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Coherent control of non-Markovian photon-resonator dynamics
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We study the unitary time evolution of photons interacting with a dielectric resonator using coherent control
pulses. We show that non-Markovianity of transient photon dynamics in the resonator subsystem may be controlled
to within a photon-resonator transit time. In general, appropriate use of coherent pulses and choice of spatial
subregion may be used to create and control a wide range of non-Markovian transient dynamics in photon-
resonator systems.
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I. INTRODUCTION

The transient dynamics of photons interacting with a
resonator is of both fundamental and practical interest. For
example, microcavity resonators have been explored as a
means to delay light in classical communication systems [1],
and similar ideas have been developed for single photons
[2–4] with potential future use in quantum communication
protocols. These and other studies exploit a basic property
of a resonator subsystem, namely, the ability to store photon
energy density and release it at a later time. Since Markovian
dynamics may be identified with information flow leaving the
system [5], it seems natural to expect that storage of a photon
or many photons in a resonator can result in non-Markovian
behavior. More precisely, if we consider a finite region of a
resonator, energy can both enter and leak out of the designated
region depending on the interplay of system parameters and the
location of the region itself. It seems natural to expect a high
degree of non-Markovianity in such a situation. Furthermore,
non-Markovianity may be viewed as a resource for information
processing tasks [6]. One is therefore motivated to demonstrate
control of photon transient dynamics and hence control of the
associated non-Markovianity.

To investigate such non-Markovian effects we study the full
time evolution of a Hamiltonian system and concentrate on the
dynamics of a subregion obtained by tracing out exactly the
remaining degrees of freedom. In a unitary system of finite
spatial extent, excitations are reflected indefinitely back and
forth from the boundaries, and consequently, any subregion of
such a system would always display non-Markovian behavior.
The same holds true for a system with discrete energy levels
because of the formation of bound states. To avoid these trivial
cases, we seek therefore a system with a continuous energy
spectrum such that the subsystem can exchange continuous
energy with its environment as sketched in Fig. 1(a).

The physics we are interested in exploring may be captured
by a single resonator with a refractive index profile as
illustrated in Fig. 1(b). The symmetric one-dimensional Fabry-
Pérot resonator consists of three spatial regions, A, B, and C,
in vacuum separated by two lossless dielectric mirrors, each
of refractive index nr and thickness Lm = λ0/4nr, where λ0

is the resonant photon wavelength in vacuum. Spatial regions

A and C connect to continuous input and output states at
x = xA and x = xC, respectively. The resonator cavity length
is LB and defines the spatial extent of region B. At the
resonant photon wavelength, the complex mirror reflection
amplitude is reiπ = −r , and the transmission amplitude is
teiπ/2 = it . Flux conservation in the lossless system requires
|r|2 + |t |2 = 1. Transmission through each mirror depends
weakly on wavelength such that

|t |2 = 1

1 + ( k2
1−k2

2
2k1k2

)2
sin2(k2Lm)

, (1)

where the propagation constant in vacuum is k1 = 2π/λ and
in the dielectric mirror it is k2 = 2πnr/λ.

A single photon may be described by a wave function
�(x,t) with the interpretation that |�(x,t)|2 is the photon
energy density [7–9]. We choose to use a single-photon wave
function description because, as will become apparent, it has
the significant advantages in this initial study of both simplicity
and ease of interpretation. The unitary dynamics of the photon
wave function propagating in the x direction in a lossless
dielectric media may be modeled as a phase-coherent integral
of linearly polarized basis states φω(x) with amplitudes αω,

�(x,t) =
∫

dω

2π
αωφω(x)e−iωt , (2)

where, as shown in the Appendix, φω(x) is a normalized
solution of the one-dimensional Helmholtz equation,

d

dx

(
1

μr(x)

d

dx
φω(x)

)
+ ω2εr(x)ε0μ0φω(x) = 0. (3)

The permeability of vacuum μ0 and permittivity of vacuum
ε0 are related to the speed of light in vacuum via c = 1/

√
ε0μ0.

Assuming the lossless dielectric material, the spatial profile
may be characterized by piecewise-constant values of relative
permeability μr and relative permittivity εr in each region of
the domain; the conditions imposed on φω(x) at the boundary
between regions 1 and 2 at position x0 are

φω(x)|x=x0−δ = φω(x)|x=x0+δ (4)
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FIG. 1. (a) Sketch of a subsystem with inputs and outputs to
continuum states. (b) Symmetric Fabry-Pérot resonator subsystem
divided into spatial regions A, B, and C separated by a quarter-
wavelength lossless dielectric characterized by refractive index nr.
The resonant wavelength is λ0.

and

1

μr1

d

dx
φω(x)

∣∣∣∣
x=x0−δ

= 1

μr2

d

dx
φω(x)

∣∣∣∣
x=x0+δ

. (5)

The refractive index is nr = √
μr

√
εr. If we assume that the

photon coherence time is longer than any other characteristic
time scale, we may simply solve Eq. (3) to completely describe
the evolution of the photon. In the thermodynamic limit there
are a large number of photons in the system, and Eq. (3) may
also be used with the interpretation that the wave function
corresponds to the classical electric field [7–9]. This means
that our model simultaneously describes a single photon and a
classical electromagnetic field.

An efficient and accurate way to solve Eq. (3) for the Fabry-
Pérot resonator subsystem coupled to continuous input and
output states is to use the propagation matrix method [10,11].
All numerical simulations we present as part of our study use
this method.

II. TRANSIENT RESPONSE

We consider the transient response of a rectangular single-
photon pulse traveling left to right and incident on the Fabry-
Pérot resonator. We smoothen the rectangular pulse with center
frequency ω0 by modulating a sinc function by a cosine in order
to reduce the Gibbs phenomenon. In this way a rectangular
pulse of duration 2T0 (length 2T0c) with rise and fall time
τr = 2π/�ωr may be written as

�(x,t) =
∫

|ω−ω0|��ωr

dω

2π

[
1 + cos

(
π (ω − ω0)

�ωr

)]

× sin[(ω − ω0)T0]

(ω − ω0)T0
φω(x)e−iωt . (6)

To connect to existing photon technology we choose a
cavity with resonant wavelength λ0 = 1500 nm and resonant
frequency ω0 = 2π/τ0, where τ0 = 5 fs corresponds to a

resonant photon energy of E0 = �ω0 = 0.827 eV. The refrac-
tive index of the mirrors is chosen to be nr = 2.5, region A

has length LA, region C has length LC, and, unless stated
otherwise, the resonator cavity length is LB = 15 × λ0. The
photon cavity round-trip time is τRT = 2LB/c = 2π/�ω =
30 × τ0 = 150 fs, and the resonator quality factor is Q =
144, where τQ = Q/ω0 = 114 fs. Typically, one describes a
transient response dominated by the ring-down time constant
τQ = 1/�, where the photon energy density of a loaded
resonator decays as e−t/τQ and in which τQ is connected via a
Fourier transform to a steady-state Lorentzian energy density
spectrum [12,13],

S(ω) = S0

(ω − ω0)2 + (�/2)2
. (7)

However, the actual transient dynamics of the system we wish
to control is more complex than this description would suggest.

Figure 2(a) shows the calculated space-time photon energy
density plot of a rectangular pulse initially moving left to
right and incident on the Fabry-Pérot resonator. The presence

FIG. 2. (Color online) (a) Space-time photon energy density plot
of a rectangular pulse incident on a Fabry-Pérot resonator. The
resonator is of length LB (indicated by two arrows). (b) |ψ(xR,t)|
(arbitrary scale) as a function of time detected at position xR far to
the right of the resonator. The field decay constant 2τQ = 229 fs is
modulated by stepwise response at the resonant cavity round-trip time
τRT = 30τ0 = 150 fs. Photon pulse parameters are �ω0 = 0.827 eV,
��ωs = 0.207 eV, and T0ω0 = 900.
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of the resonator imparts temporal structure onto reflected
and transmitted photon energy density. The reflection at the
leading edge and trailing edge of the incident pulse is due to
frequency components associated with the pulse transient rise
and fall times and the changing energy density in the resonator.
Subsequent reflections decay temporally in a stepwise fashion
in time steps of duration τRT. Figure 2(b) shows |�(xR,t)|
calculated as a function of time detected at position xR far
to the right of the resonator. Photon energy density both
in the resonator and transmitted to position xR does not
increase (or decay) as a simple exponential; rather, there is
a stepwise buildup (or decay) at each resonant cavity photon
round-trip time τRT [14]. With increasing rectangular pulse
duration, energy density asymptotically approaches the steady-
state value, which, on resonance at frequency ω0, results
in unity transmission and maximum energy density in the
resonator. However, our interest is not the steady state; rather,
we seek to coherently control the transient photon-resonator
interaction using interference effects and in this way control
non-Markovianity of the system. The shortest time scale on
which we seek to exert control is the photon cavity transit time
τRT/2.

Physical intuition and development of control concepts
are best illustrated using a photon pulse whose duration is
short compared to the cavity round-trip time, i.e., 2T0 < τRT.
Figure 3(a) shows the space-time photon energy density plot
of a short rectangular pulse initially moving left to right and
incident on the Fabry-Pérot resonator. Initially, the photon
energy density pulse entering the cavity shows no indication
of wave character. It is only after reflection from the right
mirror that self-interference effects are observed and photon
resonances inside the cavity begin to build up. The energy
stored in the resonator leaks out as forward and backscattered
pulses. The shortest time between forward and backscattered
pulses is the photon cavity transit time τRT/2.

Figure 3(b) illustrates the origin of the ring-down observed
in the space-time diagram using space-time resonant photon
ray tracing of reflected and transmitted amplitudes. The
scattered amplitudes at each mirror form a geometric series.

III. COHERENT CONTROL OF TRANSIENT RESPONSE

Coherent control of the transient response illustrated in
Fig. 3 may be achieved using photon control pulses. Similar
to Eq. (2), the control pulses consist of a coherent integral of
basis functions whose amplitudes αcont

ω and time delay tcont
ω

are control parameters that can be optimized. In the following
we avoid the use of formal optimization methods because the
geometric series illustrated in Fig. 3(b) suggests a simpler
intuitive approach.

First, we consider a single control pulse that is just an at-
tenuated, delayed, and phase-shifted version of the lead pulse.
Figure 4(a) is a space-time photon energy density plot showing
a lead pulse and control pulse initially moving left to right
and incident on the Fabry-Pérot resonator. In this example the
control pulse is configured to eliminate ring-down after exactly
one photon round-trip time in the cavity. This can be achieved
with a control pulse of the same shape that is coherent with the
lead pulse, with resonant amplitude −r2 relative to the lead
pulse, and delayed by a time τRT. Figure 4(b) is a space-time

FIG. 3. (Color online) (a) Space-time photon energy density
plot of a short rectangular pulse incident on the Fabry-Perot
resonator showing ring-down. (b) Space-time resonant photon ray
trace illustrating ring-down in the form of multiple transmitted and
reflected amplitudes. Photon pulse parameters are �ω0 = 0.827 eV,
��ωs = 0.207 eV, and T0ω0 = 60.

resonant photon ray trace showing lead and control amplitudes
configured to eliminate ring-down.

To highlight the difference in the time domain between
uncontrolled ring-down of the resonator and precise control,
Fig. 5 shows the transmitted pulse train for the two situations
illustrated in Figs. 3 and 4. Transmitted photon energy density
as a function of time for the uncontrolled case [Fig. 5(a)]
consists of a series of pulses whose peaks occur at equally
spaced time intervals τRT and whose peak value decreases
exponentially as e−t/τQ . For the controlled case [Fig. 5(b)] a
coherent control pulse is used to ensure that there is just one
transmitted photon energy density pulse.

A coherent control pulse with amplitude −r2N injected at
the N th photon round-trip may be used together with an inte-
grating detector to evaluate a finite geometric sum. Figure 6(a)
illustrates this for the case N = 3. An integrating photon
energy detector at the output measures this geometric sum as

∣∣∣∣∣
N−1∑
n=0

axn

∣∣∣∣∣
2

=
∣∣∣∣a 1 − xN

1 − x

∣∣∣∣
2

, (8)

where, on resonance, x = r2 and a = t2. The sum in Eq. (8) is
guaranteed to converge in the limit N → ∞ because |r| < 1.

Figure 6(b) illustrates that the finite geometric series in
Eq. (8) with |x| > 1 may also be created by using multiple
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FIG. 4. (Color online) (a) Space-time photon energy density
plot showing lead and control pulses. The control pulse eliminates
ring-down by removing all photon energy density in the cavity after
exactly one round-trip time τRT. There is just one transmitted photon
pulse. (b) Space-time resonant photon ray trace showing lead and
control amplitudes configured to eliminate ring-down. Photon pulse
parameters are �ω0 = 0.827 eV, ��ωs = 0.207 eV, and T0ω0 = 60.

forward- and reverse-propagating control pulses. In this partic-
ular example coherent photon control pulses are used to confine
photon energy density in the resonator. The photon energy
density in the resonator increases according to Eq. (8) because
|r| < 1 and so |x| = |eiφ/r| > 1, where φ is accumulated
phase per cavity transit.

FIG. 6. (Color online) (a) Space-time resonant photon ray trace
showing incident lead and control amplitudes configured to perform
a finite geometric sum. (b) Space-time resonant photon ray trace
showing incident lead photon and control amplitudes configured to
create a finite divergent geometric series.

In general, transient photon dynamics in resonators with
input and output ports may be used to evaluate arbitrary finite
sums of the form ∣∣∣∣∣

N−1∑
n=0

anx
n

∣∣∣∣∣
2

, (9)

where complex an and x are determined by control pulses.

IV. COHERENT CONTROL OF MARKOVIANITY

So far, we have demonstrated that coherent photon pulses
can control transient photon dynamics in a resonant cavity.

FIG. 5. (Color online) (a) Transmitted photon energy density as a function of time with no control (as in Fig. 3). (b) Same as (a), but with
a control pulse to eliminate ring-down by removing all photon energy density in the cavity after exactly one round-trip time τRT. There is just
one transmitted photon pulse. Photon pulse parameters are �ω0 = 0.827 eV, ��ωs = 0.207 eV, and T0ω0 = 60. The photon energy density
scale is arbitrary.
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FIG. 7. (Color online) (a) Normalized measure D(t) for rectangular photon pulse �1(x,t) and �2(x,t) = �1(x,t + τM) freely propagating
through spatial region A of length LA = 160 × λ0. When both pulses are simultaneously in spatial region A, then D(t) = 1. (b) ID(t), the
measure of non-Markovian dynamics for the pulse in (a). Photon pulse parameters are �ω0 = 0.827 eV, ��ωs = 0.207 eV, T0ω0 = 60, and
τM/τ0 = 60.

Here we wish to show that such techniques may be understood
as controlling the degree of non-Markovianity exhibited by
the system. To demonstrate control of non-Markovianity
in the system it is necessary to adopt a suitable measure.
The definition of a proper measure of non-Markovianity is
currently a topic of debate and various inequivalent definitions
have been proposed [5,15–18]. These definitions suffer from
the drawback of being computationally demanding, and
results have been reported only for extremely simple systems
consisting of a single or a few qubits. Recently, a definition
of non-Markovianity valid for Gaussian states (i.e., states
satisfying the Wick theorem) has been proposed which has the
advantage of being computationally tractable even for high-
dimensional many-body systems [19]. In practice one asks if
the dynamically evolving Gaussian state under consideration
is consistent with quasifree Markovian dynamics in the sense
of Refs. [20–23]. The answer is no if the Hilbert-Schmidt
distance D(t) := ‖�1(t) − �2(t)‖HS increases for some t for
initial states characterized by covariance matrices �1,2(0).
More details on the precise definition of D(t) may be found
in Ref. [19]. In the following we are interested in establishing
whether the exact evolution occurring in a spatial subregion A

can be considered Markovian according to the Hilbert-Schmidt
distance. To check this we initialize the system with two
different wave packets, �1(x,0) and �2(x,0), which are then
evolved according to the exact equation of motion to �1(x,t)
and �2(x,t). The Hilbert-Schmidt measure D(t) takes the
following form [19]:

D(t) = 1√
2

√
p2

1,1 + p2
2,2 − 2|p1,2|2, (10)

pi,j =
∫

A

�∗
i (x,t)�j (x,t)dx , (11)

where in Eq. (11) the integral is performed over region A, one
of the regions under examination. The system is considered
Markovian if D(t) decreases monotonically with time for
any choice of initial state. Non-Markovianity is observed
when D(t) increases for a pair of initial states. Instead of
considering all possible initial states, we are interested in
quantifying the non-Markovian content of some physically

motivated wave packets �1(x,t) and �2(x,t). For simplicity
we choose �2(x,t) = �1(x,t + τM) for a fixed delay τM.

As an example, consider a rectangular photon pulse
propagating in free space and moving from left to right. It will
freely enter, propagate, and exit spatial region A. Figure 7(a)
shows the resulting D(t). Initially, both pulses are to the left
of region A, so D(t) = 0. As the first pulse �1(x,t) enters the
region, D(t) increases, eventually reaching a value of 1/

√
2.

After time delay τM the second pulse enters and increases
D(t) to its maximum value of unity, corresponding to both
pulses simultaneously being in region A. There is a monotonic
decrease in D(t) as �1(x,t) and �2(x,t) leave and information
leaks out of region A, indicating pure Markovian behavior.

A direct measure of non-Markovian dynamics is simply the
positive contributions to D(t). Defining σ (t) = dD(t)/dt , the
total non-Markovian content after a time t is

ID(t) =
∫

σ (τ )>0∩[0,t]
σ (τ )dτ . (12)

The total non-Markovianity of the trajectories under con-
sideration is ID := ID(∞), where a larger value of ID

means more non-Markovian. Figure 7(b) shows the result of
calculating ID(t) for the noninteracting rectangular photon
pulse considered in (a). As expected, after the two freely
propagating pulses enter region A there is no further increase
in ID(t). The purely Markovian dynamics of a system with
no scattering results in a constant value for ID(t).

Photon dynamics are very different in the presence of a
Fabry-Pérot resonator because energy density can be scattered
and stored. Figure 8 shows the result of calculating D(t) and
ID(t) for a rectangular photon pulse initially incident from the
left in spatial regions as defined in Fig. 1(b). We ask whether
the dynamics in finite-sized regions A and C can be considered
Markovian and try to quantify its non-Markovianity content.
Figures 8(a) and 8(c) show results for D(t) and ID(t) for
a single initial rectangular pulse, while Figs. 8(b) and 8(d)
refer to the dynamics with a control pulse applied to remove
all photon energy density inside the resonator after just one
photon round-trip time τRT, as shown in Fig. 4(b).

The functions D(t) and ID(t) display complex temporal
patterns, some features of which can readily be connected with
the physics of the resonator. For example, consider the curve
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FIG. 8. (Color online) (a) D(t) for rectangular photon pulse �1(x,t) and �2(x,t) = �1(x,t + τM) in spatial region A [blue (dark gary)] to
the left of the dielectric resonator and region C [red (light gray)] to the right of the resonator. LA = 160 × λ0 and LC = 120 × λ0. (c) ID(t)
for uncontrolled ring-down of D(t) shown in (a). The calculated duration of non-Markovianity in region A to the left of the dielectric resonator
is limited by the pulse leaving the domain. (b) D(t) and (d) ID(t) illustrate the use of a single control pulse to reduce non-Markovianity in
transient dynamics by removing all photon energy in the resonator after exactly one cavity round-trip time τRT. Photon pulse parameters are
�ω0 = 0.827 eV, ��ωs = 0.207 eV, T0ω0 = 60, and τM/τ0 = 60.

labeled C in Fig. 8(c). Here we sent a control pulse whose effect
is to eliminate completely the ring-down structure at the output
(right) of the resonator. Consequently, the single transmitted
pulse has a behavior identical to that for the simple dynamics
illustrated in Fig. 7.

However, a simple picture seems to emerge from Fig. 8,
namely, the total non-Markovian content of the dynamics
restricted to region C (right of the resonator) diminishes
after application of the control pulse. On the other hand,
the total non-Markovian content restricted to region A (left
of the resonator) increases in the presence of the control
pulse. The sum of total non-Markovianity in regions A and
C is greater for the uncontrolled case than for the controlled
case.

Non-Markovianity depends on subspace size and the
location to which it is referred, so this naturally provides
another approach to its control. For example, evaluating D(t)
in region B inside the resonator involves spatial integrals over
the entire cavity length LB. However, if one evaluates D(t) in a
smaller portion of the cavity, then information flows in and out
of that subspace as energy density builds up or decays in the
resonator. Oscillatory values of D(t) on a rising or falling
background result, indicating non-Markovian contributions
in a small subspace inside the resonator. These oscillations
are averaged out when the subspace is increased to include
the complete resonator cavity of length LB (region B). This
illustrates the fact that small subspaces can be tuned to exhibit
enhanced non-Markovian effects.

To show how spatial placement of subspace determines
Markovianity, consider a resonator with cavity length LB =
120 × λ0, which defines region B, and a half space in the
resonator cavity of length LB/2 adjacent to the left mirror,
which defines region B ′. As shown in Fig. 9, in the absence
of coherent control, transient photon evolution dynamics is

FIG. 9. (Color online) ID(t) for a resonator with cavity length
LB = 120 × λ0, which defines region B, and a half space in the
resonator cavity of length LB/2 adjacent to the left mirror, which
defines region B ′. In the absence of a coherent control pulse, ID(t) is
purely Markovian for subspace B and is non-Markovian for subspace
B ′. Photon pulse parameters are �ω0 = 0.827 eV, ��ωs = 0.207 eV,
T0ω0 = 60, and τM/τ0 = 30.
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more non-Markovian for the half-cavity subspace B ′ than for
the full-cavity subspace B. Placing the half-cavity subspace
B ′ symmetrically about the center of the resonator does not
remove non-Markovian dynamics. This is because resonator
energy density stored outside B ′ is reflected by the mirrors
back into B ′, causing the non-Markovian behavior.

V. CONCLUSIONS

We have applied a Hilbert-Schmidt measure of non-
Markovianity to a photon interacting with a symmetric lossless
dielectric resonator. Non-Markovian transient photon dynam-
ics in a resonator subsystem coupled to continuum states is
shown to be controlled using coherent pulses. Transient photon
dynamics can be controlled to within a photon-resonator transit
time. The underlying physical mechanisms used to control
the dynamics at resonance are conveniently described using
interference arising in finite geometric series with complex
amplitudes. In general, coherent pulses, combined with a
suitable choice of spatial subspace, may be used to both create
and control a wide range of non-Markovian transient dynamics
in photon-resonator systems. This initial study has revealed
a richness in both the physics and control of single-photon
transient dynamics interacting with a resonator, suggesting
further study is warranted.
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APPENDIX: THE PHOTON WAVE FUNCTION

1. Introduction

To justify the use of the single-photon wave function
we present a simplified version of the arguments given
in Refs. [7–9,24]. This is done by first quantizing the
electromagnetic field and restricting the discussion to wave
propagation in one spatial dimension and lossless dielectrics.
The corresponding quantized energy density operator in the
dielectric is not diagonal when expressed in terms of the
free-field operators. However, the energy density may be
diagonalized through a unitary Bogolyubov transformation
that relates the dielectric creation and annihilation operators to
the free-field creation and annihilation operators. The abrupt
perturbation at the air-dielectric interface may be viewed as
projecting free waves onto refracted waves using the “sudden
approximation.” Continuity and smoothness are guaranteed
via the field interface conditions.

2. The single-photon wave function in vacuum from
the quantized electromagnetic field

The electromagnetic field in vacuum may be quantized in
the Coulomb gauge to give

	A(xμ) =
(

�

ε0

)1/2 ∫
d3k

(2π )3/2

1√
2ω

2∑
r=1

[	εr (	k)a	k,re
−ikμxμ

+ 	εr (	k)∗a†
	k,r

eikμxμ]
, (A1a)

	E(xμ) =
(

�

ε0

)1/2

i

∫
d3k

(2π )3/2

√
ω

2

×
2∑

r=1

[	εr (	k)a	k,re
−ikμxμ − 	εr (	k)∗a†

	k,r
eikμxμ]

,

(A1b)

	B(xμ) =
(

�

ε0

)1/2

i

∫
d3k

(2π )3/2

1√
2ω

×
2∑

r=1

{
[	k × 	εr (	k)]a	k,re

−ikμxμ

.

− [	k × 	εr (	k)∗]a†
	k,r

eikμxμ}
, (A1c)

where xμ = (ct,	x), kμ = (ω/c,	k), 	εr is a polarization vector
satisfying 	k · 	εr (	k) = 0, and (a	k,r ,a

†
	k,r

) are annihilation and
creation operators of a single plane-wave excitation with
momentum 	k and polarization r satisfying

[a	k,r ,a
†
	k′,s

] = δrsδ
(3)(	k − 	k′) . (A2)

The (normal-ordered) Hamiltonian and momentum are, re-
spectively, given by

:H : = �

∫
d3k ωk

∑
r

a
†
	k,r

a	k,r , (A3)

: 	P : = �

∫
d3k 	k

∑
r

a
†
	k,r

a	k,r . (A4)

The vacuum |0〉 is defined by requiring ak|0〉 = 0 for all k.
The one-particle state

|	k,r〉 ≡
√

ωk

c
a
†
	k,r

|0〉 (A5)

is an eigenstate of the momentum operator with momentum
	k and polarization r . The reason for the

√
ωk prefactor is that

this makes the orthogonality condition given by

〈	k,r|	k′,r ′〉 = ωk

c
δ(3)(	k − 	k′)δrr ′ (A6)

Lorentz invariant [25]. The one-particle completeness condi-
tion is then given by

11−particle =
∑

r

∫
d3k

c

ωk

|	k,r〉〈	k,r| . (A7)

For a momentum state with 	k = kêz, we can choose 	ε1 ≡
	ε+ = −(êx + iêy)/

√
2, 	ε2 ≡ 	ε− = (êx − iêy)/

√
2, such that

the momentum state satisfies

:H : |kêz,±〉 = �ck|kêz,±〉 , (A8)

: 	P : |kêz,±〉 = �kêz|kêz,±〉 , (A9)

Sz|kêz,±〉 = ±|kêz,±〉 , (A10)

where Sz = −i�(êx ⊗ êy − êy ⊗ êx) is the z component of
the angular momentum operator. Therefore, let us consider a
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single-particle state |ψ〉. We define the (vector) momentum
space wave function of helicity r:

	ψr (	k) = 〈	k,r|ψ〉 . (A11)

This is a vector due to the spin-1 nature of the photon and how
the state must behave under the angular momentum operator.
Furthermore, it satisfies

	k · 	ψr (	k) = 0 . (A12)

The normalization of this momentum-space wave function is
determined by the completeness condition:

1 = 〈ψ |ψ〉 =
∑

r

∫
d3k

c

ωk

	ψr (	k)† 	ψr (	k) . (A13)

This normalization of the momentum-space wave function
matches that defined by Ref. [7]. We define the position-space
wave function 	φ(x) of the state to be simply the Fourier
transform of 	ψ(k):

	φr (	x) =
∫

d3k

(2π )3/2
ei	k·	x 	ψr (	k) . (A14)

This implies that

〈ψ | :H : |ψ〉 =
∑

r

∫
d3x 	φr (	x)† 	φr (	x)

=
∑

r

∫
d3k 	ψr (	k)† 	ψr (	k) . (A15)

Furthermore, Eq. (A15) suggests that we interpret
	ψr (	k)† 	ψr (	k)d3k as the energy density in shell 	k and 	k + d	k in
momentum space rather than a probability density [9]. Finally,
we note that

〈	k,σ | :H : |ψ〉 = c�|	k| 	ψσ (	k)

= c�σ (	s · 	k) 	ψσ (	k)

= ic�σ 	k × 	ψσ (	k) , (A16)

where 	s = (sx,sy,sz) are the three spin-1 matrices (generators
of rotations for spin-1 particles; angular momentum is 	S =
�	s), and we use the feature of spin-1 matrices that 	a × 	b =
−i(	a · 	s)	b [9]. Since the Hamiltonian is the generator of time
translations, we have our Schrödinger equation,

i�∂t
	ψσ (	k,t) = ic�σ 	k × 	ψσ (	k,t) , (A17)

or in position space,

i�∂t
	φσ (	x,t) = c�σ∇ × 	φσ (	x,t) . (A18)

Applying another i�∂t , we recover the Helmholtz equation:

− ∂2
t
	φσ (	x,t) = c∇ × [c∇ × 	φσ (	x,t)] = −c2∇2 	φσ (	x,t) ,

(A19)

where in the last equality we used Eq. (A12).

3. Quantization in a linear lossless dielectric

One way to study the effect of the presence of the lossless
linear medium is to consider the modified Hamiltonian density
[24]

H = 1

2

(
ε0 	E2 + 1

μ0

	B2 + χ 	E2

)
. (A20)

(For other methods see Ref. [26].) Inserting the quantized
fields in vacuum into this expression clearly shows that the
Hamiltonian density operator is not diagonal in terms of
the free-field creation and annihilation operators (a†

	k,σ
,a	k,σ ).

Nevertheless, the Hamiltonian density can be diagonalized
in terms of “refracted-wave” operators (b†	k,σ

,b	k,σ ) via a
Bogolyubov transformation [24]. In this basis, the Hamiltonian
density has the same eigenvalues as in vacuum, but the
momentum operator is renormalized by a factor of the index of
refraction, such that the results match the known results from
classical optics.

At an abrupt vacuum-dielectric interface, where the per-
mittivity changes from ε = ε0 to ε = √

nrε0, we can treat the
change in the momentum operator (from the vacuum form to
the renormalized form) in the “sudden approximation” [24].
For example, a single excitation a

†,σ
	k,σ

|0〉 gets projected to [24]

(
2
√

nr

nr + 1
b
†
	k,σ

+ nr − 1

nr + 1
a
†
	k,σ

)
|0〉, (A21)

such that the probability of reflection and transmission agrees
with the classical result for energy reflection and transmission.
With these results in mind, we can generalize our equation
for the single-photon wave function to satisfy the Helmholtz
equation in the presence of a lossless dielectric:

∇ ×
(

1

μ(x)
∇ × 	ψσ (	x,t)

)
= −ε(x)∂2

t
	ψσ (	x,t) . (A22)

For a linearly polarized, transverse field which propagates
in the x direction one has 	ψσ (	x,t) = (0,φσ (x,t),0), and one
recovers Eq. (3) after a time Fourier transform.
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