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Uncertainty in the context of multislit interferometry
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A pair of uncertainty relations relevant for quantum states of multislit interferometry is derived, based on
the mutually commuting “modular” position and momentum operators and their complementary counterparts,
originally introduced by Aharonov and co-workers. We provide a precise argument as to why these relations
are superior to the standard Heisenberg uncertainty relation at expressing the complementarity between spatial
localization and the appearance of fringes. We further support the argument with explicit computations involving
wave functions specifically tailored to the interference setup. Conceptually developing the idea of Aharonov and
co-workers, we show how the modular momentum should reflect the given experimental setup, yielding a refined
observable that accurately captures the fine structure of the interference pattern.
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I. INTRODUCTION

Heisenberg’s principle of uncertainty expresses the notion
of a fundamental limitation of precise values for a pair of
complementary observables for any quantum state. Mathemat-
ically the uncertainty principle is often expressed as a tradeoff
between the standard deviations of the relevant observables.
In its most common form, the so-called Heisenberg uncer-
tainty relation, a tradeoff is expressed between the standard
deviations of the position Q and the momentum P of a single
nonrelativistic particle. Using �(Q,�) to denote the standard
deviation of Q in state � and similarly �(P,�) to denote the
standard deviation of P , we have

�(Q,�) �(P,�) � 1
2 , (1)

in units where � = 1. In the context of multislit interferometry
though, it is clear already from an intuitive point of view
that the relevant complementary observables are not exactly
position and momentum. Indeed, position should be replaced
by “which slit” information, and momentum with fringe width.
The choice for a mathematical representation of the former is
clear (simply a coarse-grained position), but fringe width is less
obvious. As is well known—see, for instance, Ref. [1]—and
also argued here, the standard deviation of momentum cannot
describe fringe width, rendering the Heisenberg relation un-
suitable for expressing complementarity in the interferometric
context. This may seem particularly surprising considering
the important role played by the uncertainty relation (1) in the
historic Bohr-Einstein debate, which was concerned, inter alia,
with the complementarity of path information and interference
contrast.

It is not that the standard deviation as such is a poor
measure though; it is the particular combination of standard
deviation and the momentum operator P that is problematic.
A more suitable expression of the uncertainty principle may
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be found by using observables that take into account the
periodic nature of the experimental setup. Mathematically, the
idea is to modify the pair (Q,P ) by making Q discrete and
P periodic. When properly adjusted, the resulting pair will
still have a “canonical” nature that leads to an uncertainty
relation. We are going to derive commutation relations for
such operators, which are formally similar to the standard
relation (1). The derived relations, however, will be valid only
for wave functions of a subset specific to the interferometric
setup under consideration. A proper understanding of this
limited validity of the uncertainty relation requires careful
consideration of the mathematical subtleties of the problem,
in particular of domain questions.

The adaptation of the observables Q and P to the
interferometric context is due to Aharonov et al., who also
provided a heuristic argument that the uncertainty relations
discussed here should exist [2]. However, their work was never
developed beyond invoking an analogy to angle and angular
momentum. Most importantly, the fact that the relations are
only valid for specific wave functions was never made clear.
This is perhaps due to insufficient mathematical development
of the problem in their work and in related publications [2–4].
It was not until the work of Gneiting and Hornberger of 2011
that correct commutation relations were stated [5], but the
discussion there is mainly formal and with a different focus.
In conclusion, a thorough analysis seems in order. We present
here a precise derivation and discussion of these uncertainty
relations. Furthermore, we address limitations and benefits
of the uncertainty relations, and discuss an application to
uniformly illuminated apertures and the asymptotic behavior
of the uncertainty product in this case. We found that further
conceptual development of the idea of Aharonov et al. was
necessary for describing the fine structure of quantum states
as prepared in a given interferometry experiment. Precisely
resolving the fringe structure of the interference wave function
is only possible with an observable that is adapted specifically
to the particular experimental setup. We thereby obtain the
expected asymptotic behavior and find that the uncertainty
product converges to a finite value in the limit of infinitely
many illuminated slits. The underlying argument follows
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FIG. 1. Intensity profiles associated with the double-slit state ψ2

are depicted, in (a) position space and (b) momentum space. Note in
particular that ψ̂2(k) vanishes at k = (j + 1/2)K , with integer j .

from considerations involving a product form of a certain
physically motivated set of interference wave functions. This
product form, although mathematically elementary, provides
interesting insight into the structure of interference wave
functions and apparently remained unnoticed.

Throughout we will emphasize the interplay between
physics and mathematics leading to a derivation that is
mathematically deceptively simple and physically insightful,
although occasionally subtle on both accounts. From a more
practical point of view, we also provide a simple way of com-
puting the uncertainty products, based on the aforementioned
product form of the wave functions. (Otherwise rather involved
integrations would be required.)

II. OBSERVABLES OF MULTISLIT INTERFEROMETRY

The traditional approach, employing relation (1), fails at
quantifying the uncertainty of a double-slit superposition state.
Assuming rectangular slits of width a and a wave function
�(x) of constant real-valued amplitude passing through an
array of slits, the intensity profile of the fringe pattern with
slits at locations ±T/2 is given by the Fourier transform

|ψ̂2(k)|2 = a

π
sinc

(
a

2
k

)2

cos

(
T

2
k

)2

, (2)

where the cosine describes the fringes, and the sinc describes
an envelope. For an illustration, see Fig. 1. As �(P,ψ2)
diverges, relation (1) provides no information. The presence
of fringes, or lack thereof, has no impact on the result. This
is particularly apparent when considering the single-slit state
ψ1, for which again �(P,ψ1) = ∞. The root of this problem
is the combination of standard deviation and operator P . For
instance, the moments of P are insensitive to the relative phase
between two path states, or even to the absence of a phase
relation in the case of a mixed state. This led Aharonov et al.
to instead consider unitary shift operators for a description of
interference, as these can be used to create overlap and thus
establish sensitivity to relative phase. They then proposed a
decomposition of the noncommuting operators Q and P into

commuting parts Qmod and Pmod (periodic) and noncommuting
parts QT and PK , and presented a heuristic argument that
an uncertainty relation of the same form as the Heisenberg
relation (1) should exist.

The following observation illustrates this idea: Q being the
shift generator for quantum states in momentum space and P

being the shift generator for position space, the unitary shift
operators considered by Aharonov et al. are, in fact, identical
to the shift operators in Weyl’s commutation relation

eipQ eiqP = e−ipq eiqP eipQ. (3)

It follows immediately that the operators ei p Q and ei q P

commute for pq = 2πn, with n ∈ N; equivalently for the
relative periods T and 2π/(nT ). For the present, we restrict
our attention to n = 1, and define

2π/T =: K. (4)

This observation suggests a decomposition of Q into a T -
periodic part and a remainder, and P into a K-periodic part
with remainder. More precisely,

Q = Qmod + QT , (5)

P = Pmod + PK, (6)

yielding a pair of commuting operators

[Qmod,Pmod] = 0. (7)

The subscript “mod” was chosen to reflect the terminology of
Aharonov et al., who refer to these observables as “modular
variables.” We require the following definitions:

Qmod = Q mod T , (8)

Pmod = (P + K/2 mod K) − K/2. (9)

Note that Pmod is shifted by half the fringe separation in order
to avoid overlap of the fringes with the discontinuous part of
Pmod. This shift is crucial for avoiding anomalous behavior
of �(Pmod,ψ2), as will become evident shortly; Aharonov
et al. appear to have neglected it [2–4]. The definitions

FIG. 2. In (a) QT is depicted in position space; it is defined
indirectly through relations (8) and (5). Panel (b) illustrates Pmod

in momentum space, as defined in (9).
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of the operators QT and PK follow from (5) and (6). QT

corresponds to a discretized position observable, while PK is
a discretized momentum observable. Illustrations of QT and
Pmod are displayed in Fig. 2.

III. UNCERTAINTY RELATIONS ADAPTED
TO MULTISLIT INTERFEROMETRY

Conceptually the periodic quantity Pmod seems appropriate
for measuring the fine structure of the momentum distribution.
Similarly, QT appears suitable for measuring the localization
property as it corresponds to a coarse position observable—
the spatial localization should not critically depend on the
exact shape of the slits. Moreover, [Pmod,Qmod] = 0 suggests
that the canonical nature of the pair (Q,P ) is “transferred” to
the pairs (QT ,Pmod) and (Qmod,PK ), the only problem being
that QT and PT have discrete spectrum and so cannot be
canonical operators in the strict sense. In fact, it is possible
to obtain the following two commutators for general quantum
states [5,6]:

[QT ,Pmod] = i 1 − i K IIIK ((·) − K/2), (10)

[Qmod,PK ] = i 1 − i T IIIT . (11)

Here we have introduced the Dirac comb IIIT , which we
denote using the Cyrillic letter “sha” as is occasionally done
in electrical engineering. The Dirac comb (or Shah function)
is defined as

IIIT (x) =
∞∑

j=−∞
δ(x − jT ),

consisting of periodically spaced delta distributions δ, with
T denoting the spacing. The two relations (10) and (11) are
unsuitable for obtaining uncertainty relations resembling (1),
because of the state-dependent term. Simplifying these com-
mutators to a canonical form is only possible if the wave
function vanishes at the locations of the delta peaks—this
leads to the aforementioned restriction on the validity of the
associated uncertainty relations.

A rigorous derivation of the two commutation relations (10)
and (11) is rather long and technical; it will be provided in
Ref. [6]. It proceeds by making precise the analogy with the
angular momentum–angle case alluded to by Aharonov et al.
In fact, relations of the form (10), (11) have been known for
the angular momentum and angle pair since the 1960s [7–9].

Here we present an alternative argument that immediately
leads to the desired commutators by exploiting the properties
of the relevant quantum states from the beginning. For the
detailed discussion we focus on the pair QT and Pmod as it
is more natural to considerations in multislit interferometry;
an analogous argument holds for PK and Qmod. In order to
determine the commutator

[QT ,Pmod]ψ = (QT Pmod − PmodQT )ψ, (12)

it is necessary to ensure that

ψ ∈ D(QT ) = D(Q), (13)

Pmod ψ ∈ D(QT ). (14)

Here D denotes the domain of the indicated operator. Recall
that the domain of an operator is a subspace of square inte-
grable wave functions [elements of the Hilbert space L2(R)],
which, upon application of the operator, yield wave functions
that are still square integrable. Since Pmod is bounded, its
domain is the whole Hilbert space and hence does not lead
to restrictions.

First, note that the domains of Q and of QT are equal,
because these two operators differ by the bounded Qmod.
Second, noting that Q acts as a differentiation operator in
momentum space, a wave function in its domain is required to
be (even absolutely) continuous. While (13) thus amounts to
the standard continuity assumption, the relation (14) is peculiar
to the present setup and requires more care. Since

Pmod ψ̂(k) = (k − jK)ψ̂(k)

for k ∈ ((
j − 1

2

)
K,

(
j + 1

2

)
K

]
(15)

and j ∈ Z, this function is discontinuous at k = jK + K/2,
unless ψ̂(k) vanishes at these points. This gives the aforemen-
tioned restriction on the wave function, explicitly:

ψ̂((j + 1/2)K) = 0 for each j ∈ Z. (16)

Since ψ̂ is absolutely continuous by (13), this restriction is
also sufficient for the commutator [QT ,Pmod]ψ to be defined.

Note that if Pmodψ̂(k) were not continuous, the derivative
would not approach a finite limit value at the point of
discontinuity; more precisely, we could describe the point
of discontinuity by a step function, whose (distributional)
derivative is a delta function—this line of reasoning would
eventually lead to the state-dependent correction terms in (10)
and (11).

Wave functions that naturally appear in the interferometric
context typically have nodes (i.e., zeros) periodically. As
is evident from comparing Figs. 1 and 2 and discussed in
more detail below, our specific choice for Pmod in (9) has its
discontinuity points aligned with the nodes of the particular
wave functions considered here. We emphasize once more
that a more general wave function ψ̂(k) with periodic but
nonvanishing values at the discontinuity points of Pmod is
unsuitable because of boundary effects that lead to a state-
dependent commutator.

Condition (16) suggests a decomposition of the (dense)
subspace of the admissible wave functions into a direct sum
of subspaces

Dj = {ψ̂ ∈ L2(jK + [−K/2,K/2]) |
ψ̂(jK − K/2) = ψ̂(jK + K/2) = 0},

where j ∈ Z. Note that a restriction to any of the subspaces Dj

corresponds to a quantum particle confined to a (“momentum”)
box, carefully discussed in the work of Bonneau et al. [10];
below we point out parallels.

With the restriction (16) on the wave function, Pmod

corresponds to P up to a constant, on each interval

022115-3



JOHANNES C. G. BINIOK, PAUL BUSCH, AND JUKKA KIUKAS PHYSICAL REVIEW A 90, 022115 (2014)

jK + [−K/2,K/2]; see Eq. (15). This enables us to perform
the following formal manipulations in order to obtain the
commutator:

[QT ,Pmod] = [Q − Qmod,Pmod] (17)

= [Q,Pmod] (18)

= [Q,P ] on each Dj (19)

= i. (20)

While the algebraic manipulations are trivial, the penultimate
expression may only be obtained by way of the domain
considerations above. Hence, for each wave function in the
dense subspace given by (16) [together with the domain
conditions (13), (14)], we have

[QT ,Pmod]ψ = i ψ. (21)

By means of the Robertson relation [11] for operators
A and B

�(A,ψ) �(B,ψ) � 1
2 |〈ψ |[A,B]ψ〉|, (22)

the desired uncertainty relation now follows immediately:

�(QT ,ψ) �(Pmod,ψ) � 1
2 . (23)

This is the central result of the present investigation. For
completeness, we point out that this discussion proceeds
analogously for wave functions restricted similarly in position
space, yielding

[Qmod,PK ]η = i η, (24)

and ultimately

�(Qmod,η) �(PK,η) � 1
2 , (25)

for wave functions η from a suitably restricted dense subspace.

IV. REMARKS

This section contains a number of conceptual and technical
points and some critical observations on the work of Aharonov
et al. [2–4].

While the pairs of operators appearing in (23) and (25)
are more appropriate for multislit interferometry than (1),
it must be stressed that these inequalities are valid only for
quantum states ψ and η, respectively, which vanish at the
points of discontinuity of Pmod and Qmod. Notable exceptions
are the eigenstates of QT and PK . In particular, the uncertainty
relation (23) is inappropriate for a description of single-slit
states. This point is particularly intriguing, because it is the
adaptation of the observables to multislit interferometry that
rules out the description of single-slit states.

The heuristic argument provided by Aharonov et al. refers
to the analogy between the pair (QT ,Pmod) and the pair
of angular momentum and angle operators, the latter being
understood as in the review of Carruthers and Nieto, Ref. [7].
The analogy can be made precise by observing that the
restriction of the Weyl commutation relations to a discrete set
of position variables and periodic set of momentum variables
defines a representation of the Weyl relations on the group

Z × T, where T is the circle group. This representation is
reducible, corresponding to the fact that the eigenspaces of
QT are infinite-dimensional, and can be decomposed into a
direct sum of copies of the angle–angular momentum pair.
We will return to this topic in more detail in a more technical
work [6].

Finally, we feel obliged to point out that in the later pub-
lications by Aharonov et al. [3,4], their heuristic uncertainty
relation [2] is instead presented as an actual inequality of the
form

�(QT ,ψ) �(Pmod,ψ) � 2π

in units where � = 1. This is, of course, incorrect as the
claimed lower bound is easily violated. There is no indication
that these authors are considering a nonstandard definition of
the standard deviation. On the contrary, the explicit definitions
in Ref. [4] indeed confirm that standard deviations are used.
Furthermore, the operator used by Aharonov et al. to measure
the fringe width appears to lack the shift performed in (9). It
follows that the value assigned to the fringe width increases as
the number of illuminated slits is increased, indicating that
the relevant features of the fringe width are not captured.
In contrast, our choice (9) yields the expected asymptotic
behavior. The example application in the following section
demonstrates this.

V. THE CASE OF UNIFORMLY ILLUMINATED
APERTURES

For our detailed discussion we focus on the uncertainty
relation (23), which describes the tradeoff between the spatial
localization of a quantum state incident on a multislit aperture
and its fringe width.

We consider states obtained as follows: A single illuminated
slit is assumed to prepare a quantum state described by a
rectangular function of slit width, while a general aperture
yields a suitable superposition of those. As the eigenspaces
of QT are excluded—analysis of single-slit states is beyond
the scope of this approach—we consider superposition states
of m coherently illuminated slits, where m is an even positive
integer. These quantum states are but a subset of the quantum
states that a multislit aperture can prepare, but they describe
the important cases of the double-slit aperture—illustrated in
Fig. 1—and the periodic aperture and have a structure that
makes a discussion of the uncertainty relation (23) both simple
and insightful. They are of the form

ψm(x) = 1√
m

m/2∑
j=1

{rec[x + (2j − 1)T/2]

+ rec[x − (2j − 1)T/2]}, (26)

where the function rec(x) is of rectangular shape,

rec(x) =
{

1/
√

a for x ∈ [−a/2,a/2],

0 for x /∈ [−a/2,a/2].
(27)

The rectangular function is a popular choice for describing
the profile across a single slit, although one may argue that
it might not be the most physical choice. For the uncertainty

022115-4



UNCERTAINTY IN THE CONTEXT OF MULTISLIT . . . PHYSICAL REVIEW A 90, 022115 (2014)

FIG. 3. The slit number m versus the standard deviation of Pmod

in state ψm is depicted (crosses on dotted line) for T = 5, and also
Pmod(m) (dots on dashed line), which is discussed in Sec. VI C.

product (23) this choice is actually entirely irrelevant as will
become evident shortly.

The momentum space wave function ψ̂m(k) (the Fourier
transform of ψm) is given by

ψ̂m(k) =
√

2a

mπ
sinc

(
a

2
k

) m/2∑
j=1

cos

(
(2j − 1)

T

2
k

)
. (28)

For future reference, we define

fm(κ) =
m/2∑
j=1

cos[(2j − 1)κ], (29)

where we have introduced the more natural variable κ = T k/2,
proving particularly useful for integrations.

The standard deviation �(QT ,ψm) is easy to compute
analytically; one obtains [5]

�(QT ,ψm) = T

2

√
m2 − 1

3
. (30)

For uniformly illuminated apertures the standard deviation
of QT increases linearly with the number of illuminated
slits m. However, �(Pmod,ψm) requires some technical effort.
Numerically computed values of �(Pmod,ψm) for T = 5 are
depicted in Fig. 3 (crosses on dotted line); we deduce that this
is approximately described by

�(Pmod,ψm) ≈ 0.32√
m

. (31)

This result regarding the asymptotic behavior of �(Pmod) is
confirmed analytically by a calculation in Appendix B, using
a simplification that is discussed below and explicitly shown
to hold in Appendix A. We conclude immediately that the
asymptotic behavior of the uncertainty product is divergent:

lim
m→∞ �(QT ,ψm) �(Pmod,ψm) ∝ lim

m→∞
√

m = ∞. (32)

Note that for slit number m (even) the value of �(Pmod,ψm)
is independent of a. While this result might be expected by
way of physical considerations, we show in Appendix B that
it indeed follows when computing �(Pmod,ψm). This greatly

simplifies any such computations. The calculation provided in
Appendix B is very detailed; suffice it to say here that the result
follows because fm(k)2 = fm(k + jK)2 (with integer j ) and
because of a result on infinite sums in Ref. [12]:

�(Pmod,ψm) =
(∫ ∞

−∞
Pmod(k)2 ψm(k)2 dk

)1/2

=
(

24

T 2mπ

∫ π
2

− π
2

κ2 fm(κ)2 dκ

)1/2

. (33)

We proceed to calculate explicitly

�(Pmod,ψ2) =
(

23

T 2π

∫ π
2

− π
2

κ2 cos(κ)2 dκ

) 1
2

= 1

T

√
π2 − 6

3
. (34)

The uncertainty product for ψ2 can be computed immediately
from (30) and (34):

�(QT ,ψ2) �(Pmod,ψ2) = 1

2

√
(π2 − 6)/3

≈ 0.568. (35)

This is surprisingly close to the lower bound already, and in fact
equal to the value of the conventional uncertainty product (1)
assigned to a particle confined to a box (in one dimension).
This is not a coincidence; the central idea of the formulation
of uncertainty discussed here is that a direct sum of such
“boxes” is considered. More explicitly, for the particle in a
box the spatial wave function of the lowest energy eigenstate
is described by a half cosine pulse, whereas a single fringe of
the double-slit state is described by a half cosine pulse. In these
two considerations position space and momentum space are
reversed: a spatial wave function is (typically) considered for
the particle in the box, whereas a wave function in momentum
space is considered here.

Any attempt at quantifying uncertainty using the un-
certainty relation claimed in the work of Aharonov and
Rohrlich [3] or Aharonov et al. [4] quickly leads to contra-
dictions. The double-slit state ψ2 (among others) violates the
lower bound claimed there. Furthermore, the definition of Pmod

implicit in Aharonov et al. [2–4] features an unsuitable choice
of origin, leading to �(Pmod,ψm) increasing with increasing
m; this is addressed here by means of the shift in (9).

In the following two sections material is developed that
allows a more apt application of the uncertainty relation (23)
through better adaptation to the specific structure of the
quantum states ψm.

VI. FINE STRUCTURE AND REFINED Pmod

A. The product form of ψ̂2d (k)

As an alternative to (28), for slit numbers that are powers
of 2, the wave functions ψ̂2d (k) can identically be described
by

ψ̂2d (k) =
√

2d−1
a

π
sinc

(
a

2
k

) d−1∏
j=0

cos

(
2j T

2
k

)
. (36)
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FIG. 4. The interference patterns associated with ψ2, ψ4, and ψ8 are depicted; their recursive relationship is illustrated. Panel (a) shows
|ψ̂2(k)|2, the first interference state and the sinc envelope (dotted line). Panel (b) shows |ψ̂4(k)|2 (solid line); |ψ̂2(k)|2 (dotted) serves as the
envelope to |ψ̂4(k)|2. Panel (c) shows |ψ̂8(k)|2 (solid line); |ψ̂4(k)|2 (dotted) serves as the envelope to |ψ̂8(k)|2. Note that the depicted states are
not normalized relative to each other so as to better demonstrate the shape and recursive relationship of the depicted states.

The equivalence with (28) is shown in Appendix C. How the
product form arises conceptually is addressed in Appendix D.
Observe that the product involves d factors only and that for
d = 0 the correct expression for the single-slit wave function is
obtained [whereas (28) does not simplify to the single-slit state
and consists of 2d−1 terms]. We proceed to discuss the structure
highlighted by expressing wave functions in the product form
of Eq. (36), and then adapt our measure of the fringe width
accordingly.

B. Spread and fine structure by means of the product form

For the double-slit interference state the structure of the
wave function in momentum space, given in (2) and illustrated
in Fig. 1(b), is easily read. There is a sinc envelope and cosine
fringes. For this state the sum and the product form of the
momentum wave function coincide. For larger d, however, the
sum of cosines in (28) obscures the structure of the respective
state, making it impossible to tell the function determining
the envelope from the one determining the fine structure.
The product form, on the other hand, makes it very easy
to distinguish the envelope from the fine structure. Note the
following recursive relationship among the wave functions,

ψ̂2d+1 (k) ∝ ψ̂2d (k) cos

(
2d T

2
k

)
, (37)

implicit in (36). This relationship is illustrated in Fig. 4 for
ψ1, ψ2, ψ4, and ψ8, i.e., for d = 0,1,2,3. We can immediately
draw conclusions about the spread of the interference pattern
and the fringe width using the recursive relationship of (37).

Regarding the spread of the interference pattern, notice
the following: The eight-slit wave function ψ̂8(k) depicted
in Fig. 4(c) (solid line) is contained in an envelope ψ̂4(k)
(dotted). Equally, the four-slit wave function ψ̂4(k) depicted in
Fig. 4(b) (solid line) is contained in an envelope ψ̂2(k) (dotted).

This argument applies recursively: the spread of ψ̂2d (k) is
determined by ψ̂2d−1 (k), and in turn the spread of ψ̂2d−1 (k)
is determined by ψ̂2d−2 (k), all the way up to the single slit
state ψ̂20 (k). This is an excellent illustration that the spread
of the interference pattern is independent of the number of
illuminated slits; it instead depends on the slit shape. The
uncertainty product should not depend on the spread of the
interference pattern or, consequently, on the slit shape or width.

Considering the fine structure we note that while the sinc is
common to the single-slit wave function ψ̂1 and the double-slit
wave function ψ̂2(k), the latter also possesses fine structure
described by the cosine. Doubling the number of illuminated
slits (from 1 to 2) results in a cosine of frequency T/2.
Doubling the number of illuminated slits once more (from
2 to 4) results in a cosine of double the frequency, i.e., 2(T/2),
and hence a fringe width that is reduced by a factor of 2. We
observe that our initial fringe measure depends on the square
root of the number of illuminated slits; see Eq. (31). Yet we
saw in this section that doubling the number of illuminated
slits leads to a fine structure with doubled frequency; whatever
measure might be used, this should be reflected. In the next
section we discuss a modification that yields precisely the right
asymptotic behavior.

C. The refined modular momentum Pmod

We present here an application of (23) to multislit interfer-
ometry that takes into account the insights into the structure
of interference wave functions as presented in the previous
subsection. This entails an adaptation of the operator Pmod to
the experimental setup, i.e., the number of illuminated slits
m, which corresponds to an adaptation to the minimal period
of the nodes occurring in the respective interference pattern.
While the definition of K in (4) is sufficient for the double-slit
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FIG. 5. Values of fringe width associated with uniformly illu-
minated apertures versus the number of illuminated slits m, for
T = 5. The values assigned by �(Pmod,ψm) are represented using
crosses, whereas using dots we indicate the values of �(Pmod(m),ψm).
Compare Fig. 3.

state ψ2, we define now for general (even) m

K ′ = 2π/(nT ) = 4π/(mT ), (38)

as this reflects the behavior we observed in the previous
section. We proceed to define a new operator adapted to the
minimal period of the nodes:

Pmod(m) = (P + K ′/2 mod K ′) − K ′/2. (39)

It is important to note that the middle expression in (38) ensures
that Qmod commutes with the Pmod(m), so that we again obtain
the uncertainty relation. The derivation of Sec. III is extended
to this more general case at the discretion of the reader.

The definition of Pmod(m) leads to a calculation very similar
to the one performed in (33), but yields a result that depends
inversely on m:

�(Pmod(m),ψm) =
(

22m

T 2π

∫ π
m

− π
m

κ2 cos

(
m

2
κ

)2

dκ

) 1
2

=
(

25

T 2πm2

∫ π
2

− π
2

y2 cos(y)2 dy

) 1
2

= 2

mT

√
π2 − 6

3
. (40)

Physical considerations lead us to conclude the first line;
mathematically this is shown in Appendix E. The second line
is obtained from the first line using the substitution y = mκ/2;
note in particular how it compares to Eq. (33) where we found
dependence on m−1/2. The behavior of Pmod(m) is depicted in
Fig. 3 (dots on dashed line) and in Fig. 5 (dots).

We can now take the limit to large m for �(Pmod(m),ψm),
i.e., increasing the aperture while also adapting the operators
Pmod(m). The resulting asymptotic behavior of the uncertainty
product (23) is obtained immediately from (30) and (40):

lim
m→∞ �(QT ,ψm)�(Pmod(m),ψm) = 1

3

√
π2 − 6

≈ 0.656. (41)

FIG. 6. Convergence of the uncertainty product (41) for uni-
formly illuminated apertures of even slit number.

The convergent behavior is illustrated in Fig. 6. We find that
a finite value is obtained, while previously the uncertainty
product (32) would diverge. This is the result of adapting
the operator that measures the fringes to the interference
setup considered by using the known relationship between the
number of illuminated slits and the periodicity of the nodes
discussed in the previous section. While the discussion in the
previous section was restricted to slit numbers corresponding
to powers of 2 only, the expression for �(Pmod(m),ψm) holds
for all even m as is illustrated in Fig. 5.

VII. CONCLUSION

A successful adaptation of the uncertainty relation (1)
to multislit interferometry was presented. Based on an idea
of Aharonov, Pendleton, and Peterson [2], we showed that
a pair of uncertainty relations more suitable to multislit
interferometry may be obtained by means of a suitable
decomposition of the position and momentum observables.
These uncertainty relations employ standard deviations, yet
express the complementarity of spatial localization and fringe
width by virtue of the observables involved. We showed how
these relations can be obtained with particular focus on the
relevant commutation relations. Special care was taken to
point out issues arising from domain questions and necessary
boundary conditions.

We discussed in detail a certain subset of superposition
states that can be expressed in a product form. The structure
of interference wave functions in product form is easily read,
which allows identifying the functions determining the spread
of the interference pattern and the functions determining
its fringe width. In particular, we discussed a recursive
relationship between the interference wave functions that lead
to a refined decomposition of the operator used to describe the
fringe width, and to a finite uncertainty product for any (even)
number of uniformly illuminated slits.

We argued that the formulation of uncertainty presented
here is superior to the so-called Heisenberg uncertainty relation
in the interferometric context. In particular, the measure of
fringe width employed indeed gives reasonable (finite) values
and shows the expected asymptotic behavior. Furthermore, the
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analysis does not depend on the slit width at all: the spatial
localization as well as the fringe width are independent of the
value of the slit width. This is as it should be, as was pointed
out. The new operators, however, do not address all problems.
We pointed out the most important deficiencies.

Finally, we discussed a simple method for calculating
the standard deviation of the operator used to express the
fringe width. This simplification arises from the fact that
the envelope has no effect on the calculation, and hence a
single fringe becomes sufficient for a quantification of the fine
structure.

We emphasize once more that the uncertainty relations
discussed here are limited to quantum states that vanish
periodically and are not suitable for a description of single-slit
quantum states.
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APPENDIX A: COMPUTING �(Pmod,ψm)

Here we show that for slit number m (even) the value of
�(Pmod,ψm) is independent of a:

�(Pmod,ψm)2 =
∫ ∞

−∞
Pmod(k)2 ψm(k)2 dk

= 24a

T 3mπ

∫ ∞

−∞
Pmod(κ)2 sinc

(
a

T
κ

)2

fm(κ)2 dκ,

where we are using the shorthand fm(κ), which was introduced
in (29). This integral may be decomposed into an infinite sum
of integrals over the finite interval K ,

= 24a

T 3mπ

∞∑
j=−∞

∫ (j+ 1
2 )π

(j− 1
2 )π

(κ − jπ )2 sinc

(
a

T
κ

)2

fm(κ)2 dκ.

We now substitute u = κ − jπ and immediately exploit
fm(κ + jπ )2 = fm(κ)2,

= 24a

T 3mπ

∫ π
2

− π
2

u2 fm(u)2
∞∑

j=−∞
sinc

(
a

T
(u + jπ )

)2

du.

The value of the series is known to be T/a (see Eq. (11)
of Ref. [12] and the derivation provided in Ref. [13]; note,
however, that there is a factor of 1/α missing in both the
integral term and the series in Eq. (1) of Ref. [13]); hence

�(Pmod,ψm)2 = 24a

T 3mπ

T

a

∫ π
2

− π
2

u2 fm(u)2 du

= 24

T 2mπ

∫ K
2

− K
2

u2 fm(u)2 du.

The final expression is indeed equal to (33).

APPENDIX B: �(Pmod,ψm) ∼ 1/
√

m

We show here that �(Pmod,ψm) in (31) indeed asymptoti-
cally goes as 1/

√
m. We use the result of Appendix A in order

to simplify the necessary integration, which is the same as
in (34), but for general m:

�(Pmod,ψm)2 = 4

mK

(
2

T

)3∫ π
2

− π
2

κ2 fm(κ)2 dκ

= 16

mπT 2

∫ π
2

− π
2

κ2

⎛⎝m/2∑
j=1

cos (2j − 1)κ

⎞⎠2

dκ.

(B1)

Note that ⎛⎝m/2∑
j=1

cos (2j − 1)κ

⎞⎠2

= 1

4

(
sin mκ

sin κ

)2

(B2)

= 1

4

1 − cos 2mκ

1 − cos 2κ
. (B3)

The standard deviation of the first term can be computed
analytically, ∫ π/2

−π/2

κ2

1 − cos 2κ
dκ = π ln 2, (B4)

whereas the second term yields

lim
m→∞

∫ π
2

− π
2

κ2

1 − cos 2κ
cos 2mκ dκ = 0, (B5)

by the Riemann-Lebesgue lemma. Hence, we obtain

�(Pmod,ψm) ≈ 2
√

ln 2

T

1√
m

for large m, (B6)

analytically confirming the asymptotic behavior that was
suggested by the numerical investigation, which is depicted
in Fig. 3, that led to (31).

APPENDIX C: THE INDUCTION

The equivalence of the summed interference wave func-
tion (28) and the product form (36) can be shown using
mathematical induction. Starting the induction at d = 2 (it
holds trivially for d = 1 and d = 0),

2−1∏
j=0

cos(2j κ) = cos(20κ) cos(21κ) (C1)

= 2{cos[(2 − 1)κ] + cos[(2 + 1)κ]} (C2)

= 2[cos(κ) + cos(3κ)] (C3)

= 2
22−1∑
j=1

cos[(2j − 1)κ]. (C4)

Hence for d = 2 the product form equals the summation form.
The known trigonometric identity

2 cos(A) cos(B) = cos(A − B) + cos(A + B) (C5)

022115-8

http://www.enthought.com


UNCERTAINTY IN THE CONTEXT OF MULTISLIT . . . PHYSICAL REVIEW A 90, 022115 (2014)

was used going from (C1) to (C2). Now, assuming that the
equivalence holds for the case d, i.e.,

2d−1
d−1∏
j=0

cos(2j κ) =
2d−1∑
j=1

cos[(2j − 1)κ], (C6)

it is shown that the equivalence holds for the case d + 1:

2d

d∏
j=0

cos(2j κ) = 2

⎡⎣2d−1
d−1∏
j=0

cos(2j κ)

⎤⎦ cos(2dκ) (C7)

= 2

⎡⎣2d−1∑
j=1

cos[(2j − 1)κ]

⎤⎦ cos(2dκ) (C8)

= cos[(2d − 1)κ] + cos[(2d + 1)κ] + · · ·
+ cos(κ) + cos[(2d+1 − 1)κ] (C9)

= cos(κ) + · · · + cos[(2d − 1)κ]

+ cos[(2d+1)κ] + · · · + cos[(2d+1 − 1)κ]

(C10)

=
2d∑

j=1

cos[(2j − 1)κ]. (C11)

Hence it follows that

2d−1
d∏

i=1

cos(2i−1) =
2d−1∑
j=1

cos[(2j − 1)κ], (C12)

which concludes the proof.
Note that the right-hand side of (C12) can be viewed as a

Fourier series of the periodic function on the left-hand side.
This Fourier series has the special property that its coefficients
are either 1 or 0.

APPENDIX D: DEDUCING THE PRODUCT FORM

The alternative product form can be obtained easily by
performing the Fourier transform differently. It is also possible
to illustrate this difference in a diagram, as is done below.
The different mathematical expressions leading to the sum or
the product form are easily identified. Using an example of
a uniformly illuminated aperture with eight slits, the Fourier
transform is performed by considering each slit location as
a delta function δ, and the aperture as a sum of such. The
following expression is found to express the structure of the
aperture:

f8(x) =
[
δ

(
x + 1

T

2

)
+ δ

(
x − 1

T

2

)]
+

[
δ

(
x + 3

T

2

)
+ δ

(
x − 3

T

2

)]
+

[
δ

(
x + 5

T

2

)
+ δ

(
x − 5

T

2

)]
+

[
δ

(
x + 7

T

2

)
+ δ

(
x − 7

T

2

)]
.

(b) A A B B C C D D

4
2
1

(a) D C B A A B C D

1
3
5
7

FIG. 7. The two different ways of arranging the slits of an aperture
in pairs are depicted for an aperture of eight slits. In (a), the usual
way of pairing up slits across the origin is shown; this results in a
sum. The numbers indicate the distance between the two members of
the pair; they are in units of “slit separations.” In (b) an alternative
way of pairing the slits is shown, which underlies the product form.
The numbers indicate the distance of the successive pairings in units
of “slit separations,” down to the unit of a single pair of slits.

See Eq. (26), where this is the underlying structure. The Fourier
transform is easily computed; the Fourier transform of a sum
is the sum of Fourier transforms. The result is

f̂8(k) = cos

(
T

2
k

)
+ cos

(
3

T

2
k

)
+ cos

(
5

T

2
k

)
+ cos

(
7

T

2
k

)
. (D1)

Alternatively, the aperture may be described by the following
convolutions:

g8(x) =
[
δ

(
x + 1

T

2

)
+ δ

(
x − 1

T

2

)]
∗
[
δ

(
x + 2

T

2

)
+ δ

(
x − 2

T

2

)]
∗
[
δ

(
x + 4

T

2

)
+ δ

(
x − 4

T

2

)]
.

The Fourier transform is also computed easily, noting that
the Fourier transform of a convolution is a product of Fourier
transforms; it leads immediately to the promised product form:

ĝ8(k) = cos

(
1

T

2
k

)
cos

(
2

T

2
k

)
cos

(
4

T

2
k

)
. (D2)

The observing reader may have noticed already that when
computing the Fourier transform of a multislit aperture, there
are two distinct ways of pairing up slits. The common way of
pairing up two slits is easily identified: two slits with equal
distance to the origin are considered a pair and their complex
phases combined into a real cosine. This way of pairing up
slits is illustrated in Fig. 7(a); the four pairs in the depicted
8-slit setup are denoted A, B, C, and D. Compare (26), which
explicitly highlights this structure.
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The procedure underlying the product form is different; it
is illustrated in Fig. 7(b). It entails successively dividing the
aperture into halves, and the halves into quarters and so on,
until pairs are left. In the illustrated example, dividing the
initial aperture into halves results in a cosine factor scaled
with the center-to-center distance of 4 (in units of “half slit
separations”) between the halves. Dividing each of the two
halves results in quarters and gives a cosine factor scaled by
2, which is the center-to-center distance between the quarters.
Finally, the pairs of slits yield a cosine factor scaled with unity.
Observe that the center-to-center distances indicated on the
right-hand side times the number of occurrences is constant;
e.g., on the lowest level 4 pairs with a distance of unity are
obtained whereas on the highest level there is one division
with a center-to-center distance of 4. This generalizes trivially
to larger interference setups.

APPENDIX E: COMPUTING �(Pmod(m),ψm)

The calculation here demonstrates that the calculation of
�(Pmod(m),ψm) can be simplified further than the result
of Appendix A. This is done easily for the special case
m = 2d , because this particular choice allows us to exploit
the introduced product form. Below, a sketch of the general
proof is included; the calculation turns out very similar but is
substantially more tedious [14]. We start with an expression
similar to (B1) but using Pmod(m) instead of Pmod:

�(Pmod,ψm)2 = 4

mK

(
2

T

)3∫ π
2

− π
2

Pmod(m,κ)2fm(κ)2 dκ.

We restrict ourselves to m = 2d and substitute a product
expansion

f2d (κ) = 2d−1
d−1∏
j=0

cos(2j κ)

in place of the sum, giving

= 25

T 3mK

(
m

2

)2∫ π
2

− π
2

Pmod(m,κ)2
d−1∏
j=0

cos(2j κ)2 dκ.

Using the identity cos(x)2 = (1 + cos 2x)/2, it follows that
each of the cosines from j = 0 to j = d − 2 contributes a

factor of 1/2, because the integrations are computed over
multiples of the periods of the respective cosines. We proceed
explicitly with the case j = 0

= 23m

T 3K

1

2

∫ π
2

− π
2

Pmod(m,κ)2(1 + cos 2κ)
d−1∏
j=1

cos(2j κ)2 dκ

= 23m

T 3K

1

2

∫ π
2

− π
2

Pmod(m,κ)2
d−1∏
j=1

cos(2j κ)2 dκ.

Repeating this another d − 2 times contributes (1/2)d−2

= 23m

T 3K

2

m

∫ π
2

− π
2

Pmod(m,κ)2 cos(2d−1κ)2 dκ.

We immediately exploit the periodicity of the resulting
function:

= 23m

T 3K

2

m

m

2

∫ π
m

− π
m

Pmod(m,κ)2 cos

(
m

2
κ

)2

dκ

= 22m

T 2π

∫ π
m

− π
m

κ2 cos

(
m

2
κ

)2

dκ.

The final expression is indeed equal to (40), although here we
only proved the special case m = 2d . In order to show this for
all even m, two cases are required to be treated separately:

m/2 =
{

w if m/2 is even,

v if m/2 is odd.

Using the expressions

f2w(κ) = 2 cos

(
m

2
κ

) w/2∑
j=1

cos[(2j − 1)κ],

f2v(k) = cos

(
m

2
κ

)⎡⎣1 + 2
(v−1)/2∑

j=1

cos(2jκ)

⎤⎦
and noting that the cross terms resulting from squaring fm(k)
integrate to zero, these two cases can be calculated using the
same trigonometric identity that was used above to reduce the
power of a squared cosine.
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