
PHYSICAL REVIEW A 90, 022125 (2014)

Decoherence of Bell states by local interactions with a suddenly quenched spin environment
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We study the dynamics of disentanglement of two qubits initially prepared in a Bell state and coupled at
different sites to an Ising spin chain in a transverse field (ITF) playing the role of a dynamic spin environment.
The initial state of the whole system is prepared in a tensor product state ρBell ⊗ ρchain, where the state of the
chain is taken to be given by the ground state |G(λi)〉 of the ITF Hamiltonian HE(λi) with an initial field λi .
At time t = 0+, the strength of the transverse field is suddenly quenched to a new value, λf , and the whole
system (chain + qubits) undergoes a unitary dynamics generated by the total Hamiltonian HTot = HE(λf ) + HI ,
where HI describes a local interaction between the qubits and the spin chain. The resulting dynamics leads to a
disentanglement of the qubits, which is described through Wootters’ concurrence, due to their interaction with
the nonequilibrium environment. The concurrence is related to the Loschmidt echo, which in turn is expressed
in terms of the time-dependent covariance matrix associated with the ITF. This permits a precise numerical and
analytical analysis of the disentanglement dynamics of the qubits as a function of their distance, bath properties,
and quench amplitude. In particular, we emphasize the special role played by a critical initial environment.
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I. INTRODUCTION

Entanglement is one of the most intriguing features
of nature [1] predicted by quantum mechanics. Since the
pioneering discussion by Einstein, Podolsky and Rosen in
there celebrated paper [2], the dramatic consequences of
quantum entanglement have been extensively studied on both
theoretical and experimental sides (see [3] for an historical
review). If these initial studies were first orientated to a better
understanding of the foundations of quantum mechanics, more
recent investigations on entanglement phenomena focused
on potential technological applications such as quantum
computing [4] and quantum simulation [5].

However, entanglement is generally very sensitive to
decoherence generated by the unavoidable interactions with
the system’s environment [6–8], responsible for the loss
of the typical quantum features one wishes to exploit. It
is consequently of primary importance to understand these
decoherence processes in order to suppress or possibly exploit
it. For example, in order to limit the decoherence process,
dynamical control consisting in pulses applied to the system
has been proposed in [9,10]. Engineered non-equilibrium
dynamics have also been suggested to create entangled steady-
states [11,12] and to assist precision measurements [13]. From
a different perspective, typical quantum information tools such
as entanglement have been applied in many-body systems to
identify signatures of quantum phase transitions [14] and to
characterize the ground state close to a critical point [15].

Aiming at a better understanding of decoherence, a number
of models have investigated the dynamics of a small system
interacting with a given typical environment. Among them
one may mention the central spin model, where the system
made of one or two spins is simultaneously coupled to many
interacting spins [16–24]. Particular focus has been on critical
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spin environments which were shown to lead to enhanced
decoherence [17] and to universal properties [18]. Cormick
and Paz [25] went beyond the standard central spin system
and studied the dependence of decoherence on the spatial
separation of two qubits, initially prepared in a Bell state, when
they interact locally with an extended equilibrium environment
modeled by a quantum spin-1/2 chain in a transverse field.
They found, in particular, that in the strong-coupling limit
decoherence typically increases with the qubit separation
distance and, finally, saturates when the qubit separation is
over a threshold distance related to the spin chain correlation
length.

In this work, we extend the work of Cormick and Paz [25]
by considering an environment which is set out of equilibrium
by a sudden change in a global environment coupling constant,
the so-called global quantum quench [26,27]. Quantum quench
protocols have received much attention in recent years, for
example, in the context of the quantum version of fluctuation
theorem [28] and relaxation properties toward a local canonical
ensemble or a generalized version of the Gibbs ensemble
depending on the integrability of the system (see [27] for
a review). Many of these investigations focus not only on
steady properties but also on dynamical aspects like front
propagation of an initial density inhomogeneity [29–32] or
expansion of a cloud of particles after the more or less sudden
release of a trap [33–36]. Our main goal here is to investigate
how the quench—that is, how the relaxation of the environment
toward a local steady state [27]—influences, with respect to
the equilibrium case treated in [25], the disentanglement of the
two distant qubits initially prepared in a Bell state.

The paper is organized as follows: In Sec. II we present
the model describing two qubits coupled to an Ising chain in a
transverse field (ITF). In Sec. III the dynamics is diagonalized
through the Jordan-Wigner representation of the ITF and an
explicit relation is given for the Loschmidt echo through
the time evolution of the two-point correlation functions of
the ITF. Section IV is devoted to the quench behavior of
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FIG. 1. (Color online) Two defect spins (qubits), A and B, are
locally coupled to a spin chain.

the disentanglement of the qubits studied numerically and
analytically. Finally, in Sec. V we draw our conclusions.

II. THE MODEL AND THE ENTANGLEMENT MEASURE

A. Two qubits coupled to an Ising chain

We consider in the following two noninteracting qubits
coupled locally to an Ising quantum chain with N spins (see
Fig. 1). The total Hamiltonian (qubits + chain) governing the
dynamics of the whole system is given by

HTot = HE + HI , (1)

where HE is the Ising chain (environment) Hamiltonian

HE(λ) = −J

N−1∑
j=0

σx
j σ x

j+1 − λ

N−1∑
j=0

σ z
j , (2)

where the σ ’s are the usual Pauli matrices. The nearest-
neighbor coupling J is taken to be positive and λ is a
transverse field. We work with periodic boundary conditions,
i.e., σ i

N = σ i
0, with i = x,y,z. The interaction Hamiltonian

describing the coupling of the qubits, labeled A and B,
at different sites of the chain separated by a distance d is
given by

HI = −ε
(|↑〉〈↑|A ⊗ σ z

0 + |↑〉〈↑|B ⊗ σ z
d

)
, (3)

where |↑〉A,B is an eigenstate of σ z
A,B satisfying σ z

A,B |↑〉A,B =
|↑〉A,B and ε > 0 sets the intensity of that interaction.

The two qubits are assumed to be initially in the maximally
entangled Bell state |φ〉AB = 1√

2
(|↑↑〉 + |↓↓〉) and uncorre-

lated with the bath, such that the initial state of the total system
is a tensor state |ψ(0)〉 = |φ〉AB ⊗ |G(λi)〉E , with |G(λi)〉E the
ground state of the initial bath Hamiltonian HE(λi).

At time t = 0+ the transverse field of the Ising chain is
suddenly quenched to a new value λf , forcing the system to
evolve in a nonequilibrium regime. Due to the structure of the
interaction Hamiltonian and the initial state, the total dynamics
splits into two different channels, each governed by a specific
Hamiltonian, namely, H↓↓(λf ) = HE(λf ) if the two qubits
are in state |↓↓〉 and H↑↑(λf ) = HE(λf ) − ε(σ z

0 + σ z
d ) if they

are in state |↑↑〉. Note here that H↑↑ has exactly the same
structure as HE , the only difference being that the transverse
fields acting at sites 0 and d are changed to the value λ + ε

instead of λ. Consequently, the time evolution of the initial

state |ψ(0)〉 = |φ〉AB ⊗ |G(λi)〉 is given by

|ψ(t)〉 = 1√
2

[|↑↑〉 ⊗ |ϕ↑↑(t)〉E + |↓↓〉 ⊗ |ϕ↓↓(t)〉E], (4)

with the evolved states

|ϕα(t)〉E = e−iHα (λf )t |G(λi)〉E, (5)

where α = ↑↑,↓↓.
The reduced density matrix of the qubits, ρs(t) =

TrE{|ψ(t)〉〈ψ(t)|}, is given in the computational base
{|↑↑〉,|↑↓〉,|↓↑〉,|↓↓〉} by

ρs(t) = 1

2

⎛
⎜⎜⎜⎝

1 0 0 D↑↑,↓↓(t)

0 0 0 0

0 0 0 0

D∗
↑↑,↓↓(t) 0 0 1

⎞
⎟⎟⎟⎠, (6)

where the decoherence factor D↑↑,↓↓(t) = 〈ϕ↓↓(t)|ϕ↑↑(t)〉 is
explicitly given by

D↑↑,↓↓(t) = 〈G(λi)|eiH↓↓(λf )t e−iH↑↑(λf )t |G(λi)〉. (7)

Since the populations of the two defect spins do not change in
time we see here that our model describes in the computational
base a purely dephasing dynamics.

The decoherence factor D, governing the dynamics of the
qubits, is simply related to the so-called Loschmidt echo
[37] via

L↑↑,↓↓(t) = |〈G(λi)|eiH↓↓(λf )t e−iH↑↑(λf )t |G(λi)〉|2. (8)

Note that if the final magnetic field is equal to the initial one
(λi = λf , meaning that the bath is not quenched), the initial
state |G(λi)〉 is the ground state of the Hamiltonian H↓↓(λi)
and the echo is reduced to L(t) = |〈G(λi)|e−iH↑↑(λi )t |G(λi)〉|2,
which is the case treated in [25].

B. Entanglement measure

We use Wootters’ concurrence [38,39] as the entanglement
measure of our qubit system since in this case it takes a
very simple form. For a two-qubit system the concurrence
associated with state ρ is given by

C(ρ) = max{0,ε1 − ε2 − ε3 − ε4}, (9)

where the εi’s are the square roots of the eigenvalues in
decreasing order of the (generally) non-Hermitian matrix
R = ρρ̃, with ρ̃ defined as

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy), (10)

where the complex conjugation is taken in the computational
base. For the density matrix (6) the matrix ρ̃ = ρ and then

R = ρ2 = 1

4

⎛
⎜⎜⎜⎝

1 + |D|2 0 0 2D

0 0 0 0

0 0 0 0

2D∗ 0 0 1 + |D|2

⎞
⎟⎟⎟⎠, (11)

which leads, for the eigenvalues, to ε1 = 1
4 (1 + |D|)2, ε2 =

1
4 (1 − |D|)2, and ε3 = ε4 = 0. Finally, for state (6) the
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concurrence is simply given by

CAB(t) =
√
L(t) = |D(t)|. (12)

The entire dynamics of the two qubits A and B is encoded
in the Loschmidt echo and the main goal of this study is to
determine it.

III. LOSCHMIDT ECHO IN THE FERMIONIC
REPRESENTATION

A. Jordan-Wigner transformation

The dynamics of the qubit system is generated through
the two environment channels described by H↑↑ and H↓↓,
which, as stated before, have the same structure except for
two defect transverse fields, at positions 0 and d. Apart from
that, these Hamiltonians are both diagonalized through the
same standard procedure, that is, performing a Jordan-Wigner
mapping followed by a Bogoliubov transformation, and in the
following we drop the indices ↑↑ and ↓↓. In terms of the ladder
operators σ± = σx±iσ y

2 the Jordan-Wigner mapping reads

σ+
j = eiπ

∑j−1
i=0 c

†
i ci c

†
j , σ−

j = cj e
−iπ

∑j−1
i=0 c

†
i ci , (13)

where the operators cj and c
†
j satisfy the canonical Fermi

algebra {ci,c
†
j } = δi,j and {ci,cj } = {c†i ,c†j } = 0. In terms of

the Fermi algebra the environmental Hamiltonians in the
relevant parity sector become

H =
∑
i,j

(
c
†
i Aij cj + 1

2
(c†i Bij c

†
j + H.c.)

)
, (14)

with Aij = −2λiδij − J [δi,j−1 + δi,j−1] and Bij = J [δi,j+1 −
δi,j−1] (indices N are identified with 0 to account for the pe-
riodic boundaries), defining, respectively, N × N symmetric
and antisymmetric matrices A and B. Introducing the field
operator

�† = (C,C†) = (c0, . . . ,cN−1,c
†
0, . . . ,c

†
N−1), (15)

the Hamiltonian is further rewritten in a more compact form,

H = 1
2�†H�, (16)

with the single-particle Hamiltonian

H =
(

−A −B

B A

)
. (17)

In order to diagonalize the Hamiltonian H we introduce the
unitary matrix

U =
(

g h

h g

)
(18)

that diagonalizes the single-particle matrix H: � = U †HU .
The Hamiltonian H is readily diagonalized in terms of normal
modes η = U †� and takes the form

H = 1
2η†�η. (19)

More explicitly, the normal mode operators η† =
(η0, . . . ,ηN−1,η

†
0, . . . ,η

†
N−1) are related to the original Fermi

operators by the real Bogoliubov coefficients gij and hij

through

ηk =
∑

i

(gikci + hikc
†
i ) (20)

and similar expressions for the adjoints η
†
k . These relations are

easily inverted and lead to

ci =
∑

k

(gikηk + hikη
†
k) (21)

for the original Fermi operators in terms of the normal mode
operators.

B. Time evolution of the covariance mat rix and Loschmidt echo

Since the Hamiltonians Hα with α =↑↑ ,↓↓ are free
fermionic, the Loschmidt echo, (8), describing the overlap
between the states |ϕα(t)〉 = e−iHαt |G(λi)〉, can be expressed
in terms of the covariance matrices

Cα(t) = 〈ϕα(t)|��†|ϕα(t)〉 (22)

only and reads [40]

L↑↑,↓↓(t) = | det(1 − C↓↓(t) − C↑↑(t))|1/2, (23)

where 1 is the 2N × 2N identity matrix. The problem of
computing the Loschmidt echo is then related to the evaluation
of the time-evolved covariance matrices Cα(t). In order to
derive this time dependence it is more convenient to switch
to the Heisenberg picture. Thanks to the quadratic structure
of the Hamiltonians Hα , the equations of motion for the field
operators �α in each channel α =↑↑ ,↓↓ take the form

i
d

dt
�α = Hα�α, (24)

where Hα is the single-particle Hamiltonian, (17), associated
with channel α. Together with the initial conditions �α(0) =
�, these equations of motion are easily integrated and lead to
�α(t) = e−itHα�. This allows us to write the time evolution
of the covariance matrix as

Cα(t) = e−itHαC(0)eitHα , (25)

with C(0) = 〈G(λi)|��†|G(λi)〉 the initial covariance matrix.
In terms of the field operators C and C† it is given by

C(0) =
(

〈C†C〉 〈C†C†〉
〈CC〉 〈CC†〉

)
, (26)

where 〈.〉 is the operator’s expectation value in the ground
state |G(λi)〉. Consequently, the Loschmidt echo, (23), is
explicitly derived from (25) given the initial covariance
matrix C(0).

IV. QUENCH DYNAMICS

A. Weak and strong coupling regimes

Let us consider first the influence of the coupling strength ε

on the decoherence dynamics of the qubits for a given quench
protocol. In Fig. 2 we have plotted the time evolution of the
Loschmidt echo as a function of ε for an initial field λi = 1.5
and quenched at λf = 0.5. One sees that at a given quench
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FIG. 2. (Color online) Time evolution of the Loschmidt echo
after a quench from λi = 1.5 to λf = 0.5 for several coupling
strengths ε. The distance is fixed at d = 1 and the size of the
environment is N = 100.

protocol the decoherence is faster when the coupling strength
is increased. Whereas the echo decreases slowly for weak
coupling, ε 	 1, the behavior is quite different in the strong
coupling regime, ε 
 1. Indeed, one observes fast oscillations
of the echo L which are embedded inside an envelope that is
independent of the coupling strength at sufficiently large ε (ε �
10 in Fig. 2). Note that this effect is not a consequence of the
quench in the chain, since it has already been observed in the
equilibrium situation λi = λf as well. These fast oscillations
are directly related to the two high frequencies, proportional
to the coupling strength ε, generated by the coupling of the
qubits to the chain, whereas the remaining lower frequencies
(independent of ε) are responsible for the slower decay of the
envelope.

B. Effect of the quench on the Loschmidt echo

We first analyze roughly the effect of the sudden quench
dynamics through the evolution of the Loschmidt echo ob-
tained from (23) and (25) by exact numerical diagonalization.
Figures 3 and 4 show the time evolution of the Loschmidt
echo for several quench protocols for an Ising chain of fixed
size N = 100, J = 1, distance d = 1 between qubits, and
coupling constants ε = 0.1 and ε = 20, respectively. The
first observation that can be made is that the decoherence
(and then the disentanglement) is enhanced at long times
by the quench in comparison to the unquenched situation
(solid lines in Fig. 3 and red curves in Fig. 4), for both the
weak and the strong coupling regime. We also note that the
higher the quench amplitude |λf − λi | becomes, the stronger
the disentanglement becomes. This phenomenon is observed
numerically whatever the distance between the qubits is. The
behavior of the echo with the qubit distance is opposite in
the weak and strong coupling regimes: for weak coupling, the
echo decreases with the distance, whereas it increases with
the distance in the strong coupling regime [25], as shown
in Fig. 5, which displays the time evolution of the echo for
different distances in the two coupling regimes. Moreover, one
observes in the weak coupling regime that the decrease in the
Loschmidt echo is monotonous during the time evolution apart
for small superimposed oscillations. One can observe beating

.

.

.

.

.

. .

.

.

.

.

.

FIG. 3. (Color online) Time evolution of the echo in the weak
coupling regime for different quench protocols. For all plots, we
choose N = 100, ε = 0.1 and keep the distance fixed at d = 1. The
top two plots are a variation of the final magnetic field, whereas the
bottom two plots are a variation of the initial one. For all plots, the
varied field is plotted with symbols for λi > λf , a dashed line for
λi < λf , and a solid line for the equilibrium case λi = λf .

of the envelope in the strong coupling regime; see, for example,
the red curves in Figs. 4(a) and 4(c) . This phenomenon,
already observed at equilibrium in [25], can be explained in
terms of a decomposition of the spectrum of the Hamiltonian.
Indeed, as we mentioned previously, the strong coupling of
the qubits to the chain brings two high-frequency excitations
of the order of ε, whereas the remaining part of the spectrum
can be split into two regions corresponding, respectively, to
the region lying between the two qubits and the region lying

(a)

(b)

(d)

(c)

FIG. 4. (Color online) Time evolution of the echo in the strong
coupling regime for different quench protocols. For all plots, we
choose N = 100, ε = 20 and keep the distance fixed at d = 1. (a, c)
A variation of the final magnetic field; (b, d) a variation of the initial
one. In (a) and (c), the varied fields are λi,f = 0.5 (black), λi,f = 0.7
(red), λi,f = 1 (brown), and λi,f = 1.5 (yellow). In (b) and (d), the
varied fields are λi,f = 0.7 (black), λi,f = 1 (light blue), λi,f = 1.5
(red), λi,f = 1.7 (brown), and λi,f = 1.9 (yellow).
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FIG. 5. (Color online) Time evolution of the Loschmidt echo for
distances d = 1, d = 5, and d = 10 in the weak (left) and strong
(right)coupling regimes. The quench is done from λi = 1.5 to λf =
0.5 and the chain is made of N = 100 spins.

outside the interaction sites (this decomposition make sense
since d 	 N ). For fields smaller than the critical field, it turns
out that the beating observed in the echo is associated with the
lowest energy excitations of the region between the qubits [25].
When the magnetic field increases above the critical value,
more and more modes start to be populated, leading to the
disappearance of the phenomenon.

In order to characterize the effect of the sudden quench on
the disentanglement, we use this monotonic decrease in L in
the weak-coupling regime. We have plotted, in the left panel
in Fig. 6, the Loschmidt echo at a fixed, large enough time
(t = 10) as a function of the initial transverse field value λi at
two fixed postquench values λf (below and above the critical
value λc = 1) and, in the right panel, the echo at the same
time as a function of the final field at fixed initial fields. We
see clearly in these figures that the echo presents a maximum
value at the unquenched point (equilibrium situation λi = λf )
showing that the nonequilibrium situation (λi �= λf ) is always
unfavorable with respect to the coherence of the qubits. At the
equilibrium point, one recovers the value of L found in [25].
Away from it, one observes that in the large-field limit the
Loschmidt echo saturates at a constant value. This saturation
of the decoherence for a high initial magnetic field is easy to
understand. Indeed, if λi is very large, the initial state is close
to a completely polarized state along the direction of the field
|�〉 = |↑↑ . . . ↑〉. In this limiting case, the initial covariance
matrix is trivially

C(0) =
(
1 0

0 0

)
(27)

and obviously no longer depends on the initial magnetic field
λi , and consequently, neither does the Loschmidt echo. In
the left panel in Fig. 6 the saturation value of the echo for a
completely polarized initial state is shown by dashed lines
for the two final fields considered there. We see that the
Loschmidt echo converges asymptotically to these limiting
values. In the right panel in Fig. 6, one sees that the same
saturation phenomenon applies with respect to large final
fields.

The Loschmidt echo, and subsequently the entanglement,
exhibits a signature of the quantum phase transition expe-
rienced by the Ising chain. Indeed, when the initial magnetic
field is varied, we clearly see a jump in the curve for λi close to
the critical value λc = 1. This critical behavior is better seen
by analyzing the first derivative of L(t) with respect to the

FIG. 6. (Color online) Loschmidt echo at time t = 10 as a func-
tion of the initial (final fixed; left) and final (initial fixed; right)
magnetic field. The varied magnetic fields are 0.5 [(red) circles] and
1.5 [(green) squares]. Dashed lines represent the limiting case of a
completely polarized initial state (J = 0).

initial field λi . The derivative with respect to the initial field,
at fixed time t = 10, is plotted in Fig. 7 for final fields in the
ordered (λf = 0.5) and disordered (λf = 1.5) phases. For the
two cases, the first derivative exhibits a clear singularity when
the bath approaches criticality. Note that, on one hand, the
derivative is negative for λf = 0.5, reflecting the fact that the
divergence occurs after the equilibrium point (λf = λi = 0.5)
when the echo is decreasing with the field. On the other hand, it
is positive at λf = 1.5, since the divergence occurs before the
equilibrium point (λf = λi = 1.5) when the echo is increasing
with the field. On the other hand, there is no clear signature
of a singularity, as shown in the inset in Fig. 7, with respect
to a variation of the final field for fixed initial fields λi = 0.5
and λi = 1.5. This indicates that the critical behavior is totally
set by the initial state of the environment, whereas the final
magnetic field is only responsible for dynamical effects, as we
see later.

Due to the finite size of the environment, the singularity
of the absolute value of the first derivative of the Loschmidt

FIG. 7. (Color online) First derivative of the Loschmidt echo at
time t = 10 as a function of the initial magnetic field for λf = 0.5
[(red) circles] and λf = 1.5 [(green) squares]. Other parameters are
ε = 0.1, d = 1, and N = 100. Inset: The derivative of L with respect
to the final field λf for λi = 0.5 [(magenta) circles] and λi = 1.5
[(blue) squares].
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FIG. 8. (Color online) First derivative of the Loschmidt echo at
time t = 10 as a function of the initial magnetic field for different
sizes of the bath with λf = 1.5, ε = 0.1, and d = 1.

echo is rounded and reaches a maximum value at a given
λmax of the initial field (see Fig. 8). As the size of the
environment increases, the maximum value of |dλL| diverges
logarithmically with the size dλL|λmax ∼ ln N . At the same time
the value λmax of the initial field approaches asymptotically the
critical value λc = 1 as |λc − λmax| ∼ Nγ with an exponent
γ which is found numerically to be ∼−1.1, as shown in
Fig. 9. The expected value from critical scaling theory [41]
is γ = −1/ν = −1, since the correlation length exponent
ν = 1 for the quantum Ising chain. The departure from
that value is due to the quite strong corrections to scaling
and is numerically compatible with a scaling correction
N (λc − λmax) ∼ 1 + const./N . Note that these scaling results
are comparable to those found in Refs. [15,42].

C. Short-time behavior

For times much shorter than the typical time scale of the
system t 	 ttyp with

ttyp = 1 for ε 	 1, (28)

ttyp = 1/ε for ε 
 1, (29)

the Loschmidt echo shows a parabolic decay independent of
the quench parameters as shown in Fig. 10.This independence
is easily understood from a perturbative approach [43]. Indeed,
expanding the ground state |G(λi)〉 in the eigenbasis {|φm〉} and

FIG. 9. (Color online) Left: Scaling behavior of the position of
the peaks λmax as a function of the size of the bath N . Right: Scaling
behavior of the maximum value reached by dλL as a function of the
size of the bath N . Parameters are λf = 1.5, ε = 0.1, and d = 1.

FIG. 10. (Color online) Short-time evolution of the Loschmidt
echo for different values of the final field and ε = 0.1 (left) and
ε = 20 (right). Other parameters are λi = 0.7 and N = 100.

{|ϕm〉} of H↓↓ and H↑↑, respectively, |G(λi)〉 = ∑
m am|φm〉 =∑

m bm|ϕm〉, the echo becomes

L(t) =
∣∣∣∣∣
∑
mn

a∗
mbne

−i(E↑↑
n −E

↓↓
m )t 〈φm|ϕn〉

∣∣∣∣∣
2

. (30)

At first order in perturbation theory, the eigenvalues are given
by

E↑↑
n = E↓↓

n + 〈φn|H̃I |φn〉 = E↓↓
n + Vn, (31)

where H̃I = −ε(σ z
0 + σ z

d ). If the interaction Hamiltonian is
sufficiently small, the decomposition coefficients am ≈ bm and
〈φm|ϕn〉 ≈ δm,n such that

L(t) ≈
∣∣∣∣∣
∑

n

|an|2e−iVnt

∣∣∣∣∣
2

. (32)

Expanding the exponential up to second order in time, one
obtains

L(t) ≈
∣∣∣∣∣
∑
m

|am|2
(

1 − itVm − t2

2
(Vm)2

)∣∣∣∣∣
2

≈ 1 −
⎛
⎝∑

m

|am|2V 2
m −

(∑
m

|am|2Vm

)2
⎞
⎠ t2

≈ 1 − (〈
H̃ 2

I

〉 − 〈H̃I 〉2
)
t2 ≡ 1 − αt2. (33)

Then, for short times, the echo depends only on the variance of
the interaction Hamiltonian over the initial state |G(λi)〉 and,
consequently, not on the quench protocol itself.

The Gaussian rate (the variance) α is easily evaluated by
expressing H̃I in terms of the normal modes of the Hamiltonian
HE(λi):

H̃I = −2ε
∑
kl

[(g0kη
†
k + h0kηk)(g0lηl + h0lη

†
l )

+ (gdkη
†
k + hdkηk)(gdlηl + hdlη

†
l )] + 2ε. (34)

Using the fact that 〈ηkηl〉 = 〈η†
kη

†
l 〉 = 0 and 〈ηkη

†
l 〉 = δkl , the

variance α is expressed as

α = 4ε2
∑
k �=l

[(g0kh0l + gdkhdl)
2 − 2hdkh0lgdlg0k

−h0kh0lg0kg0k − hdkhdlgdkgdk]. (35)
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FIG. 11. (Color online) Gaussian rate α as a function of the
parameters of the system. Left: α as a function of the distance d

for a final field λf = 0.5 and, from top to bottom, λi = 0.7, λi = 1,
and λi = 1.5. Circles are the numerical fits of the echo, solid lines
are obtained with Eq. (35), and dashed horizontal lines give the
asymptotic (d → ∞) values of α. Right: α − αd→∞ in the critical
case λi = 1 and for λf = 0.5 as a function of the distance d , showing
a power-law behavior with exponent −2, shown by the dashed curve.

Note that α is nothing but 2ε2(〈σ z
0 σ z

d 〉c + 1 − 〈σ z
0 〉2), where

〈AB〉c ≡ 〈AB〉 − 〈A〉〈B〉 is the connected correlation func-
tion [47]. In particular, at large distances compared to the
correlation length ξ in the initial ground state, i.e., d 
 ξ ,
since 〈σ z

0 σ z
d 〉c = 0, one expects a saturation value α(d 
 1) =

2ε2(1 − 〈σ z
0 〉2). However, when the initial state is critical, that

is, for λi = 1, since the decay of the connected part is algebraic
with 〈σ z

0 σ z
d 〉c ∼ d−2 [41], the approach toward the saturation

value α(d → ∞) is algebraic, as shown in Fig. 11.When the
initial-state field λi is close enough to the critical point λi = 1,
the first derivative of α, dλi

α, exhibits a logarithmic divergence
typical from the two-dimensional Ising universality class.

In Fig. 10, we show the short-time evolution of the
Loschmidt echo for different quench protocols in both the
weak and the strong regimes. We see that it does not depend
on the value of the final magnetic field λf for times t < ttyp as
expected from (33) and observed in [21].

Figure 11 shows the dependence of the Gaussian rate α

as a function of d for different quench protocols in the weak
coupling case.

D. Revival times

In the preceding section we have considered the short-time
behavior of the system, which is shorter than a revival time.
However, depending on the separation distance d and on
the system size N we observe a significant change in the
Loschmidt echo for times of the order N . Note that this
behavior is shown in the weak coupling case only, but the same
phenomenon is also observed in the strong coupling regime.
For times 1 � t < N/4, when the initial state is not critical
we observe a linear decay of the echo whatever the final field
is. This is shown in Fig. 12 for systems of total size N = 100
and N = 200. We see, in particular, that when the separation
distance of the two qubits is far from the symmetric opposite
position (that is, d = N/2), the initial linear decay reverts to a
linear increase at a revival time t∗ � N/4. The increase in the
echo switches again to a linear decay after t � 2t∗ � 2 × N/4,
and so on.

When the separation distance d comes close to the opposite
location N/2, we observe a new singularity, emerging at
half the original revival time, setting a new time scale,
τ ∗ � t∗/2 � N/8. This new time scale τ ∗ is manifesting itself

FIG. 12. (Color online) Loschmidt echo for distances d = N/2
[(red) circles], d = N/2 − 1 [(green) squares], d = N/2 − 2 [(blue)
diamonds], d = N/2 − 5 [(magenta) upward triangles], and d =
N/2 − 15 [(orange) leftward triangles] for N = 100 (left) and N =
200 (right). Note that due to their almost-perfect matching, the two
curves for d = N/2 − 5 and d = N/2 − 15 are not distinguishable.
Other parameters are set to ε = 0.1, λi = 1.5, and λf =0.99.

in a sudden speedup of the linear decay until the revival time t∗
is reached. The maximum slope of the new regime is reached
when the two qubits sit exactly on opposite sites along the
chain, that is, for d = N/2. This is best shown in the left
panel in Fig. 13, which shows the numerical derivative of the
echo for distances d = N/2, N/2 − 1, N/2 − 2, N/2 − 5, and
N/2 − 15. One observes, in particular, that the new time scale
τ ∗ has disappeared already for d = N/2 − 5 (see Fig. 12).
Note the remarkable feature that, whatever distance d is, at
time t = 2t∗ the Loschmidt echo recovers approximately the
same value, as clearly shown in the left panel in Fig. 12.

In the right panel in Fig. 13 we have plotted the evolution
of the echo for two qubits at a distance d = 1 for several
quench protocols including the equilibrium situation λi = λf .
We see that, contrary to the opposite location (d = N/2)
situation, there is no effect at t = τ ∗. One observes the
revival phenomenon occurring at t∗ � N/4 for the two
nonequilibrium quenches considered here (λi = 0.7, 0.9 to
λf = 0.99). However, one clearly notes that in the equilibrium
situation (λi = λf ) the revival occurs at a time t∗eq which is
twice the nonequilibrium revival time t∗.

The fact that the revival time is twice as short in the nonequi-
librium quench case (λi �= λf ) as in the equilibrium situation
(λi = λf ) can be understood in the following way [44]: Indeed,
the nonequilibrium situation corresponds to a global quench.
At each position of the chain the energy is suddenly changed

FIG. 13. (Color online) First derivative of the Loschmidt echo
with respect to time. Left: λi = 1.5 and λf = 0.99 are kept fixed,
and the distance is varied. d = N/2 [(red) circles], d = N/2 − 1
[(green) squares], d = N/2 − 2 [(blue) diamonds], and d = N/2 −
15 [(magenta) triangles]. Right: The distance is d = 1, and λf = 0.99
and λi = 0.99 [(red) circles], λi = 0.9 [(green) squares], and λi = 0.7
[(blue) diamonds]. Other parameters are ε = 0.1 and N = 100.
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FIG. 14. Pictorial representation of the difference between the
global quench (left) and the local quench (equilibrium; right). In the
quenched case, excitations are emitted from everywhere, in particular,
in one spin and its opposite. Then the revival time is the time required
for the excitations to travel a distance which is half the chain length.
On the contrary, in the equilibrium situation, excitations are emitted
in only one position, and the revival time is the time needed to travel
along the entire chain.

and from every point pairs of free quasiparticles are emitted
with opposite momenta ±k. The fastest particles travel at
velocities

vg = max
k

(
∂εk

∂k

)∣∣∣∣
k

=
{

2λf if λf < 1,

2 if λf � 1,
(36)

and since all chain sites behave as local emitters after a time
t∗ = 1

2N/vg the configuration of quasiparticles along the chain
is starting to restore its initial state, leading to the increase in
the echo. On the contrary, the equilibrium case corresponds to a
local quench at the qubits’ positions. In this case, quasiparticles
are emitted only at that localized site and they need to circle
at least once along the full chain to reconstruct the initial
state, such that t∗ = N/vg . This quasiparticle interpretation is
depicted schematically in Fig. 14.

When the starting state is long-range, that is, for an initial
field value λi very close to the critical value λc = 1, the
revival phenomenology is very similar to what has already
been discussed: At symmetric positions of the defect qubits
(d � N/2), one observes a singular behavior of the echo at
time τ ∗ = t∗/2 and a revival phenomenon starting at t∗. Far
from the symmetric position, the singular behavior at τ ∗ has
disappeared and just the revival time t∗ shows up. For the
nonequilibrium quench (λi �= λf ) the revival time t∗ = N/4,
while for the equilibrium case (λi = λf ) the revival time
t∗ = N/2 is twice as long. The main difference from the
noncritical initial state lies in the fact that the shape of the
decay (and increase) of the Loschmidt echo is no longer linear
as it was for the initial short-range state (see Fig. 15).

E. Comparison to the independent dynamics

Part of the disentanglement observed between the two
qubits is a consequence of their direct coupling to the
environment, and the other part comes from their mutual
interaction, mediated through the bath degrees of freedom.
In order to quantify the part of the decoherence that comes
from this direct coupling we compute the difference in the
Loschmidt echo between the situation where the spins are
coupled to a common environment and the limiting case of
two spins coupled to two independent ones: �L = L − Lind.
The results are presented in Fig. 16, where we have plotted

FIG. 15. (Color online) Left: Loschmidt echo for a critical initial
environment for distances d = N/2 [(red) circles], d = N/2 − 1
[(green) squares], d = N/2 − 5 [(blue) diamonds], and d = N/2 −
15 [(magenta) triangles]. Right: Time derivative of the Loschmidt
echo for the previous distances. Other parameters are N = 100,
λf = 1.5, and ε = 0.1.

�L as a function of time for different quench protocols and
distances d.

For initial magnetic fields far enough from the critical field,
the difference �L is equal to 0 up to a time tind after which L
andLind starts to differ significantly. This implies that for times
shorter than tind, the two spins are evolving independently as if
they were coupled to a noninteracting bath. After tind, the two
spins start to interact through the chain and their evolution is no
longer independent. Note that this time is not dependent on the
initial magnetic fields but, rather, depends on the final one and,
of course, on the distance between the two defect spins. This
can be understood in the following way: the two spins will
evolve independently until an entangled pair of excitations
created by the quench in the middle of the two qubits has
reached them and consequently correlated them. The time
required for this pair of excitations to travel along the chain is
given by tind = (d/2)/vg , where the velocity vg is given by (36)
and depends only on λf . Note that in the equilibrium situation,
the fact that the quasiexcitations are emitted at positions 0 and

(a) (c)

(d)(b)

FIG. 16. (Color online) Difference in the Loschmidt echo �L in
the situation where the two spins are coupled to the same bath versus
to two independent baths as a function of time for different quench
protocols and distances. Initial magnetic fields are λi = 0.4 [(red)
circles in (b) and (d)], λi = 0.5 [(red) circles in (a) and (c)], λi = 0.7
[(green) squares], λi = 0.8 [(blue) diamonds], λi = 0.9 [(magenta)
upward triangles], λi = 0.95 [(orange) leftward triangles], and λi = 1
[(indigo) downward triangles]. In all plots, the vertical dashed line
represents the theoretical value of tind = d/(2vg).
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d leads to a twice bigger tind. The time tind is indicated in
Fig. 16 by the dashed vertical lines. We see that this prediction
is in quite good agreement with the numerical data.

On the other hand, when the initial magnetic field is close
to the critical value λi = 1, there is already a nonvanishing
difference �L at t = 0+ due to the long-range correlations
present in the chain. The typical correlation length in the Ising
chain is given by ξ = | ln(λi)|−1 [45], and if the distance d

separating the two defect qubits is smaller than this correlation
length ξ , the two defects are no longer independent already at
t = 0. This is clearly shown in Fig. 16 for λi = 0.95 and 1,
where we see the large departure of �L from 0. Moreover, at a
fixed initial field λi (that is, at a fixed correlation length ξ ), the
larger the separation distance d between the two defect spins,
the smaller the departure from 0 of �L, as seen by comparing
Figs. 16(a) and 16(b), where the distance was fixed at d = 10,
to Figs. 16(c) and 16(d), where d = 20. Nevertheless, the
signature of the correlation of the qubits through the entangled
pair emission mechanism, discussed above for short-range
initial states, is also present in this critical case. We observe
clearly in Fig. 16 a significant deviation of L to Lind for times
longer than tind.

V. CONCLUSION AND SUMMARY

We have investigated the effect on the disentanglement
of two qubits initially prepared in a Bell state of a global
quench of an Ising chain environment to which the qubits are
coupled. We have, in particular, studied the dependence of the
decoherence on the distance separating the two qubits. We
have shown that the decoherence of the qubits is enhanced at
long times in the quenched environment case with respect to

the equilibrium chain considered in [25]. We have seen that
the higher the quench amplitude, the stronger the decoherence,
such that the quenched situation always leads to an increased
qubit decoherence. When the initial state of the Ising chain
environment is close to criticality the Loschmidt echo exhibits
a clear signature of the long-range nature of the initial state. At
long times, of the order of the environment size (the number
of sites N of the ITF), we observe a revival phenomenology
in the Loschmidt echo starting at a time t∗ which is twice
as short as that in the equilibrium case. This is explained
in terms of the propagation of quasiparticles emitted, due to
the global quench, at every site of the ITF chain, contrary
to the equilibrium situation, where only sites directly coupled
to the two qubits act as quasiparticle emitters. As a conse-
quence of the propagation of the quasiparticles in the chain,
they have to travel half the chain length in order to rebuild the
initial correlations, while they have to circle around the full
chain in order to start to rebuild correlations in the equilibrium
case. Finally, one observes an intriguing phenomenon when
the qubits are coupled on opposite sites of the ITF chain,
that is, when they are maximally separated; indeed, there is
singular behavior appearing in the Loschmidt echo at half the
revival time scale, t∗, which does not seem to be explainable in
terms of quasiparticle propagation but, rather, is an interference
effect.
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