii) One-dimensional projectors onto CT states

are EPS2(1,polylog2(N )) since CT dyads are
EHT2(1,polylog2(N )) and EHT operators are EPS (Theorem
3).

(ix) Rank r projectors onto spaces defined by CT states are
EPS2(r,polylog2(N )) [by applying the sum rule Theorem 4(a)
to the previous item].

(x) Block diagonal matrices where each block is
EPSp(b,f ), and in which matrix indices can be converted to
and from block indices in time O(f ), are EPSp(b,f ).

(xi) As a special case of block diagonal matrices, projec-
tors of the form

∑
x |x〉〈x| ⊗ |φx〉〈φx |, where the |x〉’s are

computational basis states and each |φx〉 is a CT state, are
EPS2(1,polylog2(N )). For example, given an even number of
qubits, measure half of the qubits in the computational basis
to get x, measure the other half in the Fourier basis to get
y, return true if y = g(x) for some function g computable
in polylog2(N ) time (Corollary 4). In this example, |φx〉 =
F |g(x)〉. The measurement depicted in Fig. 1 is of this form.

B. Simulation techniques

As a matter of convenience, we present a theorem that is
essentially a direct corollary of Theorem 2, but written in the
language of quantum circuits.

Theorem 8. Consider a quantum circuit using states
of dimension N [i.e., log2(N ) qubits or logd (N ) qudits].
Let |ψ〉 be a CT state. For t ∈ {1, . . . ,T } let U (t)

be an EPS2(bt ,polylog2(N )) unitary and let M be an
EPS2(bM,polylog2(N )) Hermitian observable. It is possible,
with probability less than δ > 0 of exceeding the error bound,
to estimate

〈ψ |U (1)† · · · U (T )†MU (T ) · · ·U (1)|ψ〉 (68)

to within additive error ε > 0 in average time

O

(
T log2(δ−1)ε−2polylog2(N )b2

M

T∏
t=1

b4
t

)
. (69)

In particular, if bM ,
∏

t bt , and T are polylog2(N ), and if δ

and ε are constant, then the simulation time is polylog2(N ) on
average.

Note that in (69) each unitary U (t) incurs a cost of b4
t rather

than b2
t since it appears twice in (68). If M is a rank 1 projector

onto a CT state, M = |φ〉〈φ|, then it is much more efficient to
compute (68) as the absolute square of

Tr{|ψ〉〈φ|U (T ) · · · U (1)}. (70)

Since |ψ〉〈φ| is EHT2(1,polylog2(N )), and since each unitary
only occurs once, Theorem 2 gives that this expression can be
estimated in average time,

O

(
T log2(δ−1)ε−2polylog2(N )

T∏
t=1

b2
t

)
, (71)

which is much better than (69). If M is a low-rank projector, the
same trick can be used by decomposing M as the sum of rank
1 projectors and computing each resulting term individually.
The complexity of such a technique will scale proportional to
the rank of M .

Theorem 8 is just an application of Theorem 2 with p =
q = 2. One may wonder whether other values of p,q would
lead to a lower simulation cost. Ignore for the moment the
efficient sampling conditions (c) and (d) of Definitions 3 and
4. When estimating (68), the optimal probability distributions
give (by Theorem 9 )

b : = bψbU (1) · · · bU (T )bMbU (T ) · · · bU (1)bψ (72)

= ‖ψ‖p‖Ū (1)†‖q · · · ‖Ū (T )†‖q‖M̄‖q‖Ū (T )‖q

· · · ‖Ū (1)‖q‖ψ‖q . (73)

This achieves its minimum value at p = q = 2, since

b = ‖ψ‖p‖ψ‖q‖Ū (1)‖p‖Ū (1)‖q · · · ‖Ū (T )‖p‖Ū (T )‖q(‖M̄‖p‖M̄‖q)1/2 (using ‖A†‖q = ‖A‖p) (74)

� 〈ψ |ψ〉‖Ū (1)‖p‖Ū (1)‖q · · · ‖Ū (T )‖p‖Ū (T )‖q(‖M̄‖p‖M̄‖q)1/2 (Hülder′s inequality) (75)

� 〈ψ |ψ〉 ‖Ū (1)‖2
2 · · · ‖Ū (T )‖2

2‖M̄‖2 (Riesz-Thorin theorem) (76)

= ‖ψ‖2‖Ū (1)†‖2 · · · ‖Ū (T )†‖2‖M̄‖2‖Ū (T )‖2 · · · ‖Ū (1)‖2‖ψ‖2. (77)

On the other hand, when estimating an expression of the form
(70), each unitary is no longer repeated twice and Riesz-Thorin

cannot be applied. In this case the minimum value of b does
not necessarily occur at p = 2.

022302-13



DAN STAHLKE PHYSICAL REVIEW A 90, 022302 (2014)

Certain algorithms, such as Shor’s algorithm, consist of a
quantum circuit terminating in a many-outcome measurement
(e.g., measurement in the computational basis of several
different qubits) which is then postprocessed by a classical
computer to produce a final result. This does not immediately
fit into our scheme of estimating expectation values. However,
in the case where the final result is a two-outcome yes/no
answer (e.g., “does N have a prime factor in the range
[a,b]”), the final measurement and classical postprocessing
can be combined into a single collective projector or POVM
element as follows. Suppose the final state is measured using
a POVM {Fi}. A classical postprocessing step then inspects
the measurement outcome i and returns “yes” or “no.” Denote
by R the set of measurement outcomes that will result in
“yes.” The classical postprocessing can be absorbed into the
measurement, resulting in the POVM element F ′ = ∑

i∈R Fi .
The expectation value of F ′ gives the probability that a
measurement of {Fi} would yield “yes” after postprocessing.

In some cases F ′ may be efficiently simulated, a (somewhat
contrived) example being the final stage of the circuit of Fig. 1.
Note that this example involves a Fourier transform, which by
itself cannot be efficiently simulated by our technique since
it has large interference-producing capacity. However, when
the Fourier transform is followed by the particular classical
postprocessing depicted in Fig. 1, the resulting composite
operator can be efficiently simulated (Corollary 4). Shor’s
algorithm also has a Fourier transform followed by classical
postprocessing; however, in that case the composite operator
(Fourier transform followed by postprocessing) has large
interference-producing capacity and so cannot be efficiently
simulated (by our algorithm).

C. Circuits that our technique cannot efficiently simulate

Many examples of efficiently simulatable circuits can
be constructed, but it is probably more enlightening to
instead discuss examples of circuits that cannot be efficiently
simulated using our technique. Since the efficiency of our
technique depends upon choice of basis and on choice of
representation (see Sec. VI A), a circuit which our technique
cannot simulate efficiently in one basis may be efficiently
simulatable in another basis. In this section we choose to focus
only on the computational basis. That being said, most of the
examples in this section have been proved (relative to an oracle)
to have no efficient classical solution.

We cannot efficiently simulate Shor’s algorithm. The reason
for this is that the Fourier transform has high interference-
producing capacity: The Fourier transform F on n qubits
has Imax(F ) = 2n/2. Replacing the Fourier transform by the
Haar wavelet transform (Fig. 2) yields a circuit that can
be efficiently simulated, since the Haar transform has low
interference-producing capacity, Imax(Gn) = √

n + 1. Note
that this circuit no longer factors numbers (and probably does
nothing at all useful). The Fourier and Haar transforms play
similar roles in classical signal processing, with the latter
providing spatially localized rather than global information
for the high-frequency components. The fact that replacing the
Fourier transform enables efficient classical simulation points
to the Fourier transform as being the source of the quantum

speedup in Shor’s algorithm (for a contrasting point of view,
see [21,22]).

Deutsch-Jozsa provides an oracle relative to which deter-
ministic quantum computation is more powerful than deter-
ministic classical computation. Our algorithm can efficiently
simulate the Deutsch-Jozsa algorithm, but not deterministi-
cally.11 The Deutsch-Jozsa algorithm consists of an initial
CT state |+〉⊗n ⊗ |−〉, acted upon by an oracle

∑
xy |x〉〈x| ⊗

|y + g(x)〉〈y|, followed by a rank 1 projective measurement
onto the state |+〉⊗n ⊗ |−〉. The initial state is EHT2(1,n) and
the operators are EPS2(1,n), so we can efficiently simulate this
algorithm. However, the simulation will always have a small
chance of error due to the δ in Theorem 8.

Our simulation algorithm performs very poorly when
applied to Grover’s algorithm. Each iteration of Grover’s
algorithm consists of an oracle query followed by a Grover
reflection. These operations have low interference-producing
capacity: 1 for the oracle and just under 3 for the Grover
reflection. However, our algorithm is exponentially slow in the
circuit length, due to the

∏
t b

4
t factor in (69). Since the Grover

reflection is used �(
√

N ) times, the simulation would run in
time exp[�(

√
N )]. Even though each iteration of Grover’s

algorithm produces small interference, the total interference
of the whole circuit, by Definition 1, is exp[�(

√
N )].

In [23] a quantum random walk is presented that provides
an exponential speedup over any possible classical algorithm
for the graph traversal problem. The walk is carried out by
evolving the initial state with a Hamiltonian that is defined
in terms of an oracle. We cannot efficiently simulate this
algorithm for the same reason that we cannot efficiently
simulate Grover: The runtime of the quantum algorithm
increases with the problem size, and our simulation must
pay an exponentially large penalty for this due to the

∏
t b

4
t

factor in (69). On the other hand, short-time and low-energy
Hamiltonian evolutions can be efficiently simulated by our
technique. In particular, Theorem 4(c) gives that if H is
EPSp(b,f ), then eiHt is EPSp(ebt ,btf ). In terms of query
complexity the Hamiltonian in the algorithm of [23] is
EPS2(O(1),1), so we could feasibly simulate eiHt for small
t . However, their algorithm has t = �(n4), so our simulation
would have query complexity e�(n4), making it unfeasibly slow.

VI. APPLICATIONS AND DISCUSSION

A. Wigner representation

An N × N matrix can also be viewed as an N2-dimensional
vector, so we can write, for instance, 〈M|ρ〉 in place of Tr{Mρ}.
Superoperators become N2 × N2 matrices in this represen-
tation, and we can write 〈M|V U |ρ〉 = Tr{MV UρU †V †}.
Simulating a quantum circuit using this representation offers
an alternative to the customary representation that was the
focus of Sec. V.

Any basis can be used (even ones that are not orthonormal),
although some choices of basis may yield more efficient

11This was discussed in [15], which our paper extends. However,
we mention it here for completeness.
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simulation. One notable choice is given by the discrete
Wigner representation, which is only defined for qudits of
odd dimension. We do not describe the details here but refer
the reader to [8,10], in which it is shown that in the discrete
Wigner representation stabilizer states become probability
distributions and Clifford operations become permutation
matrices.

It was shown independently in [9,10] that when operations
in the Wigner representation are given by non-negative
matrices, such matrices are stochastic and therefore can be
efficiently simulated. Our algorithm, taking p = ∞ and q = 1,
extends this result by also allowing states and operations in
which the Wigner representation contains a small quantity
of negative values, although ours is weaker in that it only
computes expectation values rather than allowing sampling
of a many-outcome measurement. With q = 1 rather than
q = 2, the difficulty of simulating an operation is given not by
Imax(A) = ‖Ā‖2 but rather by ‖Ā‖1 = ‖A‖1, the maximum
absolute column sum. In cases where the matrix in the
Wigner representation is non-negative, the matrix will be
left-stochastic and ‖A‖1 = 1, such matrices will not increase
the number of samples needed. If there are some negative
values, then ‖A‖1 will be larger.

After the present work was completed, the quantity
log2 ‖ρ‖1 was investigated in [24]. This quantity was termed
“mana” and was shown to be monotone under Clifford
operations and to be monotone on average under stabilizer
measurements, thus providing bounds on magic state distil-
lation by Clifford circuits. Given the results of the present
paper, it should perhaps make sense to extend the concept of
mana also to quantum operations, defining their mana to be
log2 ‖A‖1. Then Clifford operations have zero mana and in
general the following monotonicity relation is satisfied:

log2 ‖Aρ‖1 � log2(‖A‖1‖ρ‖1) = log2 ‖A‖1 + log2 ‖ρ‖1.

(78)

So log2 ‖A‖1, which is the Wigner representation analog of the
log2 of interference-producing capacity, bounds the amount by
which the operator A may increase the mana of a state. For
each A there will be some ρ that saturates this inequality (by
the definition of operator norm), but it is not clear whether this
would correspond to a physical state.

Stated in this language, Theorem 2, applied in the Wigner
representation, gives that quantum circuits may be efficiently
simulated classically in time polynomial in ‖M‖∞ (where M is
the final measurement) and exponential in the sum of the mana
of the initial state and the mana of each operation. Specifically,
write 〈M|V U |ρ〉 = Tr{|ρ〉〈M|V U}. Then, ignoring for the
moment conditions (c) and (d) of Definition 3 and (c) and
(d) of Definition 4, we have (by Theorem 9) that |ρ〉〈M| is
EHT∞(‖ρ‖1‖M‖∞,f ) and U is EPS∞(‖U‖1,f ) (similarly
for V ). So by Theorem 2 this can be simulated in time

O( log2(δ−1)ε−2‖M‖∞‖U‖1‖V‖1‖ρ‖1f ). (79)

This complements the result of [24], which showed mana to
be a necessary resource for magic state distillation but did not
show that circuits of low total mana have no quantum speedup
(although the zero mana case was treated in [9,10]).

B. Communication complexity

Consider a scenario in which two parties, Alice and Bob,
are to cooperatively evaluate a Boolean function. Specifically,
suppose that Alice receives input x, Bob receives input y, and
they are to evaluate g(x,y), where the function g : X × Y →
{0,1} is known to the two parties ahead of time. They must
provide the correct answer with a probability of at least
2/3. For nontrivial functions this will require communication,
which can be either quantum or classical. The communication
complexity of g is the number of bits of communication
required by the optimal protocol, with no regard for the
amount of time Alice and Bob spend on local computations.
For some problems quantum communication is exponentially
more efficient than classical communication [25].

Consider a quantum communication protocol as depicted
by Fig. 3. The initial state, denoted |ψ〉, is a pure (but possibly
entangled) state on three subsystems HA ⊗ HB ⊗ HC . Sub-
systemsHA andHB are owned by Alice and Bob, respectively,
and subsystem HC is passed between Alice and Bob through a
noiseless quantum channel for each round of communication.
Alice begins by performing a unitary operation A(1,x), which
can depend on her input x on subsystems HA ⊗ HC . She
then sends the HC subsystem to Bob, who performs a
unitary operation B(2,y), which can depend on his input y,
on subsystems HB ⊗ HC . Bob sends HC back to Alice, who
then performs A(3,x) and so on. Finally, the last party (say, Bob)
performs a two-outcome projective (or POVM) measurement
{M (y),I − M (y)}, which can depend on y, on subsystems
HB ⊗ HC and reports the outcome. The expectation value
of the final measurement is given by

〈ψ |A(1,x)†B(2,y)†A(3,x)† · · ·A(T ,x)†M (y)A(T ,x)

· · · A(3,x)B(2,y)A(1,x)|ψ〉 (80)

and must be �1/3 if g(x,y) = 0 and �2/3 if g(x,y) = 1. The
communication complexity of the protocol is the number of
qubits transmitted, T log2[dim(HC)], where T is the number
of rounds of communication. The dimensionality of the
subsystems HA and HB is not taken into consideration.

The algorithm of this paper can be adapted to provide clas-
sical communication simulations of quantum communication
protocols, in the case where the quantum protocols are built
using operators having low interference-producing capacity,
and making a certain assumption regarding the initial state
|ψ〉. Since the expectation value of the final measurement in
the quantum protocol will be either �1/3 or �2/3, a classical
simulation of the quantum protocol can with probability �2/3
determine g(x,y) if it can, with chance of error δ � 1/3,
estimate the expectation value of the quantum protocol to
within additive error ε < 1/6. This is exactly the type of
estimation provided by the algorithm of this paper; we need
only adapt it to the communication scenario.

The algorithm presented in Sec. III D involves computing
O(b2

max) path samples,12 each of which require evaluation of
a left-to-right or a right-to-left Markov chain. Crucially, each

12Specifically, O( log2(δ−1)ε−2b2
max) samples are needed. However,

in order to achieve the goal of guessing g(x,y) with probability �2/3,
it suffices to set constant δ < 1/3 and ε < 1/6.
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FIG. 3. A quantum communication protocol. The expectation value of the final measurement is given by (80).

transition operator in these chains is defined solely in terms
of a single operator of (80). Therefore, each transition can
be computed by Alice alone (for the A(t,x) operators) or by
Bob alone [for the B(t,y) and M (y) operators]. The state space
of the Markov chains consists of indices corresponding to
computational basis states of HA ⊗ HB ⊗ HC , so the indices
can be thought of as triples (iA,iB,iC) of indices over HA,
HB , and HC . Since Alice’s operators A(t,x) act only on
subsystems HA ⊗ HC , the corresponding transition operators
in the Markov chain involve only indices iA and iC . Similarly,
Bob’s transition operators involve only iB and iC . Therefore,
Alice and Bob need to communicate only the index iC for each
transition of the Markov chain.

Also needed is selection of the initial index according
to the probability distribution P (iA,iB,iC) = |〈iA,iB,iC |ψ〉|2
[with Alice getting (iA,iC) and Bob getting iB], as well as
evaluation of 〈iA,iB,iC |ψ〉 for a given (iA,iB,iC) triple [where
Alice knows (iA,iC) and Bob knows iB]. If the initial state
is a product state, |ψ〉 = |ψAC〉 ⊗ |ψB〉, these tasks are easily
accomplished using no communication. In fact, even if |ψ〉
is entangled between Alice and Bob, these two tasks can
in some cases be accomplished using only a small amount
of communication. Alice and Bob both know |ψ〉 (since it
does not depend on x or y), so they can individually sample
from P (iA,iB,iC). If Alice and Bob are granted access to
shared randomness (aka public coins), they can sample from
P (iA,iB,iC) in a synchronous way (i.e., they both get the
same outcome). Computation of 〈iA,iB,iC |ψ〉 for a given
(iA,iB,iC) triple, with (iA,iC) known to Alice and iB known
to Bob, is trickier and how much communication is needed
depends on |ψ〉. For example, let HA = HA′ ⊗ HA′′ and
HB = HB ′ ⊗ HB ′′ and consider an initial state of the form

|ψ〉 = |ψA′ 〉 ⊗ |ψB ′ 〉 ⊗ |ψC〉 ⊗
∑

i

αi |i〉A′′ ⊗ |i〉B ′′ , (81)

with |i〉A′′ and |i〉B ′′ denoting computational basis vectors. This
is the most common type of initial state for quantum protocols
that make use of shared entanglement. Then

〈iA,iB,iC |ψ〉 = 〈iA′ |ψA′ 〉〈iB ′ |ψB ′ 〉〈iC |ψC〉αiA′′ δ(iA′′ ,iB ′′ ),

(82)

where δ is the Kronecker δ. This can be computed using
shared randomness and O(1) communication by making use
of a bounded error protocol for testing equality of iA′′ and iB ′′

(Example 3.13 of [26]).
Since each unitary appears twice in (80), evaluation of

the entire Markov chain is accomplished with twice as much

communication as the classical protocol, or 2T log2[dim(HC)]
bits. The algorithm also requires computing the amplitude
associated with the path, as well as the probability of the
path. However, this requires only transmission of O(T ) scalar
quantities from Alice to Bob, using O(T ) bits of commu-
nication.13 The total classical communication complexity of
this simulation protocol is therefore O(b2

maxT log2[dim(HC)]),
a factor O(b2

max) greater than that of the quantum proto-
col. Using the optimal probability distributions defined in
Appendix A, bmax is upper bounded by the product of the
interference-producing capacities of the operators in (80). The
communication complexity of the classical simulation is then

O
(
T log2[dim(HC)] max

x,y

{‖Ā(1,x)‖4
2‖B̄(2,y)‖4

2‖Ā(3,x)‖4
2

× · · · ‖Ā(T ,x)‖4
2‖M̄ (y)‖2

2

})
. (83)

The consequence of this construction is that any quantum
communication protocol exhibiting superpolynomial advan-
tage in communication complexity over any classical protocol
must have a superpolynomial value of bmax (i.e., the product of
the interference-producing capacities of the quantum operators
must be high) or must make use of an initial state not of the form
(81). There is, however, an interesting caveat to this claim. Due
to the fact that each unitary, as well as the initial state, appears
twice in (80), our classical simulation will require twice
as many communication rounds as the quantum protocol.14

Our technique, therefore, does not apply if one limits the
number of rounds. For example, the quantum protocol for the
Perm-Invariance problem described in [27] has bmax = 1 yet
is exponentially more efficient than any one-round classical
protocol.

There is a way to avoid the doubling of the number
of rounds of communication, but at a price. Consider a
one-round quantum protocol in which Alice sends a state |ψ〉
and Bob measures a projector (or POVM element) M . The
expectation value is 〈ψ |M|ψ〉 = Tr{|ψ〉〈ψ |M}. As described
in the previous section, the state |ψ〉〈ψ | and operator M

can be vectorized to give 〈ρ|M〉 = Tr{|ψ〉〈ψ |M}. By taking
p = 1 and q = ∞ instead of p = q = 2 our algorithm can

13Actually, a careful look shows that only O(1) communication is
needed. Alice can locally multiply her transition probabilities and the
amplitudes for her operators for the given path and report these O(1)
values to Bob, who is then able to complete the computation.

14Note that independent evaluations of the Markov chain can be run
in parallel; otherwise, the number of rounds would scale as O(b2

max).

022302-16



QUANTUM INTERFERENCE AS A RESOURCE FOR . . . PHYSICAL REVIEW A 90, 022302 (2014)

estimate 〈ρ|M〉 using only a left-to-right Markov chain, thus
requiring only a single round of communication, from Alice
to Bob. However, since p = 1 and q = ∞, the number of bits
communicated is O(‖ρ‖2

1‖M‖2
∞n), with n being the number

of qubits in |ψ〉. The reason we cannot efficiently simulate the
quantum protocol of [27] using this technique is that ‖ρ‖1 is
exponentially large. Interestingly, [28] provides a one-round
protocol that can estimate 〈ρ|M〉 using O(‖ρ‖2

2‖M‖2
2) bits

of classical communication. However, this again fails to
provide an efficient simulation since ‖M‖2 is exponentially
large.

C. Continuity of I and Imax

Our measures Imax of Definition 2 (which we have related
to quantum speedup) and I of Definition 1 (which we have
conjectured to be related to quantum speedup) are continuous
as a function of the states and operators of a circuit. To our
knowledge, this is the first continuous quantity that has been
identified as being a necessary resource for quantum speedup,
other resources such as Schmidt rank [1] or tree width [6,7]
being discrete valued.

An argument was put forth in [17] as to why most
continuous quantities could not be considered as a necessary
resource for quantum speedup. Although their argument
focuses on functions of the state vector, such as entanglement
entropy, rather than of the operators, it is still worthwhile
to examine whether it is applicable to the present work. We
paraphrase their argument here, modifying it slightly to fit
the circuit paradigm that we have been using in this paper.
Consider a quantum circuit with initial state |0〉⊗n, followed
by several unitaries, terminated by a final measurement having
expectation value v. Add a control to all of the operators in
the circuit, I ⊗ |0〉〈0| + U ⊗ |1〉〈1| in place of U for each
unitary and similarly for the final measurement. All operators
are controlled by an ancillary qubit initially in the state√

1 − ε|0〉 + √
ε|1〉. By repeating execution of the circuit

O(ε−2) times, the value of v can be recovered to high accuracy.
However, by setting ε to a sufficiently low value, the state
at all times during the computation will be arbitrarily close
to |0〉⊗n+1 and thus will have arbitrarily low entanglement.
The most commonly used entanglement measures take values
that depend polynomially on ε, so entanglement can be
made quite low without O(ε−2) growing to an unfeasible
magnitude. As a consequence, it is not possible to claim with-
out qualification that entanglement is necessary for quantum
speedup.

This construction has no effect on the interference-
producing capacity of the operators of the circuit since
Imax(I ⊗ |0〉〈0| + U ⊗ |1〉〈1|) = Imax(U ). For this reason,
our main result regarding Imax as a necessary resource for
quantum speedup is immune to the above argument. On
the other hand, the interference measure I of Definition 1,
which is the subject of the conjectures of Sec. VII, is
immune to this argument for a different reason. The value
of I can be exponentially high in the number of qubits or
number of unitaries of a circuit. In order to make I small,
ε would have to be exponentially small, in turn requiring
an exponentially large number of repetitions of the circuit.
So the construction of [17] is not able to significantly lower

the interference of a circuit without also losing the quantum
speedup.

D. Connection to decoherence functional

There is a close connection between the interference I of
Definition 1 and the decoherence functional introduced by
Gell-Mann and Hartle.15 The latter represents an extension of
the Born rule so as to be able to define probabilities for a se-
quence of events in a closed quantum system. Consider a family
of histories corresponding to projection onto the computational
basis at each step (i.e., after the initial state and after each uni-
tary) of a quantum circuit Tr{U (1)† · · · U (T )†MU (T ) · · · U (1)ρ}.
In this case the decoherence functional is defined as

D( j ; k) = Tr[MW ( j )ρW †(k)], (84)

where ρ is the initial state, M is a projector, and

W ( j ) = |jT 〉〈jT |UT · · · |j2〉〈j2|U (2)|j1〉〈j1|U (1)|j0〉〈j0|.
(85)

It is convenient to think of D( j ; k) as a matrix with rows
labeled by j and columns by k, and then it is not difficult to
show that∑

j

∑
k

D( j ; k) = Tr{U (1)† · · ·U (T )†MU (T ) · · · U (1)ρ}. (86)

If the consistency condition

D( j ; k) = 0 whenever j �= k (87)

is satisfied, then each diagonal element D( j ; j ) can be
interpreted (up to normalization) as the probability of the
history corresponding to j occurring. The sum of these
diagonal elements is then equal to the expectation value of the
final observable, the right side of (86), since the off-diagonal
terms vanish.

It is straightforward to show that I of Definition 1 is equal
to

I(U (1)†, . . . ,U (T )†,M,U (T ), . . . ,U (1),ρ) =
∑

j

∑
k

|D( j ; k)|.

(88)

When the consistency condition (87) is satisfied, this will be
equal to

∑
j D( j ; j ) (since the diagonal entries are always

positive), which, in turn, is equal to the right-hand side of (86).
In general, (88) gives a measure of how badly the consistency
condition is violated.

VII. CONJECTURES

We have shown that quantum speedup requires circuit
elements with a large interference-producing capacity. In this
section we formally state our conjecture that low interference
(rather than low interference-producing capacity) is sufficient

15See [29]. Here we use the notation of Chaps 7, 8, and 10 of [30],
which is more convenient for our purposes because it employs the
Schrödinger rather than the Heisenberg representation.
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to ensure efficient simulation of a quantum circuit. In general,
we are interested in circuits of arbitrary length, but for
concreteness consider the task of estimating sums of the form

〈ψ |U †MU |ψ〉 =
∑
ijkl

V (i,j,k,l), (89)

V (i,j,k,l) = ψ∗
i U

†
ijMjkUklψl. (90)

As discussed in Sec. II, this sum can be estimated by
considering a number of randomly chosen paths π = (i,j,k,l).
If these paths are chosen according to the optimal probability
distribution Ropt(π ) of (10), then the number of samples
required to estimate (89) to within error ε (with probability
δ of exceeding this error bound) is O( log2(δ−1)ε−2I2), where
I = 〈ψ̄ |Ū †M̄Ū |ψ̄〉 is the interference of the circuit as given
by Definition 1. The difficulty with this strategy is that we
do not know how to efficiently sample paths according to the
distribution Ropt(π ), or anything sufficiently close to it. In other
words, we do not have a strategy for finding the most relevant
paths. However, we conjecture that there is a way.

Loosely speaking, we conjecture that a quantum circuit
can be simulated in time poly( log2(δ−1)ε−1I) as long as the
initial state and operators meet some computational tractability
conditions, analogous to conditions (c) and (d) of Definitions 3
and 4 . Exactly which tractability conditions should be required
is difficult to know ahead of time for the following reason.
In Secs. II and III a simulation algorithm was developed,
which required certain tasks to be performed involving the
initial state and the operators of the circuit being simulated.
The need to efficiently perform these tasks led directly to the
definition of conditions (c) and (d). Now we conjecture a better
algorithm, whose specific structure is not known ahead of
time. Not knowing the specifics of this conjectured algorithm,
it is not clear what should be required in place of conditions
(c) and (d). The intuition is that we assume any necessary
task involving any individual operator in the circuit can be
efficiently performed, but we make no assumption regarding
the interactions between several operators.

This can be made more precise. Section IV C (on query
complexity) and Sec. VI B (on communication complexity)
each provided a framework in which the computational
tractability conditions (c) and (d) were not relevant. We could
use either of these to form a conjecture that avoids the need
to state similar conditions. Of these two, communication
complexity is representative of a certain algorithmic structure.
Consider algorithms that involve dealing with the elements of
a circuit one at a time. For instance, when estimating (89) one
could imagine carrying out some calculations involving |ψ〉,
making notes of the result, carrying out further calculations
involving U , and so on. The time complexity of such an
algorithm is lower bounded by the amount of notes taken
and the number of times attention is shifted from one circuit
element to another. This can be quantified by imagining that
each of |ψ〉, U , and M are stored in separate rooms, and
considering how many notes need to be carried back and forth
between the rooms by somebody who seeks to estimate (89).
Equivalently, stated in terms of communication complexity,
imagine that Alice has |ψ〉, Bob has U , and Charlie has M .
How much communication is needed in order to estimate (89)?

We conjecture that the amount of communication needed is
polynomial in the interference of the circuit.

Conjecture 1. Suppose that Alice has a classical description
of a vector |ψ〉 of dimension N , Bob has a description of
an N × N POVM element M , and T other parties have
descriptions of N × N unitary matrices U (1), . . . ,U (T ). Then,
with probability less than δ of exceeding the error bound, the
value of

〈ψ |U (1)† · · · U (T )†MU (T ) · · ·U (1)|ψ〉 (91)

can be estimated to within additive error ε using
poly( log2(δ−1)ε−1 max{1,I} log2(N )) bits of classical com-
munication where I is the interference of (91) as given by
Definition 1.

The reader may worry that this communication scenario has
little bearing on the problem of simulating quantum circuits;
however, it is expected that any proof in the positive of this
conjecture will be adaptable into an algorithm that can be
used in the computation context. Indeed, the Markov chain
technique of Sec. III was first developed as a solution to a
problem resembling Conjecture 1.

We have been unable to prove this conjecture even for the
simple case where there are no unitary operations and the goal
is to estimate the expectation value 〈ψ |M|ψ〉. We present this
simplified case formally, as it deserves some discussion.

Conjecture 2. Conjecture 1 holds in the case T = 0. In
other words, suppose that Alice has a classical description
of a vector |ψ〉 of dimension N and Bob has a classical
description of an N × N POVM element M . Then, with
probability less than δ of exceeding the error bound, the
value 〈ψ |M|ψ〉 can be estimated to within additive error ε

using poly( log2(δ−1)ε−1 max{1,I} log2(N )) bits of classical
communication, where I = 〈ψ̄ |M̄|ψ̄〉 is the interference of
〈ψ |M|ψ〉 as given by Definition 1.

Conjecture 2, being weaker than Conjecture 1, should be
easier to prove true. However, it would probably be very
difficult to prove false since a proof that estimating 〈ψ |M|ψ〉
requires a large amount of classical communication in the
general case (not assuming low interference) remained open
for 11 years [25].

Conjecture 2 would be false if only one round of com-
munication was allowed, from Alice to Bob. In [27] the
Perm-Invariance problem was defined and shown to be solved
efficiently by a one-round quantum protocol; however, no
efficient one-round classical protocol exists. The quantum
protocol has Bob measuring a POVM element M on a state
|ψ〉 sent by Alice and this protocol is low interference,
I = 〈ψ̄ |M̄|ψ̄〉 � 1. However, there can be no efficient one-
round classical protocol for estimating 〈ψ |M|ψ〉, since such
a protocol would efficiently solve Perm Invariance. This
does not provide a counterexample to Conjecture 2 since
we allow multiple rounds of communication, and there is,
indeed, an efficient classical two-round protocol, which can
be constructed using the technique of Sec. VI B.

A potential problem with Conjecture 1 is that the unitary
portion of the circuit could create very large interference which
could be masked by the final measurement. For example,
consider the initial state |ψ〉 = |0〉⊗n, acted upon by an
arbitrary circuit involving all but the first qubit, followed by
measurement of the observable M = |1〉〈1| ⊗ I⊗n−1. For this
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circuit I = 0 so Conjecture 1 says the expectation value can
be computed in poly( log2(δ−1)ε−1n) time, as indeed it can in
this case. However, it seems there may be similar situations
in which I is small because of the final measurement, but the
circuit is nevertheless difficult to simulate. For this reason we
provide an alternate definition that quantifies the interference
just before the final measurement, computed by substituting
M = I in Definition 1. This will be used to form a weaker
conjecture.

Definition 6. The interference of a quantum circuit without
a measurement, U (T ) · · · U (1)ρU (1)†, . . . ,U (T )†, is

J (U (T ), . . . ,U (1),ρ) = Tr{Ū (T ) · · · Ū (1)ρ̄Ū (1)† · · · Ū (T )†}.
(92)

In other words, J is the amount by which normalization is
spoiled when destructive interference is turned into construc-
tive interference by means of the absolute value applied to
each path. This is nondecreasing in time,

J (U (T ), . . . ,U (1),ρ) � J (U (T −1), . . . ,U (1),ρ), (93)

and J = 1 if all of the unitaries are permutation matrices as
in a classical computation. We conjecture that a circuit can be
efficiently simulated whenJ is small. SinceJ does not see the
final measurement M , we need an extra constraint. We require
M to be a projector diagonal in the computational basis.

Conjecture 3. Suppose that Alice has a classical description
of a vector |ψ〉 of dimension N , Bob has a description of
an N × N projector M that is diagonal in the computational
basis, and T other parties have descriptions of N × N unitary
matrices U (1), . . . ,U (T ). Then, with probability less than δ of
exceeding the error bound, the value of

〈ψ |U (1)† · · ·U (T )†MU (T ) · · · U (1)|ψ〉 (94)

can be estimated to within additive error ε using
poly( log2(δ−1)ε−1J log2(N )) bits of classical communica-
tion where J = J (U (T ), . . . ,U (1),|ψ〉〈ψ |) is the interference
of (94) just before the final measurement, as given by
Definition 6.

VIII. SUMMARY AND OPEN PROBLEMS

We have provided an algorithm for efficiently simulating
quantum circuits in which each operator has low interference-
producing capacity. Therefore, interference-producing capac-
ity is identified as a resource necessary for quantum speedup.
The runtime of the simulation is quadratic in the interference-
producing capacities of each operator, so it is typically
exponentially slow in the length of the circuit. However,
for constant-length circuits making use of operators with
low interference-producing capacity (many such operators are
listed in Sec. V), the simulation runs in time polynomial in the
number of qubits.

In general, our technique is able to estimate expres-
sions of the form 〈ψ |A · · · Z|φ〉, of which quantum circuits
〈ψ |U (1)† · · · U (T )†MU (T ) · · · U (1)|ψ〉 are a special case, in
time proportional to ‖ψ‖2

p‖Ā‖2
q · · · ‖Z̄‖2

q‖φ‖2
q for any 1/p +

1/q = 1, where a bar over a vector or operator denotes
entrywise absolute value in the computational basis and where
‖ · ‖p denotes the �p norm for vectors and the induced

norm for operators. The choice p = q = 2 is most relevant
for quantum mechanics, and ‖Ā‖2 gives the interference-
producing capacity of A. The technique was also generalized
to expressions of the form Tr{A · · · Zσ }.

We formalized the conditions necessary for efficient simu-
lation by introducing two definitions: EHT for the initial state σ

and EPS for the operators A, . . . ,Z. These definitions consist
of requirements having to do with the number of samples
needed as well as requirements having to do with efficient
computability. The latter requirements can for the most part
be ignored if one is concerned with query complexity or
communication complexity rather than time complexity. A
wide range of initial states and operators are EHT or EPS;
many examples are listed in Sec. V. In addition to discussing
circuits which can be efficiently simulated, we gave several
examples of circuits which we cannot efficiently simulate and
explained why.

The choice p = q = 2 makes the most sense for simulating
expressions of the form 〈ψ |U †V †MV U |ψ〉. However, using
the Wigner representation this expression can also be written
as 〈M|V U |ρ〉, and here the choice p = ∞ and q = 1 works
well, allowing efficient simulation of circuits that consist
mainly of Clifford operations. We showed how our simulation
technique can be applied to communication problems, with the
conclusion that there can be no superpolynomial advantage of
quantum communication over classical communication unless
the quantum protocol uses operations with high interference-
producing capacity. Curiously, this result does not apply
to one-round communication, since our simulation requires
doubling the number of rounds. Indeed, there is an example of a
one-round quantum protocol with low interference-producing
capacity which is exponentially more efficient than any one-
round classical protocol.

Finally, we would like to suggest three open questions.
(1) Can it be shown that interference, rather than

interference-producing capacity, is necessary for quantum
speedup? In Sec. VII we formalized a series of conjectures on
this topic, using the framework of communication complexity.

(2) While we have shown interference-producing capacity
to be a necessary resource for quantum speedup, it is also fruit-
ful to investigate sufficient resources for quantum speedup.
For example, Ref. [31], building on the work of [32], showed
that any operator U having the property that maxij |Uij | is
sufficiently small can be used to exhibit exponential quantum
speedup. Can the gap between necessary (e.g., our result) and
the sufficient (e.g., [31]) conditions for quantum speedup be
narrowed?

(3) Can our technique be combined with existing Monte
Carlo or other techniques to provide an improved simulation
algorithm for systems of physical interest? Our algorithm in
its present form is not likely to be more efficient than existing
techniques for such problems.
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APPENDIX A: GENERALIZED SINGULAR VECTORS

The goal of this Appendix is to determine the minimum
value of b such that a given operator A is EPSp(b,f ) and
bounds on b such that an operator σ is EHTp(b,f ). We show
that conditions (a) and (b) of Definition 3 require b � ‖Ā‖q

and construct probability distributions that satisfy this with
equality. Whether these also satisfy conditions (c) and (d)
of Definition 3 needs to be determined on a case-by-case
basis. Note that when p = q = 2 we have ‖Ā‖2 = Imax(A),
the interference-producing capacity of A. The end result of
this appendix is the following theorem.16

Theorem 9. Let A and σ be matrices, p,q ∈ [1,∞], and
1/p + 1/q = 1. Then the following conditions apply.

(a) It is not possible to satisfy conditions (a) and (b) of
Definition 3 unless b � ‖Ā‖q . The same goes for (a) and (b)
of Definition 4 since they are stricter (i.e., b � ‖σ̄‖q).

(b) It is possible to satisfy conditions (a) and (b) of
Definition 3 with b = ‖Ā‖q . The k index is not needed (i.e.,
k ∈ K = {0} and αmnk = Amn).

(c) If one is concerned with query complexity rather than
time complexity, and if A is not defined in terms of an oracle,
then conditions (c) and (d) of Definition 3 can be ignored, as
explained in Sec. IV C. Therefore, A is EPSp(‖Ā‖q,0).

(d) Let w be the smallest value such that σ/w is a convex
combination of normalized dyads. That is to say, let

w = min

{∑
i

|si ||si ∈ C,σ =
∑

i

siv
(i)u(i),

‖u(i)‖p = ‖v(i)‖q = 1

}
. (A1)

It is possible to satisfy conditions (a) and (b) of Definition 4
with b = w (although this is not necessarily the smallest
possible value of b). The k index is not needed (i.e., k ∈ K =
{0} and αmnk = σmn). Note that when p = q = 2, w is the trace
norm of σ .

(e) If one is concerned with query complexity rather than
time complexity, and if σ is not defined in terms of an oracle,
then conditions (c) and (d) of Definition 4 can be ignored.
Therefore, σ is EHTp(w,0) (although this is not necessarily
the smallest possible value of b).

We present immediately the proofs of parts (a), (d), and (e).
Parts (b) and (c) will require more preliminary discussion.

Proof of Theorem 9(a) . Let A be an M × N matrix. Suppose
conditions (a) and (b) of Definition 3 are satisfied by some b, K ,
αmnk , P (n,k|m), and Q(m,k|n). Then, for all m ∈ {1, . . . ,M},
n ∈ {1, . . . ,N}, and k ∈ K , we have Amn = ∑

k′∈K αmnk′ and

|αmnk|
P (n,k|m)1/pQ(m,k|n)1/q

� b. (A2)

Rearranging this expression yields

|αmnk| � b · P (n,k|m)1/pQ(m,k|n)1/q . (A3)

Let u and v be non-negative vectors satisfying ‖u‖p = ‖v‖q =
1 and uĀv = ‖Ā‖q (that such vectors exist is well known,

16In the case p = q = 2, claims (a) and (b) of Theorem 9 are similar
to results of [33], although the techniques are different.

but is also a consequence of Theorem 10 ). Multiply both sides
of (A3) by umvn and sum over m,n,k to get∑

mnk

um|αmnk|vn

� b
∑
mnk

umP (n,k|m)1/pQ(m,k|n)1/qvn (A4)

= b
∑
mnk

[
P (n,k|m)up

m

]1/p[
Q(m,k|n)vq

n

]1/q
(A5)

� b
∑
mnk

[
1

p
P (n,k|m)up

m + 1

q
Q(m,k|n)vq

n

]
(A6)

= b
∑
m

1

p
up

m +
∑

n

1

q
vq

n (A7)

= b(1/p + 1/q) (A8)

= b, (A9)

where (A6) follows from the inequality of arithmetic and
geometric means. We now place a lower bound on the left-hand
side. By the triangle inequality,

∑
k |αmnk| � |∑k αmnk| =

|Amn| for all m,n. Since u and v are non-negative,

b �
∑
mnk

um|αmnk|vn (A10)

�
∑
mn

um|Amn|vn (A11)

= ‖Ā‖q . (A12)

�
Proof of Theorems 9(d) and 9(e) . Let σ be an M × N

matrix. Let si , u(i), and v(i) take values achieving the minimum
in (A1). By absorbing a phase into u(i) we can assume that the si

are positive. We then have w = ∑
i si , ‖u(i)‖p = ‖v(i)‖q = 1,

and σ = ∑
i siv

(i)u(i). Define

P (n) =
∑

i

si

w

∣∣u(i)
n

∣∣p, (A13)

Q(m) =
∑

i

si

w

∣∣v(i)
m

∣∣q . (A14)

Since u(i) and v(i) are normalized for all i, and since
∑

i si/w =
1, these P (n) and Q(m) are convex combinations of prob-
ability distributions and hence are probability distributions
themselves.

For any m ∈ {1, . . . ,M},n ∈ {1, . . . ,N}, Hölder’s inequal-
ity gives

∑
i

s
1/p

i

w1/p

∣∣u(i)
n

∣∣ s
1/q

i

w1/q

∣∣v(i)
m

∣∣

�
[∑

i

(
s

1/p

i

w1/p

∣∣u(i)
n

∣∣)p]1/p [∑
i

(
s

1/q

i

w1/q

∣∣v(i)
m

∣∣)q]1/q

(A15)

⇒
∑

i

si

w

∣∣u(i)
n v(i)

m

∣∣ �
[∑

i

si

w

∣∣u(i)
n

∣∣p]1/p [∑
i

si

w

∣∣v(i)
m

∣∣q]1/q

(A16)
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⇒
∣∣∣∣∣
∑

i

si

w
u(i)

n v(i)
m

∣∣∣∣∣ � P (n)1/pQ(m)1/q (A17)

⇒ |σmn|
w

� P (n)1/pQ(m)1/q (A18)

⇒ |σmn|
P (n)1/pQ(m)1/q

� w. (A19)

Therefore, conditions (a) and (b) of Definition 4 are satisfied
with αmn0 = σmn and b = w.

If one is concerned with query complexity rather than time
complexity, and if σ is not defined in terms of an oracle, then
conditions (c) and (d) of Definition 4 are satisfied trivially with
f = 0 since no oracle queries are needed in order to carry out
the required operations. So σ is EHTp(w,0). �

We now begin construction of the probability distributions
satisfying conditions (a) and (b) of Definition 3 with b = ‖Ā‖q .
The bulk of the discussion concerns the p ∈ (1,∞) case; the
reader interested only in p = 1 or p = ∞ may skip directly to
the second half of the proof of Theorems 9(b) and 9(c) at the
end of this section.

It suffices to let k take only a single value, say k = 0, and
to set αmn0 = Amn. Making this simplification, and plugging
in the desired bound b = ‖Ā‖q , conditions (a) and (b) of
Definition 3 become

max
mn

{ |Amn|
P (n|m)1/pQ(m|n)1/q

}
� ‖Ā‖q . (A20)

It will be convenient to derive the probability distributions
from a pair of vectors. With A being an M × N matrix, let u
be a positive vector of dimension M and let v be a positive
vector of dimension N . Taking the probability distributions

P (n|m) = |Amn|vn/[Āv]m, (A21)

Q(m|n) = |Amn|um/[Āu]n, (A22)

brings (A20) to the form

max
mn

{(
[Āv]m

vn

)1/p ( [Āu]n
um

)1/q
}

� ‖Ā‖q . (A23)

Consider for a moment the case p = q = 2. If Ā is not block
diagonal (even under permutations of rows and columns) then
the left and right singular vectors of Ā will be positive. Taking
these for u and v it is easy to see that (A23) holds. If p �= 2 we
can use a sort of generalization of singular vectors: We show
the existence of positive vectors satisfying

(Āu)n � vq/p
n ‖Ā‖q, (A24)

(Āv)m � up/q
m ‖Ā‖q . (A25)

These vectors are easily seen to satisfy (A23). If Ā is not block
diagonal then u and v can be computed using the power method
[34,35] since Ā is non-negative. In this case the inequalities
(A24) and (A25) become equalities. On the other hand, if Ā is
block diagonal then u and v can be built from the generalized
left and right singular vectors of each block. The rest of this
section is devoted to proving the existence of such vectors.

First we need some basic facts about �p norms. If v is a
real vector normalized under the �2 norm, then u = v is the

unique �2-normalized vector with the property that uv = 1.
This generalizes to arbitrary �p norms, with some adaptation.

Definition 7. Let p,q ∈ [1,∞] and 1/p + 1/q = 1. Let
v ∈ �q . Any u ∈ �p satisfying the conditions uv = ‖v‖q and
‖u‖p = 1 is called a support functional of v.

Lemma 2. Let p,q ∈ (1,∞) and 1/p + 1/q = 1. For any
nonzero v ∈ �q , the vector u ∈ �p defined by

ui = ‖v‖−q/p
q |vi |q/psgn(vi) (A26)

is the unique support functional of v. Similarly, for any nonzero
u ∈ �p, the vector v ∈ �q defined by

vi = ‖u‖−p/q
p |ui |p/qsgn(ui) (A27)

is the unique support functional of u.
Proof. Uniqueness of the support functional when 1 <

p < ∞ follows from strict convexity of the norm (Chap. 11
of [36]). That the specific vectors (A26) and (A27)
are support functionals is easily verified through direct
computation [37]. �

We now describe generalized singular vectors. Ordinary
(p = 2) left and right singular vectors u and v satisfy ‖Av‖2 =
‖Au‖2 = ‖A‖2, furthermore u is the support functional of
Av (since p = 2 this just means that u ∝ Av), and v is the
support functional of Au. These properties generalize to
arbitrary �p norms, as we now show.

Theorem 10. Let p,q ∈ [1,∞] and 1/p + 1/q = 1. Let A

be a matrix. Then there are vectors u ∈ �p and v ∈ �q such
that

(a) ‖u‖p = ‖v‖q = 1;
(b) uAv = ‖Au‖p = ‖Av‖q = ‖A‖q = ‖A‖p;
(c) u is a support functional of Av;
(d) v is a support functional of Au;
(e) if A is non-negative, then u and v are non-negative.
Proof. Let v be a vector satisfying ‖v‖q = 1 and ‖Av‖q =

‖A‖q . Such a vector is guaranteed to exist (see Definition 5.6.1
of [38]). Let u be a support functional of Av. By the definition
of a support functional, ‖u‖p = 1, so claims (a) and (c) have
been proved. With these two vectors defined, we have

‖A‖q = ‖Av‖q (A28)

= uAv (u is the support functional of Av) (A29)

= v(Au) (A30)

� ‖v‖q‖Au‖p (Hölder′s inequality) (A31)

= ‖Au‖p (A32)

� ‖A‖p‖u‖p (A33)

= ‖A‖p. (A34)

By symmetry we also have ‖A‖p � ‖A‖q ; therefore, the
inequalities become equalities. Claim (b) is proved. Since
‖v‖q = 1 and v(Au) = ‖Au‖p, claim (d) is proved as
well.

To prove claim (e), assume that A is non-negative. Then
‖ū‖p = ‖v̄‖q = 1 and ‖Av̄‖q � ūAv̄ � uAv = ‖A‖q . It
follows that ‖Av̄‖q = ‖A‖q ; thus, ū is a support functional of
Av̄. Therefore, ū and v̄ could have been taken instead of u and
v in the first steps of this proof, justifying the claim that u and
v can be chosen to be non-negative. �
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The Perron-Frobenius theorem states that an irreducible
non-negative matrix has a first eigenvector that has positive
components. A similar statement holds for the first singular
vector: If Ā is a non-negative matrix that is not block diagonal,
then the left and right singular vectors associated with the
largest singular value of Ā have positive entries. This is true
also for our generalized singular vectors, as we now show.

Definition 8. A matrix A is block diagonal if there are
permutation matrices σ and τ such that A can be decomposed
as Ā = σ(A(1) ⊕ · · · ⊕ A(L) ⊕ 0M×N )τ , where the A(l) are
nonzero and have nonvanishing dimension, and at least one
of the inequalities L > 1, M > 0, or N > 0 holds.17 A matrix
is not block diagonal if no such decomposition is possible. In
particular, a matrix that is not block diagonal has no totally
zero rows or columns.

Lemma 3. Let q ∈ (1,∞). Let Ā be a non-negative matrix
that is not block diagonal. Let v be a nonzero, non-negative
vector that maximizes ‖Āv‖q/‖v‖q . Then v is, in fact, a
positive vector (has no zero entries).

Proof. Let Z = {i : vi = 0}. This will be a proof by
contradiction; suppose that v has at least one zero entry,
so that Z is nonempty. Since v �= 0, the complement ZC is
nonempty; therefore, Z and ZC partition the entries of v into
two nonempty sets. Also, Z and ZC can be considered as a
partition of the columns of Ā. Since Ā is not block diagonal,
there must be indices i ∈ Z, j /∈ Z, and k such that Āki > 0
and Ākj > 0. We show that v cannot maximize ‖Āv‖q/‖v‖q

by showing that v is not a critical point of ‖Āv‖q/‖v‖q or,
equivalently, of ‖Āv‖q

q/‖v‖q
q . Without loss of generality, take

‖v‖q = 1. Let ı̂ be the unit vector corresponding to i. We have

∂

∂α

‖Ā(v + αı̂)‖q
q

‖v + αı̂‖q
q

∣∣∣∣
α=0

=
(

∂
∂α

‖Ā(v + αı̂)‖q
q

) ‖v‖q
q − ‖Āv‖q

q

(
∂
∂α

‖v + αı̂‖q
q

)
‖v‖2q

q

∣∣∣∣∣
α=0

(A35)

= ∂

∂α
‖Ā(v + αı̂)‖q

q

∣∣
α=0 (A36)

= ∂

∂α

∑
l

([Āv]l + αĀli)
q |α=0 (A37)

=
∑

l

qĀli[Āv]q−1
l (A38)

� qĀki[Āv]q−1
k (A39)

� qĀki(Ākj vj )q−1 (A40)

> 0. (A41)

Equality (A36) follows from ‖v‖q = 1 as well as (vi = 0 ⇒
∂‖v + αı̂‖q

q/∂α = 0). Inequality (A39) follows from each
term of the previous summation being non-negative. Inequality
(A40) follows from each term of the sum [Āv]k = ∑

n Āknvn

being non-negative. �

17If M > 0,N = 0, then ⊕0M×N adds M rows of zeros. Similarly,
if M = 0,N > 0 then ⊕0M×N adds N columns of zeros.

Theorem 11. Let p,q ∈ (1,∞) and 1/p + 1/q = 1. Let Ā

be a non-negative matrix that is not block diagonal. Then there
are positive vectors u and v satisfying

(Āu)n = vq/p
n ‖Ā‖q, (A42)

(Āv)m = up/q
m ‖Ā‖q . (A43)

Note that if p = q = 2, then u and v will be the left and right
singular vectors associated with the largest singular value of
Ā.

Proof. Theorem 10 guarantees the existence of non-negative
vectors u and v that satisfy ‖u‖p = ‖v‖q = 1 and uĀv =
‖Ā‖q = ‖Ā‖p, with u being the support functional of Av

and v being the support functional of Au. Lemma 2 gives the
exact form of these support functionals:

um = ‖Āv‖−q/p
q (Āv)q/p

m sgn(Āv), (A44)

vn = ‖Āu‖−p/q
p (Āu)p/q

n sgn(Āu). (A45)

Since Ā, u, and v are non-negative, the sgn functions disappear.
Theorem 10 gives ‖Āv‖q = ‖Āu‖p = ‖Ā‖q . With these
simplifications, we get (A42) and (A43). That u and v have
nonzero entries follows from Lemma 3 . �

We now generalize Theorem 11 to matrices that are not
block diagonal. This is done by applying Theorem 11 to each
individual block of the matrix. Each block of Ā may have a
different operator norm, but each of these is upper bounded
by ‖Ā‖q . For this reason, we end up with an inequality rather
than an equality when generalizing (A42) and (A43).

Theorem 12. Let p,q ∈ (1,∞) and 1/p + 1/q = 1. Let Ā

be a non-negative matrix that can possibly be block diagonal
and that may have some totally zero rows or columns. Then
there are positive vectors u and v satisfying

(Āu)n � vq/p
n ‖Ā‖q, (A46)

(Āv)m � up/q
m ‖Ā‖q . (A47)

Proof. Let σ and τ be permutation matrices that bring out
the block structure of Ā, and let A(1), . . . ,A(L) be the blocks.
Specifically, suppose σ(A(1) ⊕ · · · ⊕ A(L) ⊕ 0M×N )τ = Ā,
where the A(1) · · · A(L) matrices are not block diagonal and
0M×N is an M-by-N matrix of zeros (if there is no zero
block, then just take M = N = 0). It is easy to see that
‖A(l)‖q � ‖Ā‖q for all l ∈ {1, . . . ,L}.

By Theorem 11, there are positive vectors u(1), . . . ,u(L)

and v(1), . . . ,v(L) such that

(A(l)u(l))n = v(l)q/p
n ‖A(l)‖q (A48)

� v(l)q/p
n ‖Ā‖q, (A49)

(A(l)v(l))m = u(l)p/q
m ‖A(l)‖q (A50)

� u(l)p/q
m ‖Ā‖q, (A51)

for all l ∈ {1, . . . ,L}. Define u = σ(u(1) ⊕ · · · ⊕ u(L) ⊕ 1M )
and v = τ(v(1) ⊕ · · · ⊕ v(L) ⊕ 1N ), where 1M and 1N are the
all-ones vectors of lengths M and N , respectively. Then (A48)–
(A51) imply (A46) and (A47). Since the u(1), . . . ,u(L) and
v(1), . . . ,v(L) are positive, u and v are positive. �
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We are now ready to complete the proof of Theorem 9.
Proof of Theorems 9(a) and 9(b). Let A be a matrix.

Set K = {0} and αmn0 = Amn. Clearly, condition (a) of
Definition 3 is satisfied.

Consider the case p ∈ (1,∞). Let u and v be positive
vectors satisfying (A46) and (A47). The existence of such
vectors is guaranteed by Theorem 12. Define the probability
distributions

P (n|m) = |Amn|vn/[Āv]m, (A52)

Q(m|n) = |Amn|um/[Āu]n. (A53)

These satisfy condition (b) of Definition 3 with b = ‖Ā‖q

since

max
mnk

{ |αmnk|
P (n|m)1/pQ(m|n)1/q

}

= max
mn

{ |Amn|
P (n|m)1/pQ(m|n)1/q

}
(A54)

= max
mn

{(
[Āv]m

vn

)1/p ( [Āu]n
um

)1/q
}

(A55)

� max
mn

⎧⎨
⎩
(

u
p/q
m ‖Ā‖q

vn

)1/p (
v

q/p
n ‖Ā‖q

um

)1/q
⎫⎬
⎭ (A56)

= ‖Ā‖q . (A57)

Now consider the case p = 1, q = ∞ (the case p = ∞,
q = 1 follows by a symmetrical argument). Define P (n|m) =
|Amn|/

∑
n′ |Amn′ | and define Q(m|n) arbitrarily. Condition (b)

of Definition 3 is satisfied with b = ‖Ā‖∞ since

max
mnk

{ |αmnk|
P (n|m)1/pQ(m|n)1/q

}

= max
mn

{ |Amn|
P (n|m)1Q(m|n)0

}
(A58)

= max
mn

{ |Amn|
|Amn|/

∑
n′ |Amn′ |

}
(A59)

� ‖Ā‖∞. (A60)

If one is concerned with query complexity rather than time
complexity, and if A is not defined in terms of an oracle, then
conditions (c) and (d) of Definition 3 are satisfied trivially with
f = 0 since no oracle queries are needed in order to carry out
the required operations. So A is EPSp(‖Ā‖q,0). �

APPENDIX B: PROOFS FOR SEC. IV

In this section we prove Theorem 4 and Lemma 1. The
proofs are conceptually rather simple; however, they are
notationally tedious. Since we will at times be manipulating
infinite series, we begin by showing that these series converge
absolutely. This will be useful, since absolutely convergent
series allow permutation of terms and reordering of double
summations.

Lemma 4. Let b and αmnk satisfy condition (b) of
Definition 3. Then series

∑
k∈K αmnk is absolutely convergent

for all m,n, and
∑

k∈K |αmnk| � b.

Proof. Rearranging (55) of condition (b) gives, for all
m,n,k,

|αmnk| � bP (n,k|m)1/pQ(m,k|n)1/q (B1)

� b[P (n,k|m)/p + Q(m,k|n)/q]. (B2)

Therefore,∑
k∈K

|αmnk| � b
∑
k∈K

[P (n,k|m)/p + Q(m,k|n)/q] (B3)

= b[P (n|m)/p + Q(m|n)/q] (B4)

� b (B5)

< ∞. (B6)

�
We now prove that linear combinations of EPS operators are

EPS. Theorem 4(a), regarding sums of EPS operators, follows
as a corollary. This will also be used to prove Theorem 4 (c),
regarding exponentials of EPS operators.

Theorem 13. Linear combination of EPS. Let L be a finite or
countable set. For l ∈ L, let sl be a complex number and let A(l)

be an M × N matrix that is EPSp(bl,fl) for some fl and bl . Let
W (l) be a probability distribution18 on l such that W (l) can be
sampled from, and sl/W (l) computed, in average time O(f0).
Let b := maxl{|sl|bl/W (l)} < ∞ and f := f0 +∑

l W (l)fl .
Then

∑
l slA

(l) is EPSp(b,f ).
Proof. For each l ∈ L, A(l) is EPSp(bl,fl), so there are Kl ,

α
(l)
mnk , Pl(n,k|m), and Ql(m,k|n) satisfying Definition 3. Let

K = L × ∪l∈LKl . For (l,k) ∈ K define

αmn(l,k) =
{
slα

(l)
mnk if k ∈ Kl,

0 otherwise.
(B7)

∑
(l,k)∈K αmn(l,k) is absolutely convergent, so that it can be

expressed as a double sum. By Lemma 4,
∑

k∈Kl
|α(l)

mnk| � bl

for all l ∈ L; therefore,∑
(l,k)∈K

|αmn(l,k)| =
∑
l∈L

|sl|
∑
k∈Kl

∣∣α(l)
mnk

∣∣ (B8)

�
∑
l∈L

|slbl| (B9)

� b. (B10)

Since b < ∞ by assumption, the series
∑

(l,k)∈K αmn(l,k) is
absolutely convergent. We can then decompose it as a double
series, ∑

(l,k)∈K

αmn(l,k) =
∑
l∈L

sl

∑
k∈Kl

α
(l)
mnk (B11)

=
∑
l∈L

slA
(l), (B12)

showing that condition (a) of Definition 3 is satisfied.

18The lowest b is obtained when W (l) is proportional to |sl |bl .
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Define the probability distributions

P (n,(l,k)|m) =
{
W (l)Pl(n,k|m) if k ∈ Kl,

0 otherwise, (B13)

Q(m,(l,k)|n) =
{
W (l)Ql(m,k|n) if k ∈ Kl,

0 otherwise. (B14)

We now show that condition (b) holds. Let m ∈ {1, . . . ,M},
n ∈ {1, . . . ,N}, and (l,k) ∈ K . We need only consider k ∈ Kl

since otherwise αmn(l,k) vanishes:

|αmn(l,k)|
[P (n,(l,k)|m)]1/p[Q(m,(l,k)|n)]1/q

=
∣∣slα

(l)
mnk

∣∣
[W (l)Pl(n,k|m)]1/p[W (l)Ql(m,k|n)]1/q

(B15)

= |sl|
W (l)

∣∣α(l)
mnk

∣∣
[Pl(n,k|m)]1/p[Ql(m,k|n)]1/q

(B16)

� |sl|bl/W (l) (B17)

� b. (B18)

Condition (c) requires that the distribution P (n,(l,k)|m)
can be sampled from, and αmn(l,k)/P (n,(l,k)|m) and
αmn(l,k)/Q(m,(l,k)|n) can be computed, in average time
O(f ) = O(f0 +∑

l W (l)fl). This can be accomplished as
follows.

(i) Draw l according to the distribution W (l) and compute
sl/W (l). This can be done in average time O(f0).

(ii) Draw n,k according to the distribution Pl(n,k|m) and
compute α

(l)
mnk/Pl(n,k|m) and α

(l)
mnk/Ql(m,k|n). This can be

done in average time O(fl).
(iii) The quantities αmn(l,k)/P (n,(l,k)|m) and

αmn(l,k)/Q(m,(l,k)|n) can be directly computed from
(B7), (B13), and (B14) in time O(1) given the quantities that
have been computed in the previous two steps.

The average time needed for a given l is O(f0 + fl);
therefore, the average time needed given that l is drawn ac-
cording to W (l) is O(f ) = O(f0 +∑

l W (l)fl). Condition (c)
is satisfied. Condition (d) follows from a symmetric argument.
�

Proof of Theorem 4(a). This follows directly from Theorem
13. Specifically, apply Theorem 13 with L = {A,B}, sA =
sB = 1, W (A) = bA/(bA + bB), and W (B) = bB/(bA + bB).
Then b = maxl{|sl|bl/W (l)} = bA + bB and f = O(1) +∑

l W (l)fl = O(max{bA,bB}). �
Proof of Theorem 4(b). Since A is EPSp(bA,fA), there are

KA, α
(A)
lmk , PA(m,k|l), and QA(l,k|m) satisfying Definition 3

with l ∈ {1, . . . ,L}, m ∈ {1, . . . ,M}, and k ∈ KA. Likewise,
since B is EPSp(bB,fB), there are KB , α

(B)
mnk , PB(n,k|m), and

QB(m,k|n) satisfying Definition 3 with m ∈ {1, . . . ,M}, n ∈
{1, . . . ,N}, and k ∈ KB .

Let K = KA × KB × {1, . . . ,M} and

αln(k′,k′′,m) = α
(A)
lmk′α

(B)
mnk′′ . (B19)

We first show that
∑

(k′,k′′,m)∈K αln(k′,k′′,m) is absolutely con-
vergent, so that it can be expressed as a double series. By
Lemma 4,

∑
k′∈KA

|α(A)
lmk′ | � bA and

∑
k′′∈KB

|α(B)
mnk′′ | � bB ;

therefore, ∑
(k′,k′′,m)∈K

|αln(k′,k′′,m)|

=
∑

m∈{1,... ,M}

∑
k′∈KA

∣∣α(A)
lmk′

∣∣ ∑
k′′∈KB

∣∣α(B)
mnk′′

∣∣ (B20)

� MbAbB (B21)

� ∞. (B22)

Being absolutely convergent,
∑

(k′,k′′,m)∈K αln(k′,k′′,m) can be
expressed as a double series, giving∑

(k′,k′′,m)∈K

αln(k′,k′′,m)

=
∑

m∈{1,... ,M}

∑
k′∈KA

α
(A)
lmk′

∑
k′′∈KB

α
(B)
mnk′′ (B23)

=
∑
m

AlmBmn (B24)

= (AB)ln, (B25)

so condition (a) of Definition 3 is satisfied.
Define the probability distributions

P (n,(k′,k′′,m)|l) = PA(m,k′|l)PB(n,k′′|m), (B26)

Q(l,(k′,k′′,m)|n) = QA(l,k′|m)QB(m,k′′|n). (B27)

These satisfy condition (b) of Definition 3 since for all
l,m,n,k′,k′′,

bAbB �
∣∣α(A)

lmk′
∣∣

PA(m,k′|l)1/pQA(l,k′|m)1/q

×
∣∣α(B)

mnk′′
∣∣

PB(n,k′′|m)1/pQB(m,k′′|n)1/q
(B28)

= |αln(k′,k′′,m)|
P (n,(k′,k′′,m)|l)1/pQ(l,(k′,k′′,m)|n)1/q

. (B29)

Condition (c) requires that it be possible in average
time O(fA + fB) to sample from the probability distri-
bution P (n,(k′,k′′,m)|l) and to compute

αln(k′ ,k′′ ,m)

P (n,(k′,k′′,m)|l) and
αln(k′,k′′ ,m)

Q(l,(k′,k′′,m)|n) . This can be accomplished as follows.

(i) Draw m,k′ from PA(m,k′|l) and compute
α

(A)
lmk′

PA(m,k′|l) and
α

(A)
lmk′

QA(l,k′|m) . This can be done in average time O(fA).

(ii) Draw n,k′′ from PB(n,k′′|m) and compute
α

(B)
mnk′′

PB (n,k′′ |m)

and
α

(B)
mnk′′

QB (m,k′′ |n) . This can be done in average time O(fB).
(iii) Compute

αln(k′,k′′,m)

P (n,(k′,k′′,m)|l) = α
(A)
lmk′

PA(m,k′|l)
α

(B)
mnk′′

PB(n,k′′|m)
, (B30)

αln(k′,k′′,m)

Q(l,(k′,k′′,m)|n)
= α

(A)
lmk′

QA(l,k′|m)
· α

(B)
mnk′′

QB(m,k′′|n)
. (B31)

This can be done in time O(1) since the factors on the right-
hand sides of these expressions have already been computed
in the previous two steps.
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So condition (c) is satisfied. Condition (d) follows from a
symmetric argument. �

Proof of Theorem 4(c). Let A be a square matrix that is
EPSp(b,f ). We show that eA is EPSp(eb,bf ).

This follows from applying Theorems 13 and 4(b) to
eA = ∑∞

j=0 Aj/j !. Specifically, let L = {0,1, . . . }, A(l) = Al ,
sl = 1/l!, and W (l) = bl/(l!eb). By repeated application
of Theorem 4(b), A(l) is EPSp(bl,lf ). Assume for now
that W (l) can be sampled in average time O(b). Then by
Theorem 13, eA = ∑∞

j=0 Aj/j ! is EPSp(b′,f ′) with b′ =
maxl{|sl|bl/W (l)} = eb and

f ′ = b +
∞∑
l=0

W (l)fl (B32)

= b +
∞∑
l=0

lf bl

l!eb
(B33)

= b + bf

eb

∞∑
l=1

bl−1

(l − 1)!
(B34)

= b + bf (B35)

= O(bf ). (B36)

It remains only to show that W (l) can be sampled in time
O(b). The procedure is as follows. Flip a weighted coin that
lands heads up with probability W (0), and if it lands heads
up take l = 0. This can be done in time O(1). If the coin
landed tails up, then flip another coin that lands heads up

with probability W (1)/[1 − W (0)], and if it lands heads up,
take l = 1. Continue, in each iteration flipping a coin that
lands heads up with probability W (l)/[1 −∑l−1

j=0 W (j )]. Each

iteration requires computing W (l)/[1 −∑l−1
j=0 W (j )], which

in turn requires computing W (l) and updating the partial sum
with the previous W (l − 1). This can be done in O(1) time.
The expected number of iterations is

∑
l lW (l) = b. Therefore,

this sampling algorithm takes average time b. �
Proof of Lemma 1. Since σ is EHTp(bσ ,fσ ), there are α

(σ )
nmk ,

Pσ (m,k), and Qσ (n,k), with k ∈ Kσ satisfying Definition 4
(note that m and n have been swapped since σ is an
N × M operator). Similarly, since A is EPSp(bA,fA) there are
α

(A)
mnk′ , PA(n,k′|m), and QA(m,k′|n), with k′ ∈ KA satisfying

Definition 3.
We have

Tr(Aσ ) =
∑
mn

Amnσnm (B37)

=
∑
mnkk′

α
(A)
mnk′α

(σ )
nmk. (B38)

Define the probability distribution

R(m,n,k,k′) = 1

p
Pσ (m,k)PA(n,k′|m)

+ 1

q
Qσ (n,k)QA(m,k′|n). (B39)

By the inequality of arithmetic and geometric means,

R(m,n,k,k′) � [Pσ (m,k)PA(n,k′|m)]1/p[Qσ (n,k)QA(m,k′|n)]1/q . (B40)

Setting V (m,n,k,k′) = α
(A)
mnk′α

(σ )
nmk , we get the bound

bmax : = max
mnkk′

{ |V (m,n,k,k′)|
R(m,n,k,k′)

}
(B41)

� max
mnkk′

{ ∣∣α(A)
mnk′α

(σ )
nmk

∣∣
[Pσ (m,k)PA(n,k′|m)]1/p[Qσ (n,k)QA(m,k′|n)]1/q

}
(B42)

� max
mnk′

{ ∣∣α(A)
mnk′

∣∣
PA(n,k′|m)1/pQA(m,k′|n)]1/q

}
max
mnk

{ ∣∣α(σ )
nmk

∣∣
Pσ (m,k)1/pQσ (n,k)1/q

}
(B43)

� bAbσ . (B44)

By Corollary 1, the sum (B38) can be estimated at the cost of
drawing O( log2(δ−1)ε−2b2

σ b2
A) samples from R(m,n,k,k′) and

evaluating the corresponding V (m,n,k,k′)/R(m,n,k,k′). Each
of these samples can be computed in average time O(fσ + fA)
as follows.

(i) Flip a weighted coin that lands heads up with probability
1/p.

(ii) If it lands heads up, sample m,k according to Pσ (m,k)
and then sample n,k′ according to PA(n,k′|m).

(iii) If it lands tails up, sample n,k according to Qσ (n,k)
and then sample m,k′ according to QA(m,k′|n).

(iv) The previous steps produce a sample according to
R(m,n,k,k′) and can be accomplished in time O(fσ + fA) by
conditions (c) and (d) of Definition 3 and (c) and (d) of Defini-

tion 4, with the side effect of producing values α
(σ )
nmk/Pσ (m,k),

α
(A)
mnk′/PA(n,k′|m), α

(σ )
nmk/Qσ (n,k), and α

(A)
mnk′/QA(m,k′|n).

(v) These values can be used to compute
V (m,n,k,k′)/R(m,n,k,k′) since

V (m,n,k,k′)
R(m,n,k,k′)

= α
(A)
mnk′α

(σ )
nmk

R(m,n,k,k′)
(B45)

=
[

1

p

PA(n,k′|m)

α
(A)
mnk′

Pσ (m,k)

α
(σ )
nmk

+ 1

q

QA(m,k′|n)

α
(A)
mnk′

Qσ (n,k)

α
(σ )
nmk

]−1

.(B46)
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Therefore, the sum (B38) can be estimated in average time
O( log2(δ−1)ε−2b2

σ b2
A(fσ + fA)). �

APPENDIX C: PROOFS FOR SEC. V

In Sec. V several matrices and classes of matrices were
claimed to be EPS2(b,f ) or EPSp(b,f ) for small values of b

and f . In this Appendix we provide proofs for these claims.
We first prove that the efficiently computable sparse

(ECS) matrices from [15] (definition reproduced below)
are EPSp(polylog2(N ),polylog2(N )). This covers a rather
large class of matrices including permutation matrices, Pauli
matrices, controlled phase matrices, and arbitrary unitaries on
a constant number of qudits. The original definition from [15]
was in terms of qubits, but we adapt it to systems of arbitrary
dimension.

Definition 9. ECS. A matrix A is efficiently computable
sparse (ECS) if

(a) each row and column of A has at most polylog2(N )
nonzero entries;

(b) for any given row index m, it is possible in polylog2(N )
time to list the indices of the nonzero entries in that row,
{n : Amn �= 0}, and to compute their values Amn;

(c) for any given column index n, it is possible in
polylog2(N ) time to list the indices of the nonzero entries
in that column, {m : Amn �= 0}, and to compute their values
Amn.

Theorem 14. ECS is EPS. Let A be an ECS matrix satis-
fying maxmn{|Amn|} = polylog2(N ). Unitaries and Hermitian
matrices whose eigenvalues are in the [−1,1] range satisfy
this bound. Then A is EPSp(polylog2(N ),polylog2(N )) for
any p ∈ [1,∞].

Proof. Theorem 5 is applicable here with f = polylog2(N ).
Let P (n|m) and Q(m|n) be the probability distributions
defined in (67). Given any m and n, the value Amn can
be computed in polylog2(N ) time. Since each row and
column contains polylog2(N ) nonzero entries, which can be
enumerated and computed in polylog2(N ) time, the sums∑

n′ |Amn′ | and
∑

m′ |Am′n| can be computed in polylog2(N )
time. Thus, condition (c) of Theorem 5 is satisfied.

For any given m, the distribution P (n|m) has support of
size polylog2(N ), the indices of which can be enumerated
in polylog2(N ) time, and each individual probability can be
computed in time polylog2(N ). Therefore, this distribution
can be sampled from in time polylog2(N ). Similarly for
Q(m|n), so conditions (a) and (b) of Theorem 5 are satisfied
and A is EPSp(‖A‖1/p

∞ ‖A‖1/q

1 ,polylog2(N )). Each row and
column of A has at most polylog2(N ) nonzero entries,
each bounded by maxmn{|Amn|} = polylog2(N ). It follows
that ‖A‖∞ = polylog2(N ) and ‖A‖1 = polylog2(N ), giving
‖A‖1/p

∞ ‖A‖1/q

1 = polylog2(N ). �
A block diagonal matrix is EPSp(b,f ) if each of its blocks

is EPSp(b,f ). This is rather powerful in that it can be used
to show the EPS property for operations on subsystems, for
controlled unitaries, and for some rather exotic projectors. This
will be the subject of the following theorem and corollaries.

Theorem 15. Block diagonal. For r ∈ {1, . . . ,R}, let A(r)

be an EPSp(br,f ) matrix of dimension Mr × Nr . Let A

be the block diagonal matrix A = ⊕rA
(r) of dimension

∑
r Mr ×∑

r Nr . Suppose that it is possible in time O(f )
to convert between row and column indices of A and the
corresponding block indices [i.e., m′ → (r,m) and n′ → (s,n)
and their inverse maps, with Am′n′ = δrsA

(r)
mn]. Then A is

EPSp( maxr{br},f ).
Proof. Since A(r) is EPSp(br,f ) for each r , there are

Kr , α
(r)
mnk , Pr (n,k|m), and Qr (m,k|n) satisfying Definition 3,

with m ∈ {1, . . . ,Mr}, n ∈ {1, . . . ,Nr}, and k ∈ Kr . Since
we can convert between row and column indices of A and
the corresponding block indices in time O(f ), go ahead and
label the indices of A using block indices: A(r,m),(s,n) = δrsA

(r)
mn.

Define K = ∪rKr and

α(r,m),(s,n),k =
{

α
(r)
mnk if r = s and k ∈ Kr,

0 otherwise.
(C1)

This satisfies condition (a) of Definition 3 since∑
k∈K

α(r,m),(s,n),k = δrs

∑
k∈Kr

α
(r)
mnk (C2)

= δrsA
(r)
mn (C3)

= A(r,m),(s,n). (C4)

Define the probability distributions

P ((s,n),k|(r,m)) = δrsPr (n,k|m), (C5)

Q((r,m),k|(s,n)) = δrsQs(m,k|n). (C6)

That α(r,m),(s,n),k , P ((s,n),k|(r,m)), and Q((r,m),k|(s,n)) sat-
isfy conditions (c) and (d) of Definition 3 directly follows from
the fact that α(r)

mnk , Pr (n,k|m), and Qs(m,k|n) satisfy conditions
(c) and (d) for all r . Condition (b) is satisfied as well, since

max
(r,m),(s,n),k

{ |α(r,m),(s,n),k|
P ((s,n),k|(r,m))1/pQ((r,m),k|(s,n))1/q

}

= max
r

max
mnk

{ ∣∣α(r)
mnk

∣∣
Pr (n,k|m)1/pQr (m,k|n)1/q

}
(C7)

� max
r

{br}. (C8)

�
Corollary 3. For r ∈ {1, . . . ,R}, let A(r) be matrices on a

space of dimension N . Suppose that each A(r) is EPSp(b,f )
with f = �( log2

2(N )). Then A = ∑R
r=1 |r〉〈r| ⊗ A(r), where

the |r〉 are computational basis states, is EPSp(b,f ).
Proof. This is essentially a restatement of Theorem 15 for

the case where all the A(r) are the same size. We require
f = �( log2

2(N )) because converting row or column indices
of A to indices of the blocks (as required for application of
Theorem 15) requires the operation of computing the quotient
and remainder of division by N . The f = �( log2

2(N )) require-
ment can be dropped if one is dealing with query complexity
rather than computational complexity. �

Corollary 4. Let U denote a unitary matrix on n qubits
whose rows are CT states (e.g., the Fourier transform). Let g :
{0, . . . ,2n−1} → {0, . . . ,2n−1} be a poly(n) time computable
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function. Then the projector
∑2n−1

x=0 |x〉〈x| ⊗ U †|g(x)〉〈g(x)|U
is EPSs(1,poly(n)). This projector corresponds to measuring
half of the system in the computational basis to get measure-
ment result x, measuring the other half of the system in the
basis determined by U to get y, and returning true if y = g(x).
The measurement depicted in Fig. 1 is of this form.

Proof. Apply Corollary 3 with A(x) = U †|g(x)〉〈g(x)|U .
U †|g(x)〉 is a CT state, so by Theorem 6 A(x) is
EHT2(1,poly(n)) and therefore also EPS2(1,poly(n)). �

Corollary 5. Let IM1 and IM2 denote the identity operator on
spaces of dimensions M1 and M2. Let A be an EPSp(b,f ) ma-
trix of dimension N1 × N2 with f = �( log2

2(M1M2N1N2)).
Then IM1 ⊗ A ⊗ IM2 is EPSp(b,f ). This somewhat trivial
result is important in that it allows the matrix to act on
subsystems of the full state.

Proof. Apply Theorem 15 with all of the A(r) blocks being
equal. We require f = �( log2

2(M1M2N1N2)) in order to allow
converting row or column indices of IM1 ⊗ A ⊗ IM2 to indices
of A in time O(f ). �

We now turn to the Grover reflection operation. We show
this operator to be EPS2(3,log2(N )). Since a unitary operator
incurs a time expense of b4 as per (69), each round of Grover’s
algorithm multiplies the simulation time by 34 = 81. This
time is constant in the number of qubits, but is exponential
in the number of rounds. Our technique is therefore perfectly
capable of simulating a small number of Grover reflections
placed anywhere in a circuit, but would perform very poorly,
exp[�(

√
N )] time, if applied to the �(

√
N ) rounds required

by Grover’s algorithm.
Theorem 16. Let |+〉 = N−1/2 ∑N−1

i=0 |i〉. The Grover re-
flection I − 2|+〉〈+| is EPS2(3,log2(N )).

Proof. Let δmn be the Kronecker δ. The identity operator
can be seen to be EPSp(1,log2(N )), for any p but in particular
p = 2, by simple inspection of Definition 3 with K = {0}
and αmnk = P (n,k|m) = Q(m,k|n) = δmn. Note that we must
take f = log2(N ) rather than f = 1 since it takes �( log2(N ))
time to even write the indices m and n, which are log2(N ) bits
long.

By Theorem 6, the projector |+〉〈+| is EHT2(1,log2(N )),
and therefore also EPS2(1,log2(N )). By Theorem 3 the
operator (−2)|+〉〈+| is EPS2(2,log2(N )) and by Theorem 4(a)
the operator I − 2|+〉〈+| is EPS2(3,log2(N )). One cannot
do much better than b = 3 since ‖I − 2(|+〉〈+|)‖2 → 3 as
N → ∞. �

Next we show that the Haar wavelet transform on n qubits,
denoted Gn, is EPS2(

√
n + 1,n). This is the lowest possible

value of b, since ‖Ḡn‖2 = √
n + 1.

Definition 10. The Haar wavelet transform on n qubits is
defined to be

Gn = (|0〉〈+|)⊗n +
n−1∑
m=0

(|0〉〈+|)⊗m ⊗ |1〉〈−| ⊗ I⊗n−m−1.

(C9)

Note that there are other conventions that differ from this by a
permutation in the computational basis. Such permutations do
not affect whether the Haar transform is EPS2(

√
n + 1,n).

As an example, the Haar transform on three qubits is
implemented by the circuit depicted in Fig. 4 and in the

H

H

H

FIG. 4. This circuit implements the Haar transform of Definition
10, on three qubits [39]. The gates in this circuit are controlled-
Hadamard gates, and the open circles denote that the Hadamard gates
are active when all of the controls are in the |0〉 state.

computational basis takes the form

G3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

−1√
8

1√
8

−1√
8

1√
8

−1√
8

1√
8

−1√
8

1√
4

0 −1√
4

0 1√
4

0 −1√
4

0

0 1√
4

0 −1√
4

0 1√
4

0 −1√
4

1√
2

0 0 0 −1√
2

0 0 0

0 1√
2

0 0 0 −1√
2

0 0

0 0 1√
2

0 0 0 −1√
2

0

0 0 0 1√
2

0 0 0 −1√
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(C10)

Theorem 17. The Haar transform on n qubits is
EPS2(

√
n + 1,n).

Proof. Since we are dealing with spaces of dimension 2n,
made of qubits, it will be convenient to index the space using
bit strings x, y ∈ {0,1}n. We denote the corresponding basis
vectors using the notation |x〉 = |x0〉 ⊗ · · · ⊗ |xn−1〉. To avoid
notational confusion regarding subscripts, define A = Gn.
Then Axy refers to the matrix element 〈x|Gn| y〉.

Take K = {0} (i.e., do not make use of the index k),
and set αxyk = Axy . This satisfies condition (a) of Definition
3 trivially. Take the probability distributions P ( y|x) and
Q(x| y) to be uniform over the nonzero elements of the given
row or column of Axy . Despite the apparent simplicity of
this choice, analysis will be tedious due to the somewhat
complicated definition of A. These probability distributions
can be expressed as follows:

P ( y|x) = 1

2n
[x = 0] +

n−1∑
m=0

1

2m+1

(
m−1∏
i=0

[xi = 0]

)

× [xm = 1]

(
n−1∏

i=m+1

[yi = xi]

)
(C11)

Q(x| y) = 1

n + 1

{
[x = 0] +

n−1∑
m=0

(
m−1∏
i=0

[xi = 0]

)

× [xm = 1]

(
n−1∏

i=m+1

[xi = yi]

)}
(C12)
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These can be sampled from in time O(n). Consider first
P ( y|x). Given an x, only a single one of the n + 1 terms
of (C11) does not vanish, and this term can be identified in
time O(n), by searching for the smallest (if any) m for which
xm = 1. The nonvanishing term defines the value of yi for
some of the i and gives a uniform distribution for each of
the remaining yi . For Q(x| y), each of the n + 1 terms of
(C12) is nonvanishing for a single value of x, and each occurs
with equal probability. Therefore, sampling from Q(x| y) is
accomplished by drawing from a uniform distribution over
n + 1 possibilities.

To satisfy conditions (c) and (d) of Definition 3 we must
also show that Axy/P ( y|x) and Axy/Q(x| y) can be computed
in time O(n). We begin by writing an expression for Axy . In the
equations below, square brackets denote the Iverson bracket,
which takes a value of 1 if the enclosed expression is true and
0 otherwise:

Axy = 〈x|
(

(|0〉〈+|)⊗n

+
n−1∑
m=0

(|0〉〈+|)⊗m ⊗ |1〉〈−| ⊗ I⊗n−m−1

)
| y〉

(C13)

= 1√
2n

[x = 0] +
n−1∑
m=0

(−1)ym

√
2m+1

(
m−1∏
i=0

[xi = 0]

)

× [xm = 1]

(
n−1∏

i=m+1

[xi = yi]

)
. (C14)

Since only a single term for each of (C11), (C12), and (C14)
is nonvanishing for each given x, y pair, we can divide these

equations term by term to get

Axy

P ( y|x)
=

√
2n[x = 0] +

n−1∑
m=0

(−1)ym

√
2m+1

(
m−1∏
i=0

[xi = 0]

)

× [xm = 1]

(
n−1∏

i=m+1

[xi = yi]

)
, (C15)

Axy

Q(x| y)
= (n + 1)

{
1√
2n

[x = 0]

+
n−1∑
m=0

(−1)ym

√
2m+1

(
m−1∏
i=0

[xi = 0]

)

× [xm = 1]

(
n−1∏

i=m+1

[xi = yi]

)}
. (C16)

At most a single term of these expressions is nonvanishing
for each given x, y pair, and this term can be identified in
time O(n) by searching for the smallest (if any) m for which
xm = 1. The value of nonvanishing terms is of the form ±√

2s

or ±(n + 1)/
√

2s for some s, and this can be computed in
O(1) time.

That condition (b) of Definition 3 is satisfied is checked
directly,

max
xy

{ |Axy |
P ( y|x)1/2Q(x| y)1/2

}

= max
xy

{[ |Axy |
P ( y|x)

∣∣Axy

∣∣
Q(x| y)

]1/2 }
(C17)

= max
xy

{
(n + 1)1/2} (C18)

= √
n + 1, (C19)

where (C18) follows from the fact that only a single term
from each of (C15) and (C16) is nonvanishing, so they can be
multiplied term by term. �

[1] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
[2] R. Jozsa and N. Linden, Proc. R. Soc. London, Ser. A 459, 2011

(2003).
[3] B. Eastin, Bull. Am. Phys. Soc. 56, BAPS.2011.MAR.D29.10

(2011).
[4] D. Gottesman, in Group22: Proceedings of the XXII Interna-

tional Colloquium on Group Theoretical Methods in Physics,
edited by S. P. Corney, R. Delbourgo, and P. D. Jarvis (Interna-
tional Press, Cambridge, MA, 1999), pp. 32–43, arXiv:quant-
ph/9807006.

[5] L. G. Valiant, in Proceedings of the Thirty-third Annual ACM
Symposium on Theory of Computing, STOC ’01 (ACM, New
York, 2001), pp. 114–123.

[6] I. L. Markov and Y. Shi, SIAM J. Comput. 38, 963 (2008).
[7] R. Jozsa, arXiv:quant-ph/0603163.
[8] V. Veitch, C. Ferrie, D. Gross, and J. Emerson, New J. Phys. 14,

113011 (2012).

[9] V. Veitch, N. Wiebe, C. Ferrie, and J. Emerson, New J. Phys.
15, 013037 (2013).

[10] A. Mari and J. Eisert, Phys. Rev. Lett. 109, 230503
(2012).

[11] J. F. Fitzsimons, E. G. Rieffel, and V. Scarani, in Computation for
Humanity: Information Technology to Advance Society, edited
by J. Zander and P. J. Mosterman (CRC Press, Boca Raton,
2013), Chap. 11.

[12] C. H. Bennett, Phys. Today 48, 24 (1995).
[13] L. Fortnow, Theor. Comput. Sci. 292, 597 (2003).
[14] S. Lloyd, Phys. Rev. A 61, 010301 (1999).
[15] M. Van den Nest, Quantum Inf. Comput. 11, 0784 (2011).
[16] D. Braun and B. Georgeot, Phys. Rev. A 73, 022314

(2006).
[17] M. V. d. Nest, Phys. Rev. Lett. 110, 060504 (2013).
[18] B. Terhal and D. DiVincenzo, Quantum Inf. Comput. 4, 134

(2004).

022302-28

http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1098/rspa.2002.1097
http://dx.doi.org/10.1098/rspa.2002.1097
http://dx.doi.org/10.1098/rspa.2002.1097
http://dx.doi.org/10.1098/rspa.2002.1097
http://arxiv.org/abs/arXiv:quant-ph/9807006
http://dx.doi.org/10.1137/050644756
http://dx.doi.org/10.1137/050644756
http://dx.doi.org/10.1137/050644756
http://dx.doi.org/10.1137/050644756
http://arxiv.org/abs/arXiv:quant-ph/0603163
http://dx.doi.org/10.1088/1367-2630/14/11/113011
http://dx.doi.org/10.1088/1367-2630/14/11/113011
http://dx.doi.org/10.1088/1367-2630/14/11/113011
http://dx.doi.org/10.1088/1367-2630/14/11/113011
http://dx.doi.org/10.1088/1367-2630/15/1/013037
http://dx.doi.org/10.1088/1367-2630/15/1/013037
http://dx.doi.org/10.1088/1367-2630/15/1/013037
http://dx.doi.org/10.1088/1367-2630/15/1/013037
http://dx.doi.org/10.1103/PhysRevLett.109.230503
http://dx.doi.org/10.1103/PhysRevLett.109.230503
http://dx.doi.org/10.1103/PhysRevLett.109.230503
http://dx.doi.org/10.1103/PhysRevLett.109.230503
http://dx.doi.org/10.1063/1.881452
http://dx.doi.org/10.1063/1.881452
http://dx.doi.org/10.1063/1.881452
http://dx.doi.org/10.1063/1.881452
http://dx.doi.org/10.1016/S0304-3975(01)00377-2
http://dx.doi.org/10.1016/S0304-3975(01)00377-2
http://dx.doi.org/10.1016/S0304-3975(01)00377-2
http://dx.doi.org/10.1016/S0304-3975(01)00377-2
http://dx.doi.org/10.1103/PhysRevA.61.010301
http://dx.doi.org/10.1103/PhysRevA.61.010301
http://dx.doi.org/10.1103/PhysRevA.61.010301
http://dx.doi.org/10.1103/PhysRevA.61.010301
http://dx.doi.org/10.1103/PhysRevA.73.022314
http://dx.doi.org/10.1103/PhysRevA.73.022314
http://dx.doi.org/10.1103/PhysRevA.73.022314
http://dx.doi.org/10.1103/PhysRevA.73.022314
http://dx.doi.org/10.1103/PhysRevLett.110.060504
http://dx.doi.org/10.1103/PhysRevLett.110.060504
http://dx.doi.org/10.1103/PhysRevLett.110.060504
http://dx.doi.org/10.1103/PhysRevLett.110.060504


QUANTUM INTERFERENCE AS A RESOURCE FOR . . . PHYSICAL REVIEW A 90, 022302 (2014)

[19] W. Hoeffding, J. Am. Stat. Assoc. 58, 13 (1963).
[20] D. R. Simon, in Proceedings of the 35th Annual Symposium on

Foundations of Computer Science, 1994 (IEEE, Piscataway, NJ,
1994), pp. 116–123.

[21] D. Aharonov, Z. Landau, and J. Makowsky, arXiv:quant-
ph/0611156.

[22] N. Yoran and A. J. Short, Phys. Rev. A 76, 060302
(2007).

[23] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann,
and D. A. Spielman, in Proceedings of the 35th Annual ACM
Symposium on Theory of Computing, STOC ’03 (ACM, New
York, 2003), pp. 59–68.

[24] V. Veitch, S. A. H. Mousavian, D. Gottesman, and J. Emerson,
New J. Phys. 16, 013009 (2014).

[25] O. Regev and B. Klartag, in Proceedings of the 43rd Annual
ACM Symposium on Theory of Computing, STOC ’11 (ACM,
New York, 2011), pp. 31–40.

[26] E. Kushilevitz and N. Nisan, Communication Complexity
(Cambridge University Press, Cambridge, UK, 2006).

[27] A. Montanaro, Quantum Inf. Comput. 11, 0574 (2011).
[28] I. Kremer, N. Nisan, and D. Ron, in Proceedings of the 27th

Annual ACM Symposium on Theory of Computing, STOC ’95
(ACM, New York, 1995) pp. 596–605.

[29] M. Gell-Mann and J. B. Hartle, Phys. Rev. D 47, 3345 (1993).
[30] R. B. Griffiths, Consistent Quantum Theory (Cambridge

University Press, Cambridge, UK, 2003).
[31] F. G. S. L. Brandao and M. Horodecki, Quantum Inf. Comput.

13, 0901 (2013).
[32] S. Aaronson, in Proceedings of the 42nd ACM Symposium on

Theory of Computing, STOC ’10 (ACM, New York, 2010),
pp. 141–150.

[33] R. Mathias, Linear Algebra Appl. 139, 269 (1990).
[34] D. W. Boyd, Linear Algebra Appl. 9, 95 (1974).
[35] A. Bhaskara and A. Vijayaraghavan, in Proceedings of the

22nd Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’11 (SIAM, Philadelphia, 2011), pp. 497–511.

[36] N. L. Carothers, A Short Course on Banach Space Theory (Lon-
don Mathematical Society Student Texts) (Cambridge University
Press, Cambridge, 2004).

[37] J. Armstrong, The Extremal Case of Hölders Inequality
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