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Quantum metrology for a general Hamiltonian parameter
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Quantum metrology enhances the sensitivity of parameter estimation using the distinctive resources of quantum
mechanics such as entanglement. It has been shown that the precision of estimating an overall multiplicative
factor of a Hamiltonian can be increased to exceed the classical limit, yet little is known about estimating a
general Hamiltonian parameter. In this paper, we study this problem in detail. We find that the scaling of the
estimation precision with the number of systems can always be optimized to the Heisenberg limit, while the time
scaling can be quite different from that of estimating an overall multiplicative factor. We derive the generator
of local parameter translation on the unitary evolution operator of the Hamiltonian, and use it to evaluate the
estimation precision of the parameter and establish a general upper bound on the quantum Fisher information.
The results indicate that the quantum Fisher information generally can be divided into two parts: one is quadratic
in time, while the other oscillates with time. When the eigenvalues of the Hamiltonian do not depend on the
parameter, the quadratic term vanishes, and the quantum Fisher information will be bounded in this case. To
illustrate the results, we give an example of estimating a parameter of a magnetic field by measuring a spin- 1

2
particle and compare the results for estimating the amplitude and the direction of the magnetic field.
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I. INTRODUCTION

Quantum metrology [1,2] is a scheme that uses entan-
glement to increase the precision of parameter estimation
by quantum measurements beyond the limit of its classical
counterpart. In classical parameter estimation, the estimation
precision scales as ν− 1

2 , where ν is the number of rounds
of measurement. The scaling can be rewritten as (Nν)−

1
2 ,

where N is the number of qubits used in each round, for
parameter estimation by quantum measurements if the N

qubits are not entangled. This scaling is often termed as the
standard quantum limit (SQL) [3], which characterizes the
precision limit of quantum measurements in the presence of
the shot noise. A more fundamental imprecision of quantum
measurement originates from the Heisenberg uncertainty
principle, which is one of the most fundamental properties of
quantum mechanics, due to the probabilistic nature of quantum
measurements. Research in quantum metrology has shown
that with the assistance of n-qubit entanglement, the optimal
scaling of the estimation precision can be raised to N−1ν− 1

2 ,
i.e., the Heisenberg limit, implying an improvement of N

1
2

over the SQL.
Quantum metrology is rooted in the theory of quantum

estimation, which was pioneered by Helstrom [4] and Holevo
[5] who proposed the parameter-based uncertainty relation.
Braunstein et al. [6,7] developed that theory from the view
of the Cramér-Rao bound [8], which characterizes how well a
parameter can be estimated from a probability distribution,
and obtained the optimal Fisher information over differ-
ent quantum measurement schemes for a given parameter-
dependent quantum state. This is often called quantum Fisher
information.

Given the importance of precision measurement in different
fields of physics and engineering, the quantum Fisher informa-
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tion has attracted great interest from researchers. Giovannetti
et al. [1] found that the scaling of the quantum Fisher
information has an N

1
2 improvement compared to its classical

counterpart if an N -qubit maximally entangled state is used.
This stimulated the emergence of quantum metrology, which
has been applied to different quantum systems to raise the
precision of measurements.

The optimality of quantum metrology in terms of the
scaling of the measurement precision was proved in [9] for
different initial states and measurement schemes, and also
by [10] from the viewpoint of the query complexity of a
quantum network. Moreover, when there is interaction among
the N entangled qubits or the Hamiltonian is nonlinear, the
measurement precision can be further increased to beyond the
Heisenberg limit [11–16].

Many applications of quantum metrology have been found,
including quantum frequency standards [17,18], optical phase
estimation [19–25], atomic clocks [26–30], atomic interferom-
eters [31], quantum imaging [32,33], and quantum-enhanced
positioning and clock synchronization [34]. The quantum
Fisher information has also been studied in open systems
[35–41], along with growing research on protocols assisted by
error correction [42–44]. Moreover, quantum metrology with
nonlinear Hamiltonians has received considerable attention
[12,15,45–52]. For reviews of the field of quantum metrology,
refer to [1,2].

Studies of quantum metrology have mainly focused on the
precision of measuring an overall multiplicative factor of a
Hamiltonian, e.g., the parameter g in a Hamiltonian gH , a
setting particularly suitable for enhancing phase or frequency
estimation in devices such as optical interferometers or atomic
spectroscopes. However, generally speaking, a parameter can
appear in a more general form in a Hamiltonian, not necessarily
as an overall multiplicative factor. For example, the parameter
can appear with different orders in the eigenvalues of the
Hamiltonian or even in the eigenstates of the Hamiltonian. An
understanding of the quantum limits in estimating this kind
of general parameter is emerging (e.g., [53] from the view
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of information geometry), but is still rather limited so far,
which restricts the potential range of applications of quantum
mechanics to metrology.

This paper extends quantum metrology to estimating a
general parameter of a Hamiltonian. We will show that the
optimal scaling of the measurement precision with the number
N of systems is still N−1, but the time scaling will be different.
In detail, it will be shown that the quantum Fisher information
can generally be divided into two parts: one is linear in the
time t , corresponding to the variation of the eigenvalues,
and the other is oscillatory, corresponding to the variation
of the eigenvectors of the Hamiltonian. The oscillating part is
bounded no matter how long the time t is. We will obtain an
upper bound on the Fisher information for the general case.

The study of this problem will extend the current knowledge
of quantum metrology to a more general case, and more kinds
of precision measurements will benefit from this extension, es-
pecially those that go beyond phase or frequency measurement.
For instance, as we show as an example in this paper, it can
enhance the precision of measuring the direction of a magnetic
field by a spin- 1

2 system, which is useful for calibrating the
field. Therefore, the results of this paper will be useful to both
theory and experiments in quantum metrology.

II. BACKGROUND

Let us first review some concepts of the estimation
theory and their quantum counterparts. The task of parameter
estimation is to determine a parameter from a set of data
which depends on the parameter. A general procedure for
estimating a parameter is as follows: first acquire a set of data
x1, . . . ,xν which obey a probability distribution dependent on
the parameter fg(x), where g is the parameter to estimate; then
estimate g from x1, . . . ,xν by a certain estimator and obtain
the estimated value gest(x1, . . . ,xν). While there are many
different estimation strategies, such as the method of moments
and maximum-likelihood estimation, the performances of
those strategies differ. One of the most important benchmarks
of a strategy is the estimation precision, which is usually
characterized by the estimation error [6]:

δg ≡ gest

|d〈gest〉g/dg| − g, (1)

where the factor |d〈gest〉g/dg| is to eliminate the local differ-
ence in the units between the estimator and the real parameter
for different g. If the estimation procedure is repeated many
times, the estimated value gest may have fluctuations. So
an appropriate measure to quantify the performance of an
estimator is the root-mean-square error of the estimation
results 〈(δg)2〉 1

2 . A cornerstone of the classical theory of
parameter estimation is the Cramér-Rao bound [8], which
bounds the precision limit of an estimator by the following
relation:

〈(δg)2〉 � 1

νF (g)
+ 〈δg〉2, (2)

where Fg is the Fisher information defined as

Fg =
∫

[∂g ln fg(x)]2fg(x)dx. (3)

The second term on the right side of (2), 〈δg〉2, characterizes
the bias of the estimator. If the estimator is unbiased, i.e.,
〈gest〉g = g, then 〈δg〉 = 0.

The achievability (or the tightness) of the Cramér-Rao
bound (2) is addressed by the Fisher theorem. Fisher proved
that for asymptotically large ν, the Cramér-Rao bound can
always be achieved by maximum-likelihood estimation (MLE)
and the estimation result is unbiased. Because of this property,
MLE has been widely adopted in parameter estimation
protocols.

In quantum metrology, one measures a parameter-
dependent state, say ρg , to estimate g. The process of a
quantum metrology protocol splits into two stages. First,
measure the state in some basis [or, more generally, perform
a positive operator-valued measure (POVM) on it] and record
the measurement result. When such a measurement is repeated
ν times for the same ρg , we will acquire ν measurement results.
These results depend on g, so they can be used as sample data
to estimate g. The second stage is estimating the parameter
g based on the measurement results by some appropriate
estimation strategy. The precision of the estimation is bounded
by (2) as usual. The complexity of quantum metrology comes
from the many different choices of the measurements (or
POVMs). Different choices lead to different precisions of the
estimation results. The aim of quantum metrology is to increase
the estimation precision by optimizing the measurement basis
(or POVM).

Braunstein and Caves obtained the optimal Fisher infor-
mation over all POVMs for a given ρg [6], which is called
the quantum Fisher information, through the logarithmic
derivative Lg:

F (Q)
g = Tr(L†

gρgLg). (4)

The logarithmic derivative Lg has several different but equiva-
lent definitions. The most common is the symmetric logarith-
mic derivative (SLD), defined as ∂gρg = (Lgρg + ρgLg)/2.
Lg in this definition is Hermitian, and the quantum Fisher
information F (Q)

g (4) can be simplified to Tr(ρgL
2
g). In the

eigenbasis of ρg , an explicit form of Lg can be found:

Lg = 2
∑
i,j

〈ηi |∂gρg|ηj 〉
ηi + ηj

|ηi〉〈ηj |, (5)

where the ηi’s are the eigenvalues of ρg and the |ηi〉’s are the
corresponding eigenstates.

In the current literature of quantum metrology, most
research interest has been focused on estimating an overall
multiplicative factor of a Hamiltonian, for example, estimating
g in a Hamiltonian gH . Usually an initial pure state |�〉 is used
to undergo evolution by the Hamiltonian, so that

ρg = exp(−igtH )|�〉〈�| exp(igtH ). (6)

In such a case, the quantum Fisher information F (Q)
g can be

simplified to

F (Q)
g = 4t2〈�|�H 2|�〉. (7)

It can be proved [9] that 〈�|�H 2|�〉max = 1
4 (Emax −

Emin)2, where Emax and Emin are the maximal and minimal
eigenvalues of H , respectively. Since Emax and Emin grow
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linearly with the number of systems N , F (Q)
g ∝ N2, which is

the origin of the
√

N improvement of the precision scaling in
quantum metrology compared with the SQL.

III. N SCALING OF QUANTUM FISHER INFORMATION

Now we turn to the major problem of this paper. We are
interested in quantum metrology for a general parameter in
a Hamiltonian. Both the eigenvalues and the eigenstates of
the Hamiltonian may depend on the parameter. We mainly
consider the scaling of the quantum Fisher information with
the number of the systems N in this section, and leave the
more general results for the next section.

We first introduce the general framework of how to derive
the quantum Fisher information of estimating a Hamiltonian
parameter. Suppose the Hamiltonian of a single system is Hg ,
the initial state of the system is ρ0, and the parameter we want
to estimate is g. After the evolution under the Hamiltonian,
the state of the system becomes ρg = Ugρ0U

†
g , where Ug =

exp(−itHg). The sensitivity of ρg to the parameter g can
be characterized by the generator of the local parameter
translation from ρg to ρg+dg , where dg is an infinitesimal
change of g.

In detail, when g is changed to g + dg, ρg is updated
to ρg+dg = Ug+dgρ0U

†
g+dg . Since Ug+dg ≈ Ug + ∂gUgdg, the

translation from ρg to ρg+dg can be written as

ρg+dg ≈ (Ug + dg∂gUg)ρ0(U †
g + dg∂gU

†
g )

= [I + dg(∂gUg)U †
g ]Ugρ0U

†
g (I + dgUg∂gU

†
g )

≈ exp(−ihgdg)ρg exp(ihgdg), (8)

where

hg = i(∂gUg)U †
g . (9)

Here, hg is the generator of parameter translation with respect
to g, and the subscript g is to indicate that this generator is
local in g. It can be shown [6,7] that when the initial state of
the system is a pure state |�〉, the quantum Fisher information
of the evolved state Ug|�〉 is

F (Q)
g = 4〈�|�h2

g|�〉. (10)

And the variance of hg is maximized when |�〉 =
1√
2
[|λmax(hg) + eiϕ |λmin(hg)〉] (eiϕ is an arbitrary phase) [9],

so the maximal quantum information is

F (Q)
g, max = [λmax(hg) − λmin(hg)]2, (11)

where λmax(hg) and λmin(hg) are the maximal and minimal
eigenvalues of h, respectively.

When there are N systems, the total Hamiltonian is
Hg,total = Hg,1 + · · · + Hg,N , where Hg,i is the Hamiltonian
for the ith system alone, i.e., Hg,i = I⊗i−1 ⊗ Hg ⊗ I⊗N−i .
Since [Hi,Hj ] = 0,∀i,j = 1, . . . ,N , we have

hg,total = i
∂e−itHg,total

∂g
eitHg,total

= hg,1 + · · · + hg,N . (12)

As Hg,1, . . . ,Hg,N are the same Hamiltonian on different
systems, it is obvious that

λmax(hg,total) = Nλmax(hg),
(13)

λmin(hg,total) = Nλmin(hg).

So according to (11),

max F
(Q)
g,total = N2F (Q)

g, max, (14)

where F
(Q)
g,total is the total quantum Fisher information of the N

systems.
Equation (14) is interesting since it implies that the optimal

scaling of the total Fisher information using N systems can
always reach N2, which beats the classical scaling limit
and is universal for estimating an arbitrary parameter in the
Hamiltonian. Of course, if there are interactions among the N

systems, the optimal scaling of the Fisher information may be
even higher, which has been found for estimating an overall
multiplicative factor of a Hamiltonian [11,13]. In that case,
the total Hamiltonian becomes Hg,total = ∑

i1,...,ik
Hg,〈i1,...,ik〉 if

there are k-body interactions among the N systems. Obviously,
the total Hamiltonian can grow nonlinearly with N in general,
so the quantum Fisher information may increase faster than
N2. Such a case is beyond the scope of this paper and we do
not consider it in detail here.

IV. QUANTUM FISHER INFORMATION FOR GENERAL
HAMILTONIAN PARAMETERS

In this section, we study quantum metrology for general
Hamiltonian parameters in detail. We consider only single
systems here and focus on the time scaling of the quantum
Fisher information, since the scaling with the number of
systems was treated in the previous section. It can be seen
from Eq. (11) that the key to the quantum Fisher information
F (Q)

g is the generator hg (9) of the local parameter translation
from Ug to Ug+dg , so our main effort is to derive hg in the
following.

A. Result for t � 1

First, we study the derivative of exp[−itH (g)] with respect
to g which is needed in Eq. (9). This derivative is nontrivial,
since Hg does not commute with ∂gHg in general. To obtain
this derivative, we start from an integral formula for the
derivative of an operator exponential [54]:

∂ exp[−iβH (λ)]

∂λ

= −i

∫ β

0
exp[−iμH (λ)]

∂H (λ)

∂λ
exp[(iμ − iβ)H (λ)]dμ,

(15)

where μ,β ∈ R. By this formula and according to the
definition of hg (9), we get

hg =
∫ t

0
exp(−iμHg)∂gHg exp(iμHg)dμ. (16)

When t � 1, the first-order approximation of (16) is

hg ≈ t∂gHg.
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As shown in Appendix B, we can get an upper bound for the
quantum Fisher information in this case,

F (Q)
g, max � t2

2
Tr(∂gHg)2. (17)

B. Result for general t

For larger t , direct calculation of the integral in Eq. (16)
is not easy. Of course, one can use the Baker-Campbell-
Hausdorff formula to expand the integrand, but that will yield
an infinite series that is difficult to treat. So we resort to a
different approach to work out hg , which was first proposed in
Ref. [54].

Denote the integrand of (16) as Y (μ):

Y (μ) = exp(−iμHg)
∂Hg

∂g
exp(iμHg). (18)

The derivative of Y (μ) with respect to μ satisfies

∂Y

∂μ
= −i[Hg,Y ], (19)

and the initial condition is Y (0) = ∂gHg .
To solve the differential equation (19), consider the follow-

ing eigenvalue equation:

[Hg,�] = λ�. (20)

In this equation, Hg can be treated as a superoperator acting
on �. To distinguish Hg as a superoperator from that as an
operator, we denote the superoperator of Hg as Hg , and (20)
can be rewritten as

Hg� = λ�. (21)

It is easy to verify that Hg is an Hermitian superoperator
(see Appendix A). Therefore,Hg has d2 real eigenvalues, some
of which may be degenerate. Suppose the eigenvalues of Hg

are λ1, . . . ,λd2 , and that λk = 0 for k = 1, . . . ,r and λk �= 0 for
k = r + 1, . . . ,d2, and denote the corresponding orthonormal
eigenvectors as �1, . . . ,�d2 , satisfying Tr(�†

i �j ) = δij . Then,
∂gHg can be decomposed as

∂gHg =
d2∑

k=1

ck�k, (22)

where ck = Tr(�†
k∂gHg). Since Y (μ) can also be decomposed

in terms of �1, . . . ,�d2 , and Y (0) = ∂gHg , the solution of
Eq. (19) is

Y (μ) =
d2∑

k=1

Tr(�†
k∂gHg)e−iλkμ�k. (23)

Now, we can insert the above solution for Y (μ) into (16), and
since the first r eigenvalues of Hg are zero,

hg = t

r∑
k=1

Tr(�†
k∂gHg)�k

− i

d2∑
k=r+1

1 − e−iλk t

λk

Tr(�†
k∂gHg)�k. (24)

Equation (24) is the general solution for hg . When one
obtains the eigenvalues and eigenvectors of Hg from (20) and
plugs them into (24), hg can then be derived.

If we know the eigenvalues and eigenstates of Hg (as
an ordinary operator), the solution for hg (24) can be
greatly simplified. Suppose Hg has ng different eigenvalues,
E1, . . . ,Eng

, the degeneracy of Ek is dk , and the eigenstates

corresponding to Ek are |E(1)
k 〉, . . . ,|E(dk )

k 〉. The eigenvectors
and eigenvalues of Hg are

�
(ij )
kl = ∣∣E(i)

k

〉〈
E

(j )
l

∣∣, λ
(ij )
kl = Ek − El. (25)

It is obvious that the degeneracy of the zero eigenvalue
is d2

1 + · · · + d2
ng

, and the corresponding eigenvectors are

�
(ij )
kk , i,j = 1, . . . ,dk, k = 1, . . . ,ng . The coefficients of these

eigenvectors in hg are

Tr
(
�

(ij )†
kk ∂gHg

) = 〈
E

(j )
k

∣∣∂gHg

∣∣E(i)
k

〉
= ∂gEkδij . (26)

The eigenvectors with nonzero eigenvalues ofHg are �
(ij )
kl , k �=

l, and their coefficients in hg are

Tr
(
�

(ij )†
kl ∂gHg

) = 〈
E

(j )
l

∣∣∂gHg

∣∣E(i)
k

〉
= Ek

〈
E

(j )
l

∣∣∂gE
(i)
k

〉 + El

〈
∂gE

(j )
l

∣∣E(i)
k

〉
= (Ek − El)

〈
E

(j )
l

∣∣∂gE
(i)
k

〉
, (27)

where we have used 〈E(j )
l |∂gE

(i)
k 〉 + 〈∂gE

(j )
l |E(i)

k 〉 =
∂g〈E(j )

l |E(i)
k 〉 = 0.

By plugging (25)–(27) into (24), we finally have

hg = t

ng∑
k=1

∂Ek

∂g
Pk + 2

∑
k �=l

dk∑
i=1

dl∑
j=1

e
−i(Ek−El )t

2

× sin
(Ek − El)t

2

〈
E

(j )
l

∣∣∂gE
(i)
k

〉∣∣E(i)
k

〉〈
E

(j )
l

∣∣, (28)

where Pk is the projection onto the eigensubspace corre-
sponding to Ek: Pk = ∑dk

i=1 |E(i)
k 〉〈E(i)

k |. We have used 1 −
e−i(Ek−El )t = 2i exp −i(Ek−El )t

2 sin (Ek−El )t
2 .

The form of hg in Eq. (28) implies that the quantum Fisher
information F (Q)

g can be divided into two parts: one is due to
the dependence of the eigenvalues Ek on g, and this part is
linear in the time t ; the other is due to the dependence of the
eigenstates |E(i)

k 〉 on g, and that part oscillates with time.
When the dimension of the system is low, one may find the

eigenvalues and the eigenstates of the Hamiltonian explicitly,
so Eq. (28) is a more direct and compact result for hg . However,
if the dimension of the system is very high, e.g., a condensed-
matter system, then the eigenvalues and the eigenstates will be
extremely difficult to obtain, and the general result (24) will
be more helpful. In this case, the eigenvalues and eigenstates
of Hg are still unavailable, but one can get some knowledge
of the quantum Fisher information F (Q)

g from the symmetry of
the Hamiltonian.

For example, if H is invariant under a unitary operation
U = exp(−i), then [Hg,] = 0, which implies that  is
an eigenvector of Hg with eigenvalue zero. Thus one can
calculate the coefficient Tr(∂gHg) and check whether 
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belongs to the support of ∂gHg . If it does, then the quantum
Fisher information F (Q)

g will scale as t2 when t  1. So we
can see that even lacking details about the eigenvalues and
eigenvectors of Hg , (24) can give some information about the
scaling of F (Q)

g through the symmetry of Hg .

C. Upper bound on the quantum Fisher information F( Q)
g

From (24) or (28), we can obtain an upper bound on the
quantum Fisher information F (Q)

g .
First, we note that〈

�h2
g

〉
max � 1

2 Tr(h†
ghg) (29)

(see Appendix B for a proof), so from (10) and (24), we can
derive

F (Q)
g, max � 2t2

r∑
k=1

|Tr(�†
k∂gHg)|2

+ 8
d2∑

k=r+1

|Tr(�†
k∂gHg)|2
λ2

k

sin2 λkt

2
. (30)

And when we know the eigenvalues and eigenstates of the
Hamiltonian Hg , the upper bound can be simplified to

F (Q)
g, max � 2t2

ng∑
k=1

dk(∂gEk)2

+ 8
∑
k �=l

dk∑
i=1

dl∑
j=1

∣∣∣∣ sin
1

2
(Ek − El)t

∣∣∣∣
2∣∣〈E(j )

l

∣∣∂gE
(i)
k

〉∣∣2
.

(31)

In particular, if the eigenvalues of Hg are independent of g,
the upper bound of F (Q)

g will not grow as t2 when t is large,
and the bound becomes

F (Q)
g, max � 8

∑
k �=l

dk∑
i=1

dl∑
j=1

∣∣∣∣ sin
1

2
(Ek − El)t

∣∣∣∣
2∣∣〈E(j )

l

∣∣∂gE
(i)
k

〉∣∣2

� 8
∑
k �=l

dk∑
i=1

dl∑
j=1

∣∣〈E(j )
l

∣∣∂gE
(i)
k

〉∣∣2
. (32)

In this case, the quantum Fisher information F (Q)
g is always

finite, no matter how long the time t is, in sharp contrast to
the time scaling of the Fisher information for estimating an
overall multiplicative factor of a Hamiltonian.

V. EXAMPLE: A SPIN- 1
2 PARTICLE IN A

MAGNETIC FIELD

In this section, we consider an example to illustrate the
results in the previous sections. We study the quantum Fisher
information in estimating a parameter of a magnetic field by
measuring a spin- 1

2 particle in the field.
Suppose the magnetic field is B

−→
nθ , where B is the

amplitude of the magnetic field and −→
nθ = (cos θ,0, sin θ ),

gives its direction. The parameter θ denotes the angle between
the direction of the magnetic field and the z axis. Now we place

a spin- 1
2 particle, e.g., an electron, in this magnetic field and

our task is to estimate the angle θ by measuring this particle.
The interaction Hamiltonian between the the particle and

the magnetic field is

Hθ = B(cos θσx + sin θσz), (33)

where σx and σz are Pauli operators. We have assumed e =
m = c = 1 in the above Hamiltonian for simplicity.

The eigenvalues of Hθ are ±B, and the corresponding
eigenstates are

|+B〉 =
(

cos
(

π
4 − θ

2

)
sin

(
π
4 − θ

2

)
)

, |−B〉 =
(

sin
(

π
4 − θ

2

)
− cos

(
π
4 − θ

2

)
)

.

(34)

According to (28), the generator h of the local translation with
respect to the parameter θ for an evolution of time t is

h = B

(
0 e−iBt sin Bt

eiBt sin Bt 0

)
. (35)

The eigenvalues of h are ±B sin Bt , so the maximum quantum
Fisher information is

F (Q)
max = 4B2 sin2 Bt. (36)

We can also extend this result to a more general case.
Suppose the direction of the magnetic field −→

nθ has an arbitrary
form with ‖−→nθ ‖ = 1, then the Hamiltonian of the interaction
between the particle and the magnetic field is

Hθ = B
−→
nθ · −→σ , (37)

where −→σ = (σx,σy,σz) is the vector of the Pauli operators.
We can obtain h from (28),

h = B sin Bt (cos Bt
−−→
∂θnθ + i sin Bt

−−→
∂θnθ × −→

nθ ) · −→σ . (38)

Since
−−→
∂θnθ × −→

nθ is orthogonal to
−−→
∂θnθ , and ‖−−→∂θnθ × −→

nθ ‖ =
‖−−→∂θnθ‖, the eigenvalues of h are

±B‖−−→∂θnθ‖ sin Bt. (39)

Therefore, the maximum quantum Fisher information of
estimating θ is

F (Q)
max = 4B2‖−−→∂θnθ‖2 sin2 Bt. (40)

From (36) and (40), we can see that the maximum quantum
Fisher information oscillates with the time t , and the period of
the oscillation is π

B
. This implies that the maximum quantum

Fisher information is always bounded in this case, and the
upper bound is 4B2‖−−→∂θnθ‖2. This is in sharp contrast to
the case where the parameter to estimate is an overall
multiplicative factor of the Hamiltonian (compare to the
amplitude case below). In that case, the maximum quantum
Fisher information grows as t2, and is unbounded as t → ∞.

By way of comparison, if instead we want to estimate a
parameter in the amplitude Bg of the magnetic field, where g

is the parameter to estimate, and the direction of the magnetic
field −→

n is fixed, then

h = ∂gBg
−→
n · −→σ . (41)
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In this case, the maximum quantum Fisher information is

F (Q)
max = 4(∂gBg)2t2, (42)

which recovers the time scaling t2, which is known in quantum
metrology for phase estimation.

The maximum quantum Fisher information (40) for es-
timating θ has an intuitive physical picture. The derivative−−→
∂θnθ characterizes how fast the direction −→

nθ changes with the
parameter θ . If −→

nθ changes quickly with the parameter θ , it will
be more sensitive to distinguish different θ , so the precision of
estimating θ will be higher.

VI. CONCLUSION

In summary, in this paper we studied quantum metrology for
estimating a general parameter of a Hamiltonian. We obtained
the generator hg of the infinitesimal parameter translation
with respect to g, of which the variance is the quantum
Fisher information, and also a general upper bound on the
quantum Fisher information. The results show that the optimal
scaling of the quantum Fisher information with the number of
systems can always reach the Heisenberg limit, but the time
scaling can be different from that of estimating an overall
multiplicative factor. We considered estimating a parameter of
a magnetic field by measuring a spin- 1

2 particle as an example
to illustrate the results, and compared estimating a parameter
of the magnetic field amplitude to estimating a parameter of
the magnetic field direction. When estimating a parameter of
the magnetic field amplitude, the time scaling of the quantum
Fisher information is t2, but when estimating the parameter of
the magnetic field direction, the quantum Fisher information
oscillates as a sine function of t . This example clearly shows
the difference between estimating an overall multiplicative
factor and estimating a general parameter, and gives a physical
picture illustrating the general results.
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APPENDIX A: PROOF OF THE HERMICITY OF Hg

Suppose {σ1, . . . ,σd2} is an orthonormal basis in the
operator space; then the (i,j )th element of the superoperator

Hg is

(Hg)ij = Tr(σ †
i [Hg,σj ]), (A1)

and

(Hg)†ij = Tr([σ †
i ,Hg]σj ). (A2)

If Hg is Hermitian, it must satisfy (Hg)ij = (Hg)†ij . We can
check whether this is true directly from (A1) and (A2). Note
that

(Hg)ij − (Hg)†ij = Tr(σ †
i [Hg,σj ]) + Tr([Hg,σ

†
i ]σj )

= Tr([Hg,σ
†
i σj ])

= 0,

(A3)

so this proves the Hermicity of Hg .

APPENDIX B: PROOF OF EQUATION (29)

First, we note that [9]〈
�h2

g

〉
max = 1

4 (λmax − λmin)2, (B1)

where λmax and λmin are the maximum and minimum eigen-
values of h, respectively.

On one hand, |λmax − λmin| � |λmax| + |λmin|, so

〈
�h2

g

〉
max �

( |λmax| + |λmin|
2

)2

� |λmax|2 + |λmin|2
2

,

(B2)

where the second inequality follows from the well-known
power mean inequality: for any real positive numbers
x1, . . . ,xn and nonzero p, q,(

x
q

1 + · · · + x
q
n

n

) 1
q

�
(

x
p

1 + · · · + x
p
n

n

) 1
p

if p � q.

(B3)

If we take q = 1 and p = 2, it will produce (B2).
On the other hand,

Tr(h†
ghg) =

∑
k

|λk|2 � |λmax|2 + |λmin|2,

where λk runs over all eigenvalues of hg , so we have〈
�h2

g

〉
max � 1

2 Tr(h†
ghg), (B4)

which proves Eq. (29).
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