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Decoherence of an electrically driven spin qubit
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We study decoherence of a field-driven qubit in the presence of environmental noises. For a general qubit, we
find that driving, whether on-resonance or off-resonance, alters the qubit decoherence rates (including dissipation
and pure dephasing), allowing both blue and red sideband contributions from the reservoir. Depending on the
noise spectral density, driving field detuning, and driving field phase shift, the qubit decoherence rates could be
either accelerated or reduced. We apply our general theory to the system of an electron spin qubit that is confined
in a quantum dot and driven by an in-plane electric field. We analyze how spin relaxation induced by the electrical
noise due to electron-phonon interaction varies as a function of driving frequency, driving magnitude, driving
field phase shift, and spin-orbit coupling strengths.
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I. INTRODUCTION

Decoherence is a crucial issue in the studies of quantum-
information processing [1] and the quantum-classical tran-
sition for physical systems [2]. As such, decoherence has
been widely studied for many physical systems, ranging from
atomic to solid-state objects.

Among the multitude of decoherence studies, one branch
focuses on the decoherence of a two-level system, or a
qubit, because of its direct relevance to the quantum-circuit
model of a quantum computer [1]. Such a study normally
involves the coupling of an otherwise isolated and free qubit
to an infinite reservoir (or bath) [3], with the most famous
being the spin-boson model [4]. However, in a quantum-
information processor, there are inevitably many qubits, and
they are often being driven by external fields, for example
for single-qubit operations. Furthermore, selective single-qubit
operations often involve shifting the frequency of a specific
qubit relative to the others, then applying a global driving field
that is on resonance with the selected qubit [5]. This approach
for single-qubit operations means that many qubits would
experience driving no matter whether they are being operated
on or not. Therefore, investigating decoherence properties of
a qubit while it is driven is a crucial step toward the building
of a scalable quantum computer.

Studies of relaxation in an ensemble of weakly driven spins
go back to the early days of magnetic resonances [6–10].
Driven quantum tunneling in two-level systems has also been
explored before [11]. Over the past decade there have been
both theoretical and experimental studies of decoherence of
a driven qubit [12], particularly on the decoherence of super-
conducting qubits, whether flux [13,14], charge [15], or phase
qubits [16,17]. These studies mainly focused on how a resonant
driving field modifies the qubit decoherence rates, although
there is also experimental evidence that off-resonant driving
of a microwave resonator could lead to strong modifications of
the flux-qubit Rabi frequency [18]. Other explorations include
how to realize Landau-Zener transitions in superconducting
persistent current qubits through longitudinal harmonic [19]
and biharmonic [20] driving, how to infer the noise spectrum
by studying the decay of Rabi oscillations of a flux qubit
under strong driving [21], how decoherence affects the driving

of a qubit (mostly spin qubits) [22–24], and how driving
and decoherence affect tunneling through a double dot [25].
However, many interesting and important issues, such as
effects of off-resonance driving by an external field, remain
open, warranting further studies.

In this work, we develop a general theory on the decoher-
ence of a driven qubit in a semiclassical noisy environment. In
particular, we first calculate the qubit relaxation and dephasing
rates in the reference frame that rotates at the frequency of the
driving field, and find that the rates contain contributions from
multiple frequencies of the noise spectrum, including both
blue- and redshifted sideband contributions. In the laboratory
reference frame, the driving modifies the qubit decoherence
(both relaxation/dissipation and pure dephasing) significantly
as compared to a free qubit. In the case of resonant driving,
we find the longitudinal relaxation rate in the laboratory
frame is equivalent to the transverse relaxation rate in the
rotating frame. In the case of off-resonance driving, the
qubit decoherence is again influenced by both relaxation and
dephasing in the rotating frame, though the calculation can
only be carried through numerically in general. We then
apply our theory to the case of a spin qubit that is driven
electrically [26–28] via the spin-orbit (SO) interaction, and
under the influence of phonon noise [29–35]. We find that the
driven spin qubit undergoes both relaxation and dephasing,
which is qualitatively different from the case of a free spin
qubit, for which phonon noise leads to only relaxation at the
lowest order of the SO interaction.

The rest of the paper is organized as follows. In Sec. II
we develop a general theory on the decoherence of a driven
qubit influenced by a semiclassical noise based on the Bloch-
Redfield method. In Sec. III A, we briefly summarize the theory
on electrical-driven spin resonance for a single spin qubit
in a quantum dot. Details of the derivation of the effective
spin Hamiltonian are given in the Appendix. In Sec. III B,
we obtain the decoherence rates of this driven qubit under
electron-phonon interaction in rotating frame. Sections III C
and III D are on the relaxation and pure dephasing properties
(in the laboratory frame) of a resonantly driven spin qubit,
respectively. These discussions are further extended into the
off-resonance cases in Secs. III E and III F. Lastly, we present
further discussions and our conclusions in Secs. IV and V.
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II. GENERAL THEORY

In this section we develop a general theory to treat the
decoherence problem of a field-driven qubit. We first set up
a model Hamiltonian, then simplify it by transforming into
a reference frame that rotates with the driving field. This
transformation allows us to examine the qubit decoherence
in the rotating frame using the Bloch-Redfield approach, and
then obtain qubit decoherence rates in the laboratory reference
frame as well.

A. Model Hamiltonian

The effective Hamiltonian of a qubit driven by a classical
field and under the influence of a noise could be written as
(letting � = 1)

Heff = ωZ

2
σz +

(
�

2
e−iνt−iφσ+ + H.c.

)
+

∑
j

njσj , (1)

where ωZ is the qubit energy splitting, �, ν, and φ are the
strength, frequency, and angle (between the driving field and
the x direction of the Bloch sphere) of the driving field,
respectively, and nj ’s, j = x,y,z, are the three components
of the noise experienced by the qubit.

In this study we assume that the noise is weak, |nj | �
ωZ,�,ν, so that Bloch equations [36] can be used to
describe the dynamics generated by Heff . We also assume
that different noise components are statistically independent,
i.e., 〈nj (t1)nk(t2)〉 = 0,j �= k, and invariant under temporal
translation, i.e., 〈nj (t1)nj (t2)〉 = WjS(t2 − t1), where Wj is
the noise strength along direction j , and S(t) is the noise cor-
relation function [the noise is Markovian if S(t) ∝ δ(t)]. The
following analysis allows the treatment of weakly correlated
noises, which correspond to near-Markovian environments.
The spectral information of the noise can be obtained from its
Fourier transform: S(t) = 1

2π

∫ ∞
−∞ dωS(ω)e−iωt , where S(ω) is

the spectral density function. We can express the noise spectral
function along the j direction as Sj (ω) = WjS(ω).

The effective Hamiltonian (1) here also describes a spin-1/2
particle in a constant magnetic field (with Zeeman splitting
ωZ), driven by a transverse ac magnetic field of frequency
ν and magnitude �, and under the influence of a random
magnetic noise in all three directions. Thus our results can be
visualized in terms of a driven spin undergoing Rabi oscillation
in the presence of a magnetic noise.

To calculate qubit dynamics governed by Heff , we need to
first remove the time dependence introduced by the driving
term. This can be done by transforming into a frame rotating
at the driving field frequency. Specifically, we perform a
canonical transformation S

(1)
T , with S

(1)
T = i ν

2 σzt , so that

the Hamiltonian is transformed to H
(1)
eff = eS

(1)
T Heffe

−S
(1)
T +

i�∂tS
(1)
T :

H
(1)
eff = −


2
σz + �

2
σx ′ + wtσx ′ + utσy ′ + nzσz, (2)

where 
 ≡ ν − ωZ , wt = Re[zte
−iφ], ut = Im[zte

−iφ], and
zt = (nx + iny)e−iνt . We have rotated the xy axes to
x ′y ′ so that σx ′ ≡ σx cos φ + σy sin φ and σy ′ ≡ −σx sin φ +
σy cos φ. The spectral densities of the transformed noise

components wt and ut are related to the spectral density S(ω)
of the original noise nj :

Sw(ω) = Wx cos2 φ + Wy sin2 φ

2
S̃(ν,ω), (3)

Su(ω) = Wx sin2 φ + Wy cos2 φ

2
S̃(ν,ω), (4)

S̃(ν,ω) ≡ S(ω + ν) + S(ω − ν). (5)

The transformed Hamiltonian H
(1)
eff describes a free spin in

a tilted effective magnetic field (in the x ′z plane) under the
influence of a modified magnetic noise. In particular, for
the transformed noise components wt and ut , their spectral
densities at any frequency are an average of the red- and
blueshifted values from the original spectral density function
S(ω).

We perform a further rotation around the y ′ axis within
the rotating reference frame so that the quantization axis z′
is along the total effective field. The transformation matrix
is S

(2)
T = i θ

2 σy ′ , with tan θ = −�/
. The resulting effective
Hamiltonian takes the simple diagonalized form

H
(2)
eff = ω̃

2
σz′ + (wt cos θ − nz sin θ )σx ′

+utσy ′ + (wt sin θ + nz cos θ )σz′ , (6)

where ω̃ = � sin θ − 
 cos θ = √
�2 + 
2. In this rotating

frame, the original time-dependent driven-qubit problem
becomes the problem of a free qubit (with a re-normalized
energy splitting ω̃) under the influence of a reshaped noise in
all three directions.

B. Decoherence in the rotating reference frame

We now calculate the decoherence rates for a qubit in
the rotating frame using the effective Hamiltonian (6). Our
calculation is within the Bloch-Redfield equation framework,
where the relaxation and pure dephasing rates are given
by 1/T ′

1 = Sx ′x ′ (ω̃) + Sy ′y ′ (ω̃), and 1/T ′
φ = Sz′z′(0), respec-

tively [31,36]. To avoid confusion with the quantities measured
in the laboratory frame, we use primes to indicate the three
decoherence rates: 1/T ′

1,1/T ′
2,1/T ′

φ measured in the rotating
frame. Here the noise spectral densities take the form

Sx ′x ′ (ω) = 2[Sw(ω) cos2 θ + Sz(ω) sin2 θ ],

Sy ′y ′ (ω) = 2Su(ω),

Sz′z′ (ω) = 2[Sw(ω) sin2 θ + Sz(ω) cos2 θ ].

Thus the qubit relaxation and dephasing rates in the rotating
frame are

1

T ′
1

= 2Wz sin2 θS(ω̃) + [Wx(cos2 θ cos2 φ + sin2 φ)

+Wy(cos2 θ sin2 φ + cos2 φ)]S̃(ν,ω̃), (7)

1

T ′
φ

= 2 sin2 θ (Wx cos2 φ + Wy sin2 φ)S(ν)

+ 2Wz cos2 θ S(0). (8)
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There are several notable features to the qubit decoherence
rates in the rotating frame. The longitudinal relaxation rate is
not only determined by the noise spectrum at the qubit energy
splitting ω̃, but also at the sideband frequencies ω̃ ± ν. Pure
dephasing is determined not only by longitudinal noise (Wz)
at zero frequency [S(0)], but also transverse noise (Wx and
Wy) at the driving frequency ν. This additional contribution
to pure dephasing is the consequence of the effective noise
contained in H

(2)
eff , where the longitudinal noise contains both

the longitudinal and transverse components of the original
noise (nx , ny , and nz). Therefore, even if a free qubit in the
laboratory reference frame does not experience pure dephasing
(i.e., Wz ≡ 0), it does in the rotating frame when it is driven.

When the driving field is on resonance with the qubit, the
expressions for the decoherence rates are simpler and more
transparent. Assuming that the transverse noise is isotropic,
Wx = Wy , the qubit relaxation and dephasing rates in the
rotating frame are

1

T ′
1

∣∣∣∣
res

= 2WzS(�) + WxS̃(ωZ,�), (9)

1

T ′
φ

∣∣∣∣∣
res

= 2Wx S(ωZ). (10)

Not surprisingly, these rates are modified significantly com-
pared to a free qubit, as the environmental noise in the rotating
frame is altered from the laboratory frame. Notice that the
zero-frequency noise spectral density S(0) is not present in
either decoherence rates. In other words, in a fast-rotating
reference frame, low-frequency noise, even if strong, has a
diminished effect on the qubit. For example, 1/f noise plays
an important role in the dephasing of a charge qubit [37,38]
and a singlet-triplet qubit [39]. However, this decoherence
channel would be significantly suppressed if the charge qubit
is driven strongly and measurements can be done in the rotating
frame [17].

The relaxation and dephasing rates obtained here represent
decoherence in the rotating frame, and are meaningful if qubit
dynamics in the rotating frame is accessible experimentally,
such as the case in a superconducting qubit [17]. Recently,
rotating frame magnetometry has also been demonstrated with
a single nitrogen-vacancy center in diamond [40]. A qubit in
the rotating frame can be thought of as a qubit dressed by
the driving field, and the decoherence rates presented in this
section are properties of such a dressed qubit. On the other
hand, many experimental measurements are on observable
quantities in the laboratory reference frame. In these cases we
need to rotate back to the laboratory frame (or switch back to
the bare qubit) in order to quantify the effects of driving. Below
we discuss some general features of driven qubit decoherence
in the laboratory frame.

C. Relaxation in the lab frame

We first focus on driven qubit relaxation in the laboratory
frame. To have a consistent description, we set the qubit
initial state at 〈σz(0)〉 = 1. In other words, it is in the excited
eigenstate of σz in the laboratory frame. The evolution of

〈σz(t)〉 can then be obtained as

〈σz(t)〉 = sin2 θ e−t/T ′
2 cos ω̃t

+ cos θ [σ ′
∞ + (cos θ − σ ′

∞)e−t/T ′
1 ], (11)

so that the longitudinal relaxation rate 1/T1 can be obtained
numerically by setting the envelope of 〈σz(T1)〉 at 〈σz(T1)〉 =
e−1. Here 1/T ′

2 ≡ 1/(2T ′
1) + 1/T ′

φ is the transverse relaxation
rate in the rotating frame, and σ ′

∞ is the asymptotic value in
the long-time limit for 〈σz(t)〉 in the rotating frame, which is
determined by the effective temperature of the modified noise.
Note that usually 1/T1 is determined by both the relaxation
rate 1/T ′

1 and the dephasing rate 1/T ′
φ from the rotating

frame.
For a resonantly driven qubit, its relaxation rate can

be obtained analytically. Specifically, when ν = ωZ , θ = π
2

and ω̃ = �, so that 〈σz(t)〉 = e−t/T ′
2 cos �t . Now the lon-

gitudinal relaxation rate 1/T1 in the laboratory frame is
equivalent to the transverse relaxation rate 1/T ′

2 in the rotating
frame:

1

T1

∣∣∣∣
res

= 1

T ′
2

= Wx sin2 φ + Wy cos2 φ

2
S̃(ωZ,�)

+ 2(Wx cos2 φ + Wy sin2 φ)S(ωZ) + WzS(�).

(12)

Notice that the environmental noise contributes to qubit
relaxation at multiple frequencies. In addition to the normal
contribution at the qubit frequency ωZ , there are also sideband
contributions at � ± ωZ , and a contribution at the Rabi fre-
quency �. These additional contributions are all consequences
of driving.

Interestingly, when the qubit Rabi frequency is low, its re-
laxation rate (1/T1)|res(� → 0) in Eq. (12) does not approach
the relaxation rate for a free qubit, which is

1

T1

∣∣∣∣
nondriven

= 2(Wx + Wy)S(ωZ). (13)

The modification of the qubit relaxation due to resonant driving
is

δ

(
1

T1

)
≡ 1

T1

∣∣∣∣
res

− 1

T1

∣∣∣∣
nondriven

= WzS(�) − (Wx sin2 φ + Wy cos2 φ)

×
[

2S(ωZ) − 1

2
S̃(ωZ,�)

]
. (14)

This modification arises because the external driving allows
the qubit to sense the noisy environment in different frequency
regions, while it also redistributes the noise correlation strength
along different directions. Mathematically, the (resonantly)
driven and nondriven Hamiltonians are of different forms:
one time-dependent, the other time-independent. To reach the
nondriven limit from the driven Hamiltonian, one needs to first
take ν → 0 to recover a stationary system Hamiltonian, and
then let � → 0.

A previous study of resonantly driven tunneling in a double
quantum dot found that in an Ohmic environment for a
spin-boson model, δ(1/T1) is always smaller than zero [11,41]
in the regime of strong driving. This “coherent destruction
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of tunneling,” which improves the coherent properties of an
open system, is similar in principle to motional narrowing,
spin echo, and dynamical decoupling in the context of spin
resonance [10,32,36,42]. In the current study, where we
consider a generic noise, this regime of reduced relaxation
is present as well. According to Eq. (14), qubit relaxation
is suppressed [δ(1/T1) < 0] when Wz is relatively small (as
compared to Wx and/or Wy), and the noise spectral density
is more or less flat [S(� ± ωZ) ≈ S(ωZ)]. For example,
if the transverse noise is much stronger than the longitu-
dinal noise, Wx ∼ Wy � Wz, Eq. (14) can be simplified
to

δ

(
1

T1

)
≈ −1

4

1

T1

∣∣∣∣
nondriven

. (15)

Here the relaxation rate for a driven qubit is reduced to ∼75%
of that in the nondriven case, and the result is independent of
the properties of S(ω).

It is important to point out, however, that qubit relaxation
is not always suppressed by driving. A simple example is
a qubit in the presence of an isotropic white noise, for
which Wx = Wy = Wz and S(ω) has no ω dependence. In
this case δ(1/T1) = 0; i.e., there is no difference between the
relaxation rate of a driven and a nondriven qubit. For this
special noise spectrum, the suppressed decoherence effect of
the transverse noise is compensated by the enhanced effect
of the longitudinal noise, and the net effect on relaxation
vanishes.

In general, enhanced relaxation, i.e., δ(1/T1) > 0, is also
possible if the free qubit experiences only pure dephasing
(Wz � Wx,Wy), or more generally if the qubit environment
has some structures and/or anisotropy. Consider the example
when the noise has a Lorentzian spectral function,

S(ω) = 1

2π

�γ 2

γ 2 + (ω − ωc)2
, (16)

where γ is inversely proportional to the environment memory
time (the smaller the γ , the higher the spectral peak) and
ωc corresponds to the peak frequency. In the special cases
of � ± ωZ = ωc, the regime S(ωZ) < 1

4 S̃(ωZ,�) could be
accessible through tuning of γ or �. With a further help from
a nonzero longitudinal noise strength Wz, there could certainly
exist a realistic parameter regime in which qubit relaxation is
enhanced by driving.

We note here that our calculation of 1/T1 is based on the
Bloch-Redfield equation. It is valid for a Markovian or a near-
Markovian environment, which corresponds to a relatively flat
and smooth noise spectral function. To study a qubit in an
environment with a sharply peaked noise spectral density, a
non-Markovian treatment is required, and is beyond the scope
of the current analysis.

D. Pure dephasing in the lab frame

Information on pure dephasing is extracted from relaxation
of the transverse components of the driven qubit. To allow a
proper measurement of the transverse relaxation rate 1/T2 in
the laboratory frame for the qubit, we prepare it initially at
〈σx(0)〉 = 1, i.e., in a σx eigenstate. The dynamics of 〈σx(t)〉

under Hamiltonian (1) can then be obtained as

〈σx(t)〉 = [σ ′
∞ sin θ + (cos φ sin θ − σ ′

∞) sin θ e−t/T ′
1

+ S⊥e−t/T ′
2 cos(ω̃t + ψ) cos θ ] cos(νt + φ)

− S⊥e−t/T ′
2 sin(ω̃t + ψ) sin(νt + φ), (17)

where S⊥ ≡
√

cos2 θ cos2 φ + sin2 φ and ψ ≡
− sin−1(sin φ/

√
cos2 θ cos2 φ + sin2 φ). Clearly, the decay of

〈σx(t)〉 is governed by both 1/T ′
1 and 1/T ′

2, similar to the
case of 〈σz(t)〉. The transverse polarization depends on the
driving angle φ explicitly because the initial state is assumed
to be polarized along the x direction on the Bloch sphere. The
presence of multiple sinusoidal functions in 〈σx(t)〉 leads to
beatings and generally more complexities than in 〈σz(t)〉. In
general the relaxation rate 1/T2 for the decay of 〈σx(t)〉 can
only be determined numerically by setting the envelope of
〈σx(T2)〉 at e−1. The pure dephasing rate 1/Tφ can then be
obtained from 1/Tφ = 1/T2 − 1/(2T1).

Sideband effects on pure dephasing are difficult to extract
from purely numerical solutions. However, on resonance and
with special driving angles, pure dephasing rate could be
obtained analytically. For example, with resonant driving
and when φ = 0, the initial decay rate for 〈σx(t)〉 is ∼2/T ′

1
according to Eq. (17) (σ ′

∞ is taken as −1, which is valid for
many types of noises, such as 1/f noise and thermal noise with
low effective temperature), so that we can use 1/T2 = 2/T ′

1 to
represent the transverse relaxation rate. From Eqs. (7), (10),
and (12), we find

1

Tφ

∣∣∣∣
res,φ=0

= 7

4T ′
1

− 1

2T ′
φ

= 7

2
WzS(�) + 7

4
WyS̃(ωZ,�) − WxS(ωZ). (18)

Recall that for a free qubit, the pure dephasing rate is
determined by the noise spectrum at zero frequency:

1

Tφ

∣∣∣∣
nondriven

= 2WzS(0); (19)

thus (1/Tφ)|res,φ=0 and (1/Tφ)|nondriven are determined by
different parts of the noise spectrum, and are therefore
unrelated to each other. Similar to the case in the rotating
frame, nonvanishing pure dephasing could be generated by
driving in the laboratory frame, even if a free qubit does not
experience any pure dephasing.

In summary, from the analysis of both dissipation and
pure dephasing of a driven qubit, we observe that (i) external
driving dramatically modifies the decoherence rates in both
the laboratory frame (1/T1 and 1/Tφ) and the rotating frame
(1/T ′

1 and 1/T ′
φ) through environmental noise redistribution

and sideband contributions; (ii) in the case of resonant driving,
1/T1 in the laboratory frame is the same as 1/T ′

2 in the rotating
frame; and (iii) driving can generate finite pure dephasing even
if there is no pure dephasing for a free qubit.

III. APPLICATION TO AN ELECTRICALLY DRIVEN
SPIN QUBIT

In this section we apply our general theory on the
decoherence of a driven qubit to the analysis of an electron
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spin qubit in a quantum dot (QD) driven electrically and
under the influence of phonon noise. While an electron spin
can be driven with the traditional spin resonance technique
using an ac magnetic field [10,36], a faster alternative can be
achieved via electrical driving. This electrically driven spin
resonance technique takes advantage of the finite spin-orbit
(SO) interaction in a semiconductor (the so-called electric
dipole spin resonance, or EDSR) [35,43,44], or the presence
of an inhomogeneous magnetic field [26]. Here we will focus
on using EDSR to drive an electron spin qubit.

In a semiconductor QD, the fastest single-spin decoherence
mechanism at low temperatures and in a finite magnetic field
is the pure dephasing coming from the hyperfine interaction
between the electron spin and the nuclear spins of the host
material. However, there are various ways by which this
dephasing effect can be reduced [10,45], not to mention
that in Si, the effects of the nuclear spins can be strongly
suppressed through isotopic purification [46]. Beyond the
nuclear spins, phonon noise through spin-orbit interaction
generally constitutes the next most important decoherence
channel for a spin qubit in a finite field [31,47], and will be the
noise we study in this section.

In the following we first present the effective Hamiltonian
for a spin qubit undergoing EDSR in the presence of phonon
noise. We then analyze the obtained decoherence rates in
the cases of on- and off-resonance driving, and discuss the
implications of our results.

A. Effective spin Hamiltonian

The system we study is a single electron confined in a 2D
quantum dot in the xy plane. The growth direction z has a much
stronger confinement; thus we neglect the orbital dynamics
along z. The driving electric field is applied in the xy plane.
The SO interaction contains both Rashba and Dresselhaus con-
tributions [32]. We perform a routine procedure to eliminate
the SO interaction to the first order [35,47–49] and obtain the
following effective spin Hamiltonian (a detailed derivation can
be found in the Appendix):

Heff ≈ 1

2
gμB( �B0 + �Be) · �σ ,

(20)
�Be = 2e

gμBω2
d

[β−Ėy,β+Ėx,0].

For simplicity we have chosen a perpendicular applied mag-
netic field �B0 = Bz�z along the z direction, and �Be is the effec-
tive magnetic field from the electrical driving field and the elec-
trical noise through SO interaction. In addition, �ωd is the dot
confinement energy, μB is the Bohr magneton, and β± ≡ β ±
α are the SO interaction strengths, with α and β the Rashba
and Dresselhaus interaction strengths, respectively. Notice that
here both driving and noise are along transverse directions. We
can apply our general theory quite straightforwardly in this
case, with nz = 0 and �ωZ = gμBBz, and the driving field
and the noise satisfying the following relationships:

� cos(νt + φ)

2
= eĖc

y

�ω2
d

β−, nx = eĖ
f
y

�ω2
d

β−,

(21)
� sin(νt + φ)

2
= eĖc

x

�ω2
d

β+, ny = eĖ
f
x

�ω2
d

β+.

Notice that the driving electric field obtained here is
elliptically polarized when β− �= 0, i.e., α �= β. When β− = 0
the driving field would be linearly polarized along the x axis,
as we discuss in the Appendix. The “driving angle” φ in the
general theory is a phase shift for the elliptically polarized
electric field. It gives the initial field direction, which affects
the subsequent spin dynamics and how the spin senses the
phonon reservoir through the SO interaction. The driving
strength � from EDSR could be estimated as

� ≈ 2
(β + α)e|Ex |ωZ

�ω2
d

, (22)

which is proportional to the SO coupling strength, the magni-
tude of the driving electrical field, and the Zeeman splitting ωZ ,
and inversely proportional to the square of the confinement en-
ergy ωd . With �ωd ∼ 1 meV [50], |Ex | ∼ 4000 V/m [51], and
β ≈ 1000 m/s (for GaAs), we estimate that �/ωZ ∼ 10−2. In
other words, the driving field in the existing experiments is rel-
atively weak, within the applicable regime of our theory above.

B. Spin decoherence in the rotating frame

We first calculate the relaxation and pure dephasing rates
for the electron spin in the rotating frame. These rates
are directly relevant if experimental measurements can be
done in the rotating frame, like what has been done in
superconducting qubits [17] and NV centers [40]. They are
also crucial in calculating laboratory-frame decoherence rates.
From Eqs. (7), (10), and (20), we obtain

1

T ′
1

= e2

�2ω4
d

[
(β2

− sin2 φ + β2
+ cos2 φ)

+ (β2
− cos2 φ + β2

+ sin2 φ)

2


2 + �2

]
S̃(ν,�), (23)

1

T ′
φ

= 2e2

�2ω4
d

(β2
− cos2 φ + β2

+ sin2 φ)
�2


2 + �2
S(ν), (24)

where S̃(ν,�) is defined in Eq. (5). The noise electric
field considered here is from the piezoelectric electron-
phonon interaction, which is important in GaAs and
InAs quantum dots [52,53]. The corresponding spectral
function, including both longitudinal acoustic and trans-
verse acoustic phonon branches, is S(ω > 0) = �e2

14ω
5(1 +

nω)/(15π2ρc5) and S(ω < 0) = �e2
14|ω|5n|ω|/(15π2ρc5),

where nω ≡ 1/[exp(�ω/κBT ) − 1] vanishes at the low-
temperature limit. This spectral function is obtained at low
temperature within dipole approximation, and with the as-
sumption of an isotropic linear dispersion relation for the
phonons. Here e14 is an elasticity tensor component, ρ is the
mass density, and c is the speed of sound in the substrate
material for the QD. For larger applied magnetic fields,
the deformation potential electron-phonon interaction may
become more important, though the general results will be
similar to what we obtain here.

For more concrete expressions of 1/T ′
1 and 1/T ′

φ in EDSR,
we set �S ≡ �/ωZ and δ ≡ 
/ωZ , which are dimensionless
driving strength and detuning, respectively. We also introduce
r ≡ α/β to represent the relative strength of the Rashba SO
coupling, and we take the Dresselhaus strength β as intrinsic
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and fixed. After introducing the phonon spectral density and
considering ν being of the same order as ωZ , Eqs. (23) and (24)
now take the following form at the low-temperature limit:

1

T ′
1

= e2e2
14β

2ω5
Z

15π2�ρc5ω4
d

(1 + δ + �S)5

[
(1 + r2 − 2r cos 2φ)

× δ2

�2
S + δ2

+ (1 + r2 + 2r cos 2φ)

]
, (25)

and

1

T ′
φ

= e2e2
14β

2ω5
Z

15π2�ρc5ω4
d

2�2
S(1 + δ)5

�2
S + δ2

(1 + r2 − 2r cos 2φ). (26)

Both decoherence rates are factored into a dimensionless
part determined by driving, detuning, and relative Rashba
strength, and a common prefactor that is determined by the
Dresselhaus strength β, the qubit energy splitting ωZ , and the
dot confinement energy ωd .

To have a qualitative comparison of the different deco-
herence rates in the rotating frame, in Fig. 1 we plot the
relative values of 1/T ′

1, 1/T ′
φ , and 1/T ′

2 as functions of the
dimensionless detuning δ, with different combinations of SO
strength ratio r and driving field phase shift φ. There are
roughly two regimes for all the curves in Fig. 1: the large-
detuning regime, when |
| � � (or |δ| � �S); and the
near-resonance regime, when |
| � � (|δ| � �S). Below we
discuss these two regimes in more detail.

For large detunings, when |
| � �, i.e., |δ| � �S ,
Eqs. (25) and (26) can be further simplified to

1

T ′
1

∣∣∣∣
|δ|��S

≈ 2e2e2
14β

2ω5
Z

15π2�ρc5ω4
d

(1 + δ)5(1 + r2), (27)

1

T ′
φ

∣∣∣∣∣
|δ|��S

= 2e2e2
14β

2ω5
Z

15π2�ρc5ω4
d

�2
S

δ2
(1 + δ)5

× (
1 + r2 − 2r cos 2φ

)
. (28)
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FIG. 1. (Color online) Dimensionless [without multiplying the
common prefactor in the expressions of decoherence times in
Eqs. (25) and (26)] rotating-frame decoherence rates 1/T ′

1 , 1/T ′
φ ,

and 1/T ′
2 as functions of δ, with different combinations of φ and r .

Note that when r = 0, none of these rates depend on φ.

In the large-detuning limit, 1/T ′
1 does not depend on φ. This

is clearly demonstrated by the solid curves in Figs. 1(b)
through 1(d), all of which have the same value at the
same detuning at the large detuning limit. 1/T ′

1 also has
a quadratic dependence on r , which is illustrated by the
solid curves in Figs. 1(a) and 1(b), with 1 + r2 = 1 and ∼2,
respectively. The general increasing trend for 1/T ′

1 in Fig. 1
comes from the (1 + δ)5 dependence, which is in turn from
the phonon noise spectral density. For 1/T ′

φ , on the other
hand, the spectral-density dependence is largely dominated
by the �2

S/δ
2 dependence in our current (and experimentally

typical) parameter regime. When r �= 0, the pure dephasing
rate also relies on the driving field phase shift φ due to
Eq. (28).

Near resonance, 1/T ′
φ clearly has a Lorentzian maximum

at δ = 0 from the �2
S/(�2

S + δ2) dependence. Physically, at
resonance and in the rotating frame, the qubit is precessing
around the direction of the driving field, which is transverse
to the quantization axis. The phonon noise shows up now as a
longitudinal noise for the qubit in the rotating frame; therefore
it can cause pure dephasing. Away from resonance, the driving
does not cause much change in the state of the qubit, so that
phonon noise is still a transverse noise and cannot cause pure
dephasing.

The relaxation rate 1/T ′
1 in the rotating frame generally

has a local minimum near resonance, as the part of the
contributions that is proportional to δ2/(�2

S + δ2) is sup-
pressed when |δ| � �S . The transverse relaxation rate 1/T ′

2
thus features a competition between the opposing trends
near resonance for 1/T ′

1 and 1/T ′
φ , though Fig. 1 shows

that 1/T ′
2 usually has a slight bump in the near-resonance

regime.
As we discussed in Sec. II, our calculation of relaxation

rates relies on the weak-noise assumption, which requires that
|nj | � �,j = x,y,z. For GaAs, the noise electric field due to
electron-phonon interaction is roughly | �Ef | � 10 V/m, while
the driving field | �Ec| could be up to 4000 V/m in EDSR
experiments on a single electron spin [51]. Therefore for EDSR
in GaAs the weak-noise assumption is valid as long as the
external field and the driving field are not too small, and our
general theory is applicable.

With knowledge of decoherence rates in the rotating
frame, we are now ready to examine the decoherence prop-
erties of an electron spin qubit in the laboratory frame.
In the following subsections we will discuss qubit relax-
ation and pure dephasing under resonant and off-resonance
driving.

C. Relaxation under resonant driving

When the driving field is on resonance with the electron
spin Zeeman splitting, ν = ωZ , i.e., δ = 0, the longitudinal
relaxation rate for the electron spin qubit in the laboratory
frame can be expressed as the sum of a Zeeman contribution
and a sideband contribution. Considering Eq. (12) and the
low-temperature limit, we have

1

T1

∣∣∣∣
res

= 1

T1

∣∣∣∣
Zeeman

+ 1

T1

∣∣∣∣
sideband

, (29)
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where

1

T1

∣∣∣∣
Zeeman

= 2e2

�2ω4
d

(β2
− cos2 φ + β2

+ sin2 φ)S(ωZ)

= 2e2β2

�2ω4
d

(1 + r2 − 2r cos 2φ)S(ωZ),

1

T1

∣∣∣∣
sideband

= e2(1 + �S)5

2�2ω4
d

(β2
− sin2 φ + β2

+ cos2 φ)S(ωZ)

= e2β2(1 + �S)5

2�2ω4
d

(1 + r2 + 2r cos 2φ)S(ωZ).

We can normalize this driven qubit relaxation rate with respect
to the free qubit rate given by

1

T1

∣∣∣∣
nondriven

= 4e2β2

�2ω4
d

(1 + r2)S(ωZ). (30)

The resulting normalized relaxation rate is

(1/T1)res

(1/T1)nondriven
= (1 + �S)5

8

(
1 + 2r

1 + r2
cos 2φ

)

+ 1

2

(
1 − 2r

1 + r2
cos 2φ

)
, (31)

which is a function of the dimensionless driving strength �S ,
SO strength ratio r , and the driving field phase shift φ.

In Fig. 2 we present the dependence of the normalized spin
relaxation rate on the driving strength �S , which corresponds
to the Rabi frequency since the driving is on-resonance, at
different φ. There are several interesting features to the results
in this figure. First, the dependence on �S = �/ωZ is quite
weak. When �S increases from 0.001 to 0.1, the relaxation rate
increases at most about 15% (in the case of r = 0.8). Second,
the relaxation rate generally does not go back to the free-qubit
rate even when � is very small. Third, the driving field phase
shift dependence is much more prominent in panel (b), when
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FIG. 2. (Color online) The ratio of on-resonance relaxation rate
(1/T1)|res to nondriven relaxation rate (1/T1)|nondriven of electron spin
as a function of �S , the ratio of driving electrical field strength to
Zeeman frequency, with different angles of driving electrical field.
We choose (a) r = 0.05 and (b) r = 0.8. Here Bz, �ωd , |Ex |, and
|Ey | are to be tuned such that �S is in the range of [10−3,10−1].

the Rashba and Dresselhaus SO coupling strength are similar
(r = 0.8), compared to panel (a), when Dresselhaus coupling
is dominant (r = 0.05). Below we examine these features more
closely.

The �S dependence of the relaxation rate comes completely
from the sideband contribution, which is proportional to (1 +
�S)5. As we discussed in the previous subsection, in the case
of EDSR, �S tends to be small, up to about 0.01 for GaAs
with current technology [51,54]. Thus to the first order of �S ,
(1 + �S)5 ≈ 1 + 5�S . Even when �S = 0.1, the correction to
the value of the relaxation rate is still only 50%, which means
that the change to the overall relaxation rate due to a realistic
finite �S is at most 50% since the �S-dependent term is only
part of the contribution in Eq. (31). Indeed among all the curves
presented in Fig. 2(a) with r = 0.05, only the φ = 0 curve has
a close-to-14% increase, because in this case the sideband
contribution to the relaxation rate is not significant, while in
Fig. 2(b) with r = 0.8, the φ = 0 curve has a close-to-48%
increase.

In Fig. 2 the lower limit for the value of �S is 0.001, not 0. To
maintain the validity of our weak-noise assumption, the lower
bound of the driving field strength is � � 1/T1. Therefore,
the small-�S data presented in Fig. 2 should only be used as a
benchmark for comparison with the higher-�S results, but is
not the asymptotic value of the relaxation rate as �S → 0. It is
thus not such a surprise that the ratio (1/T1)|res/(1/T1)|nondriven

does not go to 1 in general when �S is small. For the calculated
(1/T1)|res to approach (1/T1)|nondriven, one needs to take the
limit ν → 0 first, and then let � → 0, as we have discussed in
the previous section.

(1/T1)res is a sinusoidal function (more specifically, cos 2φ)
of the driving field phase shift φ, as indicated in Eqs. (29)
and (30). Furthermore, this φ dependence is the most promi-
nent when r ∼ 1, and is suppressed for r � 1 or � 1. Thus
we see the more dramatic φ dependence in panel (b) as
compared to panel (a) in Fig. 2. For a more careful examination
of the φ dependence, in Fig. 3 we plot the spin relaxation
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0

100

200

300

400

500

600

φ/π

(1
/T

1) re
s (

H
z)

r=0
 =0.5
 =0.9
 =1.5
r=0
 =0.5
 =0.9
 =1.5

FIG. 3. (Color online) On-resonance relaxation rate 1/T1 (solid
lines with symbols) of electron spin as a function of the ratio r and the
angle (phase shift) φ of driving electrical field in GaAs QDs, where
we suppose β = 1000 m/s. The curves depicted only by symbols
imply (1/T1)|sideband. We choose Bz = 1 T, �ωd = 1 meV, and |Ex | =
4000 V/m.
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FIG. 4. (Color online) Modification of the piezoelectric electron-
phonon spectrums for GaAs QD in units of driven strength � in Rabi
oscillation. We choose driving field along the angle (a) φ = 0 and
(b) φ = π/2.

rate (1/T1)res as a function of φ with various values of r ,
which is fixed by the fabrication process for the quantum dot.
The sideband contribution to (1/T1)res is indicated by curves
without linking lines. By Eqs. (29), (1/T1)res relies on cos(2φ),
so that it is symmetrical with respect to φ = π/2. When r = 0
(no Rashba SO coupling) or r → ∞ (no Dresselhaus SO
coupling), the relaxation rate and the sideband contribution
are φ-independent, as we have discussed above. When r

is finite, (1/T1)res reaches its maximum at φ = π/2, while
the sideband contribution is dominant when φ approaches
0 or π . From the perspective of minimizing relaxation
while driving, clearly a driving field phase shift near 0
is preferable.

A driven qubit can be thought of as a free qubit in a modified
environment S ′

E(ω,�), which can in turn be compared with the
unmodified SE(ω). From Eqs. (29) and (30), we find

S ′
E(ω,�)

SE(ω)
= 1 + r2 − 2r cos 2φ

2
(
1 + r2

)

+ 1 + r2 + 2r cos 2φ

8(1 + r2)

(
1 + �

ω

)5

.

An interesting limit is when ω � � (the reservoir is at the
high-frequency limit), so that (1 + �/ω)5 ≈ 1. The above ratio
is then simplified to

S ′
E(ω,�)

SE(ω)
≈ 5

8
− 3

4

r

1 + r2
cos 2φ. (32)

In this domain S ′
E/SE does not depend on ω at all, so

that the rescaling of the environmental spectral density is
uniform. This is clearly demonstrated in Fig. 4, where we
plot S ′

E(ω,�)/SE(ω) at φ = 0 and φ = π/2 and with several
different r . In the high-frequency domain for both panels in
Fig. 4, the rescaling of the noise spectrum is independent of
ω. Practically, ωZ falls in the high-frequency domain since �

is about 0.001ωZ ∼ 0.1ωZ in current GaAs QD experiments.
The rescale coefficient reaches its minimal value of 1

4 when
r ∼ 1 and φ = 0, and its maximal value of 1 when r ∼ 1 and
φ = π/2.
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FIG. 5. (Color online) On-resonance pure dephasing rate 1/Tφ

of electron spin as a function of driving field amplitude �S at a few
different ratios r in GaAs QDs, where we have taken φ = 0 and
β = 1000 m/s. Bz, �ωd , |Ex |, and |Ey | are tuned such that �S is in
the range of [10−3,10−1].

In the low-frequency domain ω/� ∈ [100,101], the driving
generates a much more pronounced effect on the rescaling
coefficient, which is also quite sensitive to r . Note that
while within EDSR the system generally falls into the high-
frequency regime, our general theory on the driven qubit
does not require that � be small compared to ωZ . As such
there could be situations where the low-frequency end of the
environment could be sensed by the qubit.

In short, the electron spin relaxation is significantly modi-
fied when it is driven resonantly, although the dependence on
the driving strength is quite weak.

D. Pure dephasing under resonant driving

For a free spin qubit, electron-phonon interaction does not
cause pure dephasing [31]. However, as we have discussed
above, driving modifies the environment that the spin qubit
experiences, so that pure dephasing due to electron-phonon
interaction is nonvanishing for a driven spin qubit.

Generally, the pure dephasing rate 1/Tφ can only be
obtained numerically, although there do exist cases when
analytical results can be found. For example, when the driving
is on resonance with the spin qubit and the driving phase shift
is φ = 0, the pure dephasing rate under low temperature is

1

Tφ

∣∣∣∣
res,φ=0

= e2β2

�2ω4
d

S(ωZ)

×
[

7

4
(1 + �S)5(1 + r)2 − (1 − r)2

]
, (33)

which is determined by the noise spectral density at the
Zeeman splitting ωZ and the sideband frequencies ωZ + �,
instead of the zero-frequency limit for a free qubit.

We plot the driving strength (�S) dependence of
(1/Tφ)res,φ=0 in Fig. 5 with various SO ratio r . In the practically
reasonable regime of weak driving, with 0.001 � �S � 0.1 for
EDSR, (1 + �S)5 ≈ 1 + 5�S � 1.5, so that (1/Tφ)res,φ=0 is at
most weakly dependent on the driving strength �S , just like
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(1/T1)res. In the limit that (1 + �S)5 ∼ 1, the pure dephasing
rate is proportional to 3/4 + 11/2r + 3r2/4, which increases
monotonically with r , with a larger r indicating a larger overall
strength of the SO interaction. Comparing Figs. 3 and 5,
we observe that (1/Tφ)res,φ=0 is much larger than (1/T1)res

when φ = 0 and r → 1, which means that for this parameter
combination pure dephasing plays a more important role in
spin decoherence than relaxation. Away from this particular
parameter combination, the magnitudes of pure dephasing and
relaxation are in the same order. We can thus conclude that for
a resonantly driven spin qubit, pure dephasing is as important
a decoherence channel as relaxation when electron-phonon
interaction is considered.

E. Relaxation under off-resonance driving

When an off-resonance ac field (magnetic or electric) is
applied to a spin qubit, the coherent evolution of the qubit
state is a rotation along a tilted axis in the rotating frame,
determined by H = −


2 σz + �
2 σx ′ [see Eq. (2)]. As field

detuning increases, the rotation axis for the spin approaches the
z axis (which is the direction of the applied dc field), so that the
spin evolves as if it is not driven. However, when considering
spin decoherence, the off-resonance driving field does have
some significant effects, as demonstrated by Eqs. (23) and (24)
for EDSR. In this subsection, we examine in more detail
how the off-resonance driving field affects the longitudinal
relaxation of a spin qubit in the laboratory frame.

The laboratory-frame relaxation rate 1/T1 is in general
evaluated numerically using Eq. (11) by setting 〈σz(T1)〉 =
1/e. We neglect the fast oscillation in Eq. (11) and use only
the envelope for our calculation of 1/T1, such that

�2
S

�2
S + δ2

e−T1/T ′
2 + δ2

�2
S + δ2

e−T1/T ′
1 = 1

e
. (34)

1/T1 thus always falls between 1/T ′
1 and 1/T ′

2 ≡ 1/(2T ′
1) +

1/T ′
φ .

In Fig. 6 we plot 1/T1 as a function of the detuning δ,
with various combinations of r and φ. There are several
interesting features to the results. First, there is a general trend
of increasing relaxation rate as the driving field frequency
increases (and δ increases from negative to positive values).
Second, near resonance (small |δ|), the relaxation rate has a
strong φ dependence. Third, the relaxation rate has a strong r

dependence. Below we discuss these features in more detail.
At the large detuning limit, when |δ| � �S , Eq. (34)

indicates that T1 → T ′
1. Numerically, the large-detuning limit

is reached when |δ| > 0.1 � �S , since �S � 0.01 for EDSR.
Physically, under the far off-resonance driving, the qubit is
only slightly perturbed from its original state on the Bloch
sphere, so that its relaxation rate in the laboratory frame should
be close to that in the rotating frame. It is thus not surprising
that 1/T1 shows the same increasing trend as 1/T ′

1, which is
roughly proportional to (1 + δ)5 given by the phonon spectral
density, and that 1/T1 is insensitive to φ at the large-detuning
limit according to Eq. (27).

Near resonance, when |δ| � �S , Eq. (34) shows that 1/T1

approaches 1/T ′
2 = 1/2T ′

1 + 1/T ′
φ . As we have shown in

Fig. 1, near resonance 1/T ′
1 has a dip, while 1/T ′

φ has a peak.
The behavior of 1/T1 near resonance is thus a result of the
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FIG. 6. (Color online) Off-resonance relaxation rate 1/T1 of
electron spin as a function of dimensionless frequency detuning δ in
the presence of electrical noise for GaAs QD under the conditions (a)
different r with φ = 0 and (b) different φ with r = 0.9. We choose
β = 1000 m/s, Bz = 1 T, �ωd = 1 meV, and |Ex | = 4000 V/m.
Insets: The ratio (1/T1)|driven/(1/T1)|nondriven vs δ.

competition between these two opposing contributions, and
whether 1/T1 should have a peak or dip at resonance is mostly
determined by the strength of 1/T ′

φ , which in turn is strongly
modified by the driving field phase shift φ when r ∼ 1. Such a
strong φ dependence by 1/T1 can be clearly seen in Fig. 6(b)
around δ = 0.

Lastly, as indicated by Eqs. (25) and (26), both 1/T ′
1 and

1/T ′
φ have a quadratic dependence on r . Since 1/T1 always

falls between 1/T ′
1 and 1/T ′

2, 1/T1 should also have a quadratic
dependence on r , as demonstrated in Fig. 6(a). Interestingly,
the inset of Fig. 6(a) shows that the normalized relaxation
rate (1/T1)|driven/(1/T1)|nondriven is insensitive to r at the large-
|δ| limit. This is because 1/T ′

1 in Eq. (27) has the same r

dependence as (1/T1)|nondriven in Eq. (30).

F. Pure dephasing under off-resonance driving

The transverse relaxation rate 1/T2 under the off-resonance
driving field can only be obtained numerically in general.
However, with special driving field phase shifts, the condition
〈σx(T2)〉 = 1/e could be expressed in a more compact and
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FIG. 7. (Color online) Off-resonance pure dephasing rate 1/Tφ

of electron spin as a function of dimensionless frequency detuning δ

in the presence of electrical noise for GaAs QD under the conditions
with different r with φ = 0.

analytical form. For example, when φ = 0, using only the
envelope functions from Eq. (17), we have approximately

�S(e−T2/T ′
1 − 1)√

�2
S + δ2

+ �2
Se

−T2/T ′
1

�2
S + δ2

+ δ2e−T2/T ′
2

�2
S + δ2

= 1

e
,

(35)

where T ′
1 and T ′

2 are the longitudinal and transverse relaxation
rates in the rotating frame, determined by Eqs. (25) and (26).

The effect of detuning on the pure dephasing rate 1/Tφ =
1/T2 − 1/(2T1) is demonstrated in Fig. 7. The r dependence of
the curves here has the same origin as in the case of relaxation
rate 1/T1, while the peak structure of the curves in Fig. 7
can be explained by examining the large- and small-detuning
limits separately. At the large-detuning limit, when |δ| � �S ,
Eq. (35) shows that T2 should approach T ′

2. Since T1 also
approaches T ′

1 in this limit according to Eq. (34), we obtain
1/Tφ ≈ 1/T ′

φ ≈ 0, as shown in Fig. 1. This suppression of pure
dephasing is due to the fact that with off-resonance driving,
the spin qubit maintains the original quantization axes; while
phonon noise through EDSR leads only to transverse magnetic
noise, so that it cannot cause pure dephasing. Near resonance,
on the other hand, the driving field starts to cause Rabi flopping,
so that qubit quantization axes are rotated and phonon noise
could contribute to longitudinal magnetic fluctuations, and
pure dephasing ensues. It is thus quite natural that all the
curves in Fig. 7 display a peaked structure around resonance.

IV. DISCUSSIONS

We first summarize the qualitative relationship between
driving parameters and the decoherence rates (in the laboratory
frame) of a driven electron spin qubit under the phonon noise.
The four lines in Table I correspond to the results from
Sec. III C through Sec. III F, respectively. From this table it is
clear that relaxation and pure dephasing rates are not affected
by driving in the same manner. Physically this is to be expected,
as the former involves energy exchange with the environment,
while the latter does not.

TABLE I. The dependence of decoherence rates on the various
parameters. ⇑ represents that a certain rate depends monotonically
on the corresponding parameter; ∧[a] represents that a rate peaks
when the parameter takes value a; R{A} means that the relationship
between this rate and the corresponding parameter relies on another
parameter A; \ means the rate has no dependence on the parameter;
and a blank means that the dependence is not straightforward.

r = α/β �S = �/ωZ φ δ = 
/ωZ

(1/T1)res R{φ} ⇑ ∧[π/2] \
(1/Tφ)res ⇑ ⇑ \
1/T1 R{δ} R{δ} ⇑ for large δ

1/Tφ ⇑ ∧[0] for large r

In the current study, we do not consider how driving could
affect hyperfine-interaction-induced spin decoherence in a
quantum dot, as we do not have a definitive semiclassical
spectral density for the nuclear spin noise. Still, we could
provide some qualitative assessment. In a finite magnetic field,
the nuclear spin noise essentially causes only pure dephasing,
with S(ωZ) � S(0). In this case the slow but finite relaxation
[mostly determined by S(�) where � � ωZ according to
Eq. (12)] for a driven spin qubit would still be faster than
the negligible relaxation of a free spin qubit. On the other
hand, its pure dephasing is also determined by S(�) instead of
S(0) as indicated by Eq. (18), thus most probably it would be
suppressed, and the overall decoherence represented by 1/T2

is slower. In essence, by driving the spin into a Rabi oscillation,
we average out the effect of the nuclear spin noise and thus
reduce the overall electron spin decoherence.

Our study of off-resonance driving also allows us to
comment on the effect of the Overhauser field, which is a
classical quasistatic mean field of the nuclear spin noise. The
Overhauser field causes the spin qubit splitting to deviate
from the Zeeman splitting due to the applied field. In a GaAs
quantum dot, for example, this shift is up to 2 mT. However,
with an applied field that is larger than 0.1 T, 
/ωZ due to the
Overhauser field is quite small, and should not affect the results
obtained in this study, of spin decoherence due to phonon noise.
The main effect of the Overhauser field is thus limited to gate
errors when the driving field is used to generate gates.

Combining the relaxation and pure dephasing behaviors of
a driven spin qubit, an attractive side effect could emerge by
exploiting the off-resonance driving. Recall that single-qubit
gates are often performed by a selectively resonant driving
field, in the presence of other detuned qubits. As we discussed
above, if the other qubits are negatively detuned (i.e., the
selected qubit is positively detuned from the rest of the qubits),
their overall decoherence rates would be slower than when they
are not driven.

V. CONCLUSION

In conclusion, we have developed a general decoherence
theory on a field-driven qubit. We find that driving, no matter
resonant or off-resonance, can lead to significant modification
of qubit relaxation and dephasing. In general theory, the
qubit relaxation rate is determined not only by noise at its
energy splitting ωZ , but also noise at sideband frequencies
� ± ωZ , where � is the driving strength. Yet practically, in the
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low-temperature limit, the contribution of the negative-
frequency could be omitted. In general, the changes in qubit
decoherence depend on the driving frequency (or the detun-
ing), driving strength, and the frequency dependence of the
spectral density of the environmental noise. Our results could
be relevant to decoherence control, general qubit manipulation,
and sideband spectroscopy on a qubit, irrespective of the noise
resource and its spectral function.

We have applied the general theory to the example of
decoherence of a spin qubit in a semiconductor quantum dot
driven through EDSR and in the presence of the electron-
phonon interaction. We find that modifications to the spin
decoherence rates depend closely on the ratio of Rashba to
Dresselhaus spin-orbital coupling strength r , the phase shift
φ of the elliptically polarized driving electric field, and the
driving field detuning 
 or the dimensionless detuning δ. In the
near-resonance regime, the longitudinal relaxation rate is sen-
sitive to the phase shift and is generally depressed by driving,
while pure dephasing is often a more important decoherence
mechanism than relaxation. In the far off-resonance regime,
pure dephasing is strongly suppressed, while relaxation has a
strong dependence on the frequency detuning of the driving
field because of the ω5 spectral density of the phonon noise. In
particular, when 
 < 0, i.e., ν < ωZ , the spin relaxation rate
is suppressed relative to a nondriven spin.
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APPENDIX: DERIVATION OF THE EDSR EFFECTIVE
HAMILTONIAN

In this Appendix we derive the effective electron spin
Hamiltonian when it is driven electrically via the spin-orbit
(SO) interaction.

We consider an electron confined in a 2D quantum dot (QD)
with finite confinement in the x-y directions (the confinement
along the growth direction z is much stronger so that we
neglect any orbital excitation along z). The total effective-
mass Hamiltonian for the electron consists of the kinetic
energy Hk , the electric potential V (which includes the 2D
electrostatic confinement potential, the control field, and the
electron-phonon interaction), the Zeeman splitting HZ caused
by an applied magnetic field, and the SO coupling term HSO:

Htot = p̃2

2m∗ + V [�r(t)] + 1

2
gμB

�B0 · �σ + HSO. (A1)

Here p̃ = −i�∇ + e
c

�A(�r) (e > 0), m∗ is the conduction
electron effective mass (0.067me in GaAs and 0.19me in
Si, with me the free-electron mass), and μB ≡ e�

2me
≈ 0.58 ×

10−4 eV/T is the Bohr magneton.

In the absence of any driving field and noise, V is a
2D electrostatic harmonic potential V (�r) = 1

2m∗ω2
dr

2, where
�ωd ≈ 1 meV is the confinement energy of the QD. When
the electrical driving field and noise are introduced, in the
form of an in-plane electric field �E(t) = [Ex(t),Ey(t)]T =
[Ec

x + E
f
x ,Ec

y + E
f
y ]T (with �Ec being the control electric field

and �Ef the random field from whichever electrical noise),
they cause a time-dependent displacement of the QD center,
denoted by �r ′(t), so that the total potential becomes

V [�r(t)] = 1

2
m∗ω2

d [�r − �r ′(t)]2, �r ′(t) = e �E(t)

m∗ω2
d

. (A2)

With our choice of the coordinates (x = [110], y = [1̄10],
and z = [001]), the SO interaction term is expressed as

HSO = β−p̃yσx + β+p̃xσy, (A3)

where β± ≡ β ± α, and α and β are the Rashba and Dres-
selhaus SO interaction strength. Notice that the form the
SO interaction is closely related to the choice of the growth
direction. For example, if the QD is in a heterostructure with
a growth direction along [111], the SO interaction would take
on a different form.

To construct an effective spin Hamiltonian, we perform
a unitary transformation [31,33,47] eSHtote

−S on the total
Hamiltonian, so that the electron spin and orbital degrees of
freedom are decoupled to the first order of HSO. The trans-
formation matrix satisfies [Hd + HZ,S] = HSO with Hd =
p̃2

2m∗ + V [�r(t)] and HZ = 1
2gμB

�B0 · �σ . In other words, we are
rotating the driving field and noise terms together with the
system Hamiltonian, instead of treating them as perturbations.
After the transformation, we obtain [47]

Heff ≈ 1

2
gμB( �B0 + �Be) · �σ ,

(A4)
�Be = 2e

gμBω2
d

[β−Ėy,β+Ėx,0]T .

The driving electric field and the electrical noise now are
transformed into an oscillating magnetic field and a magnetic
noise. We recover Hamiltonian (1) in the general theory by
requiring that the driving field and noise terms in Eq. (1)
satisfy

�

2
cos(νt + φ) = eĖc

y

�ω2
d

β−, nx = eĖ
f
y

�ω2
d

β−,

(A5)
�

2
sin(νt + φ) = eĖc

x

�ω2
d

β+, ny = eĖ
f
x

�ω2
d

β+,

where nz = 0, and �B0 = Bz�z with gμBBz/� = ωZ . The
driving electric field can thus be expressed as

Ec
x = −�ω2

d�

eβ+ν
cos(νt + φ),

(A6)

Ec
y = �ω2

d�

eβ−ν
sin(νt + φ),

which is elliptically polarized, with a ratio of β−/β+ for the
magnitudes Ec

x and Ec
y . In the special case when β− = 0, we
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should go back to Eq. (A4), where nx = 0 and the effective
field does not depend on Ey . We can thus fix φ = π/2 and
employ an electric field linearly polarized along the x direction.
Equation (A4) would again take the form of Eq. (1).

In this study we have limited ourselves to an external field
along the growth direction of the substrate. If the field has

an in-plane component, the resulting driving field for the spin
would contain an ac term in the longitudinal direction, making
the problem much harder to be solved analytically by the
current approach. We have made some numerical explorations
in such cases, and our results so far do not show any remarkable
difference from the results presented in the current paper.
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