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The Hamiltonian for a PT -symmetric chain of coupled oscillators is constructed. It is shown that if the
loss-gain parameter γ is uniform for all oscillators, then as the number of oscillators increases, the region of
unbroken PT symmetry disappears entirely. However, if γ is localized in the sense that it decreases for more
distant oscillators, then the unbroken PT -symmetric region persists even as the number of oscillators approaches
infinity. In the continuum limit the oscillator system is described by a PT -symmetric pair of wave equations,
and a localized loss-gain impurity leads to a pseudobound state. It is also shown that a planar configuration of
coupled oscillators can have multiple disconnected regions of unbroken PT symmetry.
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I. INTRODUCTION

A previous paper [1] considered a system consisting of
a pair of coupled oscillators, one with loss and the other
with gain. Such a system is PT symmetric if the loss and
gain parameters are equal. The energy of this PT -symmetric
system is exactly conserved because this system is described
by a time-independent Hamiltonian. In the current paper we
examine the systems that arise when the number of pairs of
coupled oscillators is extended from 1 to N , where N can be
arbitrarily large.

Let us review the case N = 1. A single pair of coupled
oscillators, the first with loss and the second with gain, is
described by the equations of motion

ẍ + ω2x + μẋ = −εy, ÿ + ω2y − νẏ = −εx. (1)

To treat this system at a classical level, we seek solutions to
(1) of the form eiλt . The classical frequency λ then satisfies
the quartic polynomial equation

λ4 − i(μ − ν)λ3 − (2ω2 − μν)λ2

+ iω2(μ − ν)λ − ε2 + ω4 = 0. (2)

This classical system becomes PT symmetric if the loss
and gain are balanced; that is, if we set μ = ν = 2γ . In this
case the frequencies λ are given by

λ2 = ω2 − 2γ 2 ±
√

ε2 − 4γ 2ω2 + 4γ 4. (3)

Note that there are four real frequencies when ε is in the range

ε1 = 2γ
√

ω2 − γ 2 < ε < ε2 = ω2. (4)

This defines the unbroken PT -symmetric region. In the
broken PT -symmetric region ε < ε1 there are two pairs
of complex-conjugate frequencies and in the broken PT -
symmetric region ε > ε2 there are two real frequencies and
one complex-conjugate pair of frequencies.
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When μ �= ν, system (1) cannot be derived from a
quadratic time-independent Hamiltonian. To verify this, one
can construct the most general quadratic Hamiltonian for
the four variables p, q, x, and y with arbitrary constant
coefficients. It is then a simple algebraic calculation to
show that there is no choice of coefficients for which one
obtains a Hamiltonian that leads to Eqs. (1). However,
when the system is PT symmetric (μ = ν = 2γ ), (1) can
be derived from the two-coupled-oscillator time-independent
Hamiltonian

H2 = pq + γ (yq − xp) + (ω2 − γ 2)xy + 1
2ε(x2 + y2). (5)

This Hamiltonian is PT symmetric because under parity
reflection P the loss and gain oscillators are interchanged [2],

P: x → −y, y → −x, p → −q, q → −p, (6)

and under time reversal T the signs of the momenta are
reversed,

T : x → x, y → y, p → −p, q → −q. (7)

The Hamiltonian H2 is PT symmetric but it is not invariant
under P or T separately [3]. Because the balanced loss-gain
system is described by a time-independent Hamiltonian, the
energy (that is, the value of H2) is conserved. However, the
total energy (5) is not the usual sum of the kinetic and potential
energies (such as p2 + q2 + x2 + y2).

If we set the coupling parameter ε to 0, H2 describes the
system studied by Bateman [4]. Bateman showed that an
equation of motion having a friction term linear in velocity
could be derived from a variational principle. To do this
he introduced a time-reversed companion of the original
damped harmonic oscillator. This auxiliary oscillator acts
as an energy reservoir and can be viewed as a thermal
bath. The classical Hamiltonian for the Bateman system was
constructed by Morse and Feschbach [5] and the corresponding
quantum theory was analyzed by many authors, including
Bopp [6], Feshbach and Tikochinsky [7], Tikochinsky [8],
Dekker [9], Celeghini, Rasetti, and Vitiello [10], Banerjee
and Mukherjee [11], and Chruściński and Jurkowski [12].
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Only the noninteracting (ε = 0) case was considered in these
references.

The noteworthy feature of PT -symmetric systems is that
they exhibit transitions; the classical system described by H2

exhibits two transitions. The first occurs at ε = ε1. If ε < ε1,
the energy flowing into the y resonator cannot transfer fast
enough to the x resonator, where energy is flowing out, so the
system cannot be in equilibrium. However, when ε > ε1, the
energy flowing into the y resonator transfers to the x resonator
and the entire system is in equilibrium. The frequencies of
a classical system in equilibrium are real and the system
exhibits Rabi oscillations (power oscillations between the
two resonators) in which the two oscillators are 90◦ out of
phase. Complex frequencies indicate exponential growth and
decay and are a signal that the system is not in equilibrium. A
second transition occurs at ε = ε2; when ε > ε2, the classical
system is no longer in equilibrium. This transition is difficult
to see in classical experiments because in the strong-coupling
regime the loss and gain components would have to be so
close that they would interfere with one another. For example,
in the pendulum experiment in Ref. [13] the pendula would
be so close that they could no longer swing freely, and in
the optical resonator experiment in Ref. [14] the solid-state
resonators would be damaged. This strong-coupling region is
discussed for the case of coupled systems without loss and
gain in Ref. [15], where it is called the ultrastrong-coupling
regime.

In Ref. [1] it is shown that the classical and the quantum
systems described by H2 exhibit transitions at the same two
values of the coupling parameter ε. When ε < ε1 and when
ε > ε2 the quantum energies are complex, but in the unbroken
PT -symmetric region ε1 < ε < ε2 the quantum energies are
real.

This paper is organized as follows. In Sec. II we formulate
the equations of motion for a linear chain of N identical
pairs of PT -symmetric loss-gain oscillators and we construct
the Hamiltonians H2N for such systems. We show that there
are two ways to represent such Hamiltonians: one that we
call a sum representation and another that we call a product
representation. In the product representation it is easy to see
that the Hamiltonian is not unique and that this nonuniqueness
takes the form of a gauge invariance. Next, in Sec. III
we construct the Hamiltonians for a general PT -symmetric
system of 2N coupled oscillators in which the coupling
parameter ε and the loss-gain parameter γ are allowed to
vary from oscillator to oscillator. In addition, we consider a
system of 2N + 1 coupled PT -symmetric oscillators, where
PT symmetry requires that the central oscillator have neither
loss nor gain. We also perform the N → ∞ limit of H2N . In
this limit the equations of motion of the oscillators become
coupled linear wave equations with balanced loss and gain.

In Sec. IV we ask whether a PT -symmetric chain of
2N coupled oscillators can have an unbroken PT -symmetric
region. We show that as N increases, if γ and ε are the
same for all oscillators, the region of unbroken PT symmetry
shrinks and then disappears entirely as N → ∞. However, if
the loss-gain parameter γ decreases to 0 for distant oscillators,
then such systems always have an unbroken PT -symmetric
region for intermediate values of the coupling parameter ε

surrounded by broken PT -symmetric regions for small and

large values of ε. Specifically, for the cases in which γn

decreases like 1/n or 1/n2, where 1 � n � N is the number
of oscillators measured from the center of the system, we
show that an unbroken PT -symmetric region persists in the
limit as N → ∞. If one views loss-gain as the consequence
of an impurity, then a configuration of oscillators for which γ

decreases with increasing distance from the center can be seen
as having a localized impurity. Thus, in Sec. V we investigate
a special case for the continuum model in which there is
a pointlike PT -symmetric impurity localized at the origin.
We find that this impurity gives rise to a pseudobound-state
solution. In Sec. VI we consider the simplest case of a
two-dimensional array of coupled oscillators, namely, three
oscillators—one with loss, one with gain, and the third with
neither loss nor gain. This system is interesting because it
can exhibit five distinct regions as a function of the coupling
constant, two having unbrokenPT symmetry and three having
broken PT symmetry. Finally, in Sec. VII we make some brief
concluding remarks.

II. PT -SYMMETRIC SYSTEM OF COUPLED
CLASSICAL OSCILLATORS

In this section we describe the properties of a PT -
symmetric one-dimensional chain of 2N coupled oscillators
with alternating loss and gain. We begin by making the
simplifying assumptions that the natural frequency ω, the
coupling to adjacent oscillators ε, and the loss-gain parameter
γ are the same for all oscillators. The classical coordinates are
xk(t) (1 � k � 2N ) and the equations of motion are

ẍ1 + ω2x1 + 2γ ẋ1 = −εx2,

ẍ2 + ω2x2 − 2γ ẋ2 = −εx1 − εx3,

ẍ3 + ω2x3 + 2γ ẋ3 = −εx2 − εx4,
(8)

ẍ4 + ω2x4 − 2γ ẋ4 = −εx3 − εx5,

. . .

ẍ2N + ω2x2N − 2γ ẋ2N = −εx2N−1.

These equations of motion are PT symmetric, where the
definitions of P and T are generalized from (6) and (7) to

P: xk → −x2N−k+1, pk → −p2N−k+1 (1 � k � 2N ),

T : xk → xk, pk → −pk (1 � k � 2N ). (9)

The equations of motion (8) imply that there is a conserved
quantity. To construct this constant of the motion we multiply
the first equation by ẋ2, the second equation by ẋ1 + ẋ3, the
third equation by ẋ2 + ẋ4, the fourth equation by ẋ3 + ẋ5, and
so on. If we add the resulting equations, γ drops out entirely
and we obtain a time-independent quantity, which we can
identify as the energy E2N of the system:

E2N =
2N−1∑
j=1

(ẋj ẋj+1 + ω2xjxj+1)

+ ε

2

(
x2

1 + x2
2N

) + ε

2N−1∑
j=2

x2
j + ε

2N−2∑
j=1

xjxj+2. (10)
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The existence of a conserved quantity suggests that (8) is
a Hamiltonian system, and indeed one can find a Hamiltonian
from which these equations of motion can be derived. There
are two ways to express the (nonunique) Hamiltonian that
gives rise to (8); we can use what we call a sum or a product
representation. We describe these two structures below.

A. Sum representation of the Hamiltonian

In the sum representation H2N consists of four terms.
First, there is a pure momentum term of the form

p1p2 + p2p3 + p3p4 + · · · + p2N−1p2N . Second, there is a
momentum times a coordinate term proportional to γ :
γ (−p1x1 + p2x2 − p3x3 + · · · + p2Nx2N ). Third, there is a
potential-energy-like term proportional to ε: 1

2ε(x2
1 + x2

2 +
x2

3 + · · · + x2
2N ). (It is surprising that this term is proportional

to ε because in the equations of motion ε appears to play the
role of a coupling constant; ε does not appear to be a measure
of the potential energy, which one associates with a frequency
of oscillation.) Fourth, there is an oscillator coupling term
proportional to ω2 − γ 2:

[x1x2 + x3x4 + x5x6 + x7x8+ · · · +x2N−7x2N−6 + x2N−5x2N−4 + x2N−3x2N−2 + x2N−1x2N

− x1x4 − x3x6 − x5x8− · · · −x2N−7x2N−4 − x2N−5x2N−2 − x2N−3x2N

+ x1x6 + x3x8+ · · · +x2N−7x2N−2 + x2N−5x2N

(11)−x1x8− · · · −x2N−7x2N

. . .

(−1)N+1x1x2N ](ω2−γ 2).

Note the interesting structure of this term: The jumps in the
products in (11) skip 0, 2, 4, 6, . . . and change sign. A compact
expression for H2N is

H2N =
2N−1∑
j=1

pjpj+1 + ε

2

2N∑
j=1

x2
j + γ

2N∑
j=1

(−1)j xjpj

+ (ω2 − γ 2)
N−1∑
j=0

(−1)j
N−j∑
k=1

x2k−1x2j+2k. (12)

To obtain the equations of motion (8) for this Hamiltonian
from Hamilton’s equations, we take one derivative of H2N with
respect to pk to find ẋk:

ẋk = pk+1 + pk−1 + (−1)kγ xk. (13)

We then take a time derivative,

ẍk − (−1)kγ ẋk = −∂H2N

∂xk+1
− ∂H2N

∂xk−1

= −εxk+1 − εxk−1 + (−1)kγ (pk+1 + pk−1)

+ (ω2 − γ 2)(. . .), (14)

and use the one-derivative equation (13) to recover the
equations of motion (8).

B. Product representation of the Hamiltonian

In this representation it is easy to understand the nonunique-
ness of the Hamiltonian that gives rise to the equations of
motion (8). This nonuniqueness is a gauge invariance, where
γ plays the role of an electric charge. Without changing the
equations of motion we rewrite the sum representation H2 in
(5) so that the momentum terms appear in factored form:

H2 = (p + γy)(q − γ x) + ω2xy + ε(x2 + y2)/2. (15)

Similarly, the sum representation for H4,

H4 = p1p2 + p2p3 + p3p4 + ε
(
x2

1 + x2
2 + x2

3 + x2
4

)
/2

+ γ (−x1p1 + x2p2 − x3p3 + x4p4)

+ (ω2 − γ 2)(x1x2 + x3x4 − x1x4), (16)

can be reconfigured in product form as

H4 = [p1 + γ (x2 − x4)](p2 − γ x1) + (p2 − γ x1)(p3 + γ x4)

+ (p3 + γ x4)[p4 − γ (x3 − x1)]

+ω2(x1x2 + x3x4 − x1x4) + ε
(
x2

1 + x2
2 + x2

3 + x2
4

)
/2

(17)

without changing the equations of motion. The product
representation of H6 has the form

H6 = [p1 + γ (x2 − x4 + x6)](p2 − γ x1) + (p2 − γ x1)

× [p3 + γ (x4 − x6)] + [p3 + γ (x4 − x6)]

× [p4 − γ (x3 − x1)] + [p4 − γ (x3 − x1)]

× (p5 + γ x6) + (p5 + γ x6)[p6 − γ (x5 − x3 + x1]

+ω2(x1y1 + x3x4 + x5x6 − x1x4 − x3x6 + x1x6)

+ ε
(
x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6

)
/2. (18)

The general structure for the product representation of H2N is
now clear.

The advantage of the product representation is that if
we consider the Hamiltonian to be quantum mechanical,
we can identify a gauge invariance. Each momentum factor
in the product representation has the form [p + γ (sum
of spatial coordinates)]. This term resembles the structure
p − eA in electrodynamics, which suggests that we can make
a unitary (canonical) transformation analogous to a gauge
transformation in electrodynamics. By virtue of the Heisen-
berg algebra [x,p] = i, it follows that e−iaxpeiax = p + a,
where a is a constant. Therefore, if we perform the unitary
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transformation

e−iamnxmxnH2Neiamnxmxn (19)

on the Hamiltonian, the only terms that will be affected are the
product terms because they contain the momentum operators.
The only changes that will occur are that the momentum
operators pm and pn will be shifted by terms that are linear in
the coordinates xn and xm. There are N (2N − 1) independent
gauge transformations that can be performed on H2N , and
therefore we can introduce N (2N − 1) arbitrary constants amn

into H2N . Furthermore, since the transformation is unitary, it
leaves the equations of motion invariant [16].

C. Lagrangian

Having found a Hamiltonian for system (8), it is easy to
construct a Lagrangian:

L2N =
N−1∑
j=0

(−1)j
N−j∑
k=1

[γ (ẋ2k−1x2j+2k − x2k−1ẋ2j+2k)

−ω2x2k−1x2j+2k + ẋ2k−1ẋ2j+2k] − ε

2

2N∑
j=1

x2
j . (20)

III. GENERAL CASE OF NONCONSTANT ε, γ , AND ω

We can construct a Hamiltonian (in the sum representation)
for a PT -symmetric system of 2N oscillators even if the
parameters ε, γ , and ω vary from oscillator to oscillator:

H2N =
N∑

k=1

(−1)kγk(xkpk − x2N+1−kp2N+1−k)

+
N−1∑
k=1

εk(xkx2N−k + xk+1x2N+1−k)

+ εN

(
x2

N + x2
N+1

)
/2 +

N∑
k=1

pkp2N+1−k

+
N∑

k=1

(
ω2

k − γ 2
k

)
xkx2N+1−k. (21)

We can also construct a Hamiltonian for 2N + 1 oscillators:

H2N+1 =
N∑

k=1

(−1)kγk(xkpk − x2N+2−kp2N+2−k)

+
N∑

k=1

εk(xkx2N+1−k + xk+1x2N+2−k)

+ (
x2

N+1 + p2
N+1

)
/2 +

N∑
k=1

pkp2N+2−k

+
N∑

k=1

(
ω2

k − γ 2
k

)
xkx2N+2−k. (22)

The even Hamiltonian H2N leads to the equations of motion

ẍ1 + ω2
1x1 + 2γ1ẋ1 = −ε1x2,

ẍ2 + ω2
2x2 − 2γ2ẋ2 = −ε1x1 − ε2x3,

. . .

ẍN + ω2
NxN − (−1)N2γN ẋN = −εN−1xN−1−εNxN+1,

ẍN+1+ω2
NxN+1 + (−1)N2γN ẋN+1 = −εNxN−εN−2xN+2,

. . . (23)

ẍ2N−1 + ω2
2x2N−1 + 2γ2ẋ2N−1 = −ε1x2N − ε2x2N−2,

ẍ2N + ω2
1x2N − 2γ1ẋ2N = −ε1x2N−1,

and the odd Hamiltonian H2N+1 gives the equations of motion

ẍ1 + ω2
1x1 + 2γ1ẋ1 = −ε1x2,

ẍ2 + ω2
2x2 − 2γ2ẋ2 = −ε1x1 − ε2x3,

. . .

ẍN+1 + ω2
N+1xN+1 = −εN (xN + xN+2) ,

. . . (24)

ẍ2N + ω2
2x2N + 2γ2ẋ2N = −ε1x2N+1 − ε2x2N−1,

ẍ2N+1 + ω2
1x2N+1 − 2γ1ẋ2N+1 = −ε1x2N .

A. Continuum limit N → ∞
In this subsection we show how to take the limit as the

number of oscillators approaches infinity. For simplicity, let
us consider two rows of identical particles of mass m. These
masses are coupled by springs, as illustrated in Fig. 1.

The top row of particles is subject to damping (friction)
forces and the bottom row is subject to undamping forces.
Each particle in the top row is coupled by horizontal springs
(of force constant per unit length k/�) to the adjacent particles
to the left and right. Thus, the particle at xn is coupled to
its neighbors at xn−1 and at xn+1. The neighboring particles
exert a net force on the nth mass of strength k

�
(xn+1 − 2xn +

xn−1), where � is the equilibrium spacing. The constant k

is the tension in the horizontal chain of masses. Also, there
are fixed springs above the top row of masses that exert a
restoring force per unit length of −μ1ν

2
1� on each of the x

masses. This force tends to pull the x masses back to their

FIG. 1. (Color online) Infinite PT -symmetric array of identical
particles coupled by springs. The masses in the top row, whose
position coordinates are xn(t), experience loss, and the masses in
the bottom row, which are located at yn(t), experience gain.
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equilibrium positions. The parameter μ1 has dimensions of
mass density (mass per unit length) and the parameter ν1 is
a frequency having dimensions of 1/time. The force on the
nth mass due to these vertical springs is −μ1ν

2
1�xn. Finally,

the particle at xn in the top row is coupled to the particle at
position yn in the bottom row by a vertical spring of force
per unit length μ2ν

2
2�. (Here, μ2 is a mass density and ν2 is

a frequency.) The force exerted on the mass at xn due to the
particle at yn is μ2ν

2
2�(yn − xn). The particles in the top row

lose energy due to friction (drag), where the dissipation per unit
length is given by 	. Thus, the equation of motion of the nth
particle is

mẍn + 	�ẋn = k

�
(xn+1 − 2xn + xn−1) − μ1ν

2
1�xn

+μ2ν
2
2� (yn − xn) . (25)

Let m = ρ�, where ρ is the horizontal mass per unit length.
We then divide (25) by � and take the limit as � → 0 to get
the continuum wave equation

ρutt + 	ut = kuxx − μ1ν
2
1u + μ2ν

2
2 (v − u). (26)

Finally, we divide by ρ and define the quantities c2 ≡ k/ρ,
γ ≡ 	/ρ, ω2 ≡ (μ1ν

2
1 + μ2ν

2
2 )/ρ, and ε ≡ −μ2ν

2
2/ρ. This

leads to the wave equation

utt + 2γ ut + ω2u − c2uxx = −εv. (27)

Similarly, from the equation for the particle at yn we obtain
the wave equation

vtt − 2γ vt + ω2v − c2vxx = −εu. (28)

These equations are the continuous analogs of (8).

In anticipation of the calculation in Sec. V, we rewrite these
equations in a more convenient form by defining S(x,t) ≡
u(x,t) + v(x,t) and D(x,t) ≡ u(x,t) − v(x,t). The coupled
wave equations satisfied by S and D are

Stt + ω2S − c2Sxx + εS = −2γ (x)Dt,
(29)

Dtt + ω2D − c2Dxx − εD = −2γ (x)St ,

where we have now taken the loss-gain parameter γ to depend
on x.

IV. EXISTENCE OF AN UNBROKEN
PT -SYMMETRIC REGION

The question addressed in this section is whether a region of
unbroken PT symmetry persists as the number of oscillators
N increases. First, we consider the case in which the loss-
gain parameter γ is the same for all oscillators and show
that the unbroken region disappears as N increases. Next,
we demonstrate numerically that if γ decreases for the more
distant oscillators, a region of unbrokenPT symmetry persists
as N → ∞.

A. Case of constant γ

To find the frequencies of system (8), we seek solutions of
the form xk = Ake

iλt . The frequencies λ can then be found
by imposing the condition that det [M2N ] = 0 (Cramer’s rule),
where M2N is the 2N × 2N tridiagonal matrix

M2N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a − ib −ε 0 0 0 0 . . .

−ε a + ib −ε 0 0 0 . . .

0 −ε a − ib −ε 0 0 . . .

0 0 −ε a + ib −ε 0 . . .

0 0 0 −ε a − ib −ε . . .

0 0 0 0 −ε a + ib . . .
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (30)

and a and b are given by a = λ2 − ω2 and b = 2λγ .
Let PN = det [M2N ] (N = 1,2, . . .) be the polynomial

obtained by computing the determinant of the matrix M2N .
The first five of these polynomials are
P1 = −ε2 + x,

P2 = ε4 − 3xε2 + x2,

P3 = −ε6 + 6xε4 − 5x2ε2 + x3,

P4 = ε8 − 10xε6 + 15x2ε4 − 7x3ε2 + x4,

P5 = −ε10 + 15xε8 − 35x2ε6 + 28x3ε4 − 9x4ε2 + x5, (31)

where x = a2 + b2 = λ4 + λ2(4γ 2 − 2ω2) + ω4. These poly-
nomials satisfy the recursion relation

PN = (x − 2ε2)PN−1 − ε4PN−2 (N � 2), (32)

where we take P0 = 1.

Given these polynomials, we can calculate the frequencies
λ to see what happens to the unbroken PT -symmetric region
as N increases. In Fig. 2 we plot the imaginary part of λ for
N = 1, 2, 3, and 4 for fixed ω = 1 and γ = 0.1. It is clear that
as N increases, the size of the unbroken region in the coupling
parameter ε shrinks and at N = 4 it disappears entirely.

To study analytically the shrinking of the unbroken region
with increasing N , we solve the constant-coefficient recursion
relation (32). The exact solution is

PN = √
π

N∑
k=0

(−1)k
4k−N (2N − k)!

(N − k)!k!	(N − k + 1/2)
xN−kε2k.

(33)
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FIG. 2. (Color online) Imaginary parts of the frequencies λ for N = 1, 2, 3, and 4 as functions of the coupling constant ε for ω = 1 and
γ = 0.1. Frequencies are the zeros of the polynomials PN in (31). Observe that the extent of the unbroken PT -symmetric region (where the
frequencies are all real) decreases as N increases and disappears entirely when N = 4.

Substituting x = −4ε2y and � = √
y(y + 1), we express

these polynomials more simply:

PN = ε2N

2�
(−1)N [(1 + 2y − 2�)N (� − y)

+ (1 + 2y + 2�)N (� + y)]. (34)

The zeros of PN are the roots of the equation√
y + √

y + 1 = (−1)1/(4N+2). Since y = −[(λ2 − ω2)2 +
4λ2γ 2]/(4ε2) is negative, we substitute y = −z2. The equation
for z then reads iz + √

1 − z2 = (−1)1/(4N+2), whose solutions
are

z = sin[π (2k + 1)/(4N + 2)] (k = 0,1, . . . ,4N + 1).

(35)

Consequently, the equation for λ becomes 4ε2z2 = (λ2 −
ω2)2 + 4λ2γ 2, whose roots are

λ1,2,3,4 = ±
√

ω2 − 2γ 2 ± 2
√

γ 2(γ 2 − ω2) + ε2z2. (36)

We consider two cases. For N = 1 there are four roots,
z = sin θ = ±1, ± 1

2 with e6iθ = −1. These correspond to the
six values θ = {π

6 , π
2 , 5π

6 , 7π
6 , 3π

2 , 11π
6 }. The solutions z = ±1

are spurious because the denominator of (34) contains � =√
z2(z2 − 1) and this expression vanishes at z = ±1. Thus, the

only admissible solutions are z = ±1/2. Substituting z2 = 1/4
into (36), we obtain the four roots of the polynomial P1 in (31).

For the case N = 2 there are six roots,

z = sin θ = {−1, − (1 +
√

5)/4, (1 −
√

5)/4,

(
√

5 − 1)/4, (1 +
√

5)/4,1},
with e10iθ = −1. These correspond to the 10 values

θ=
{

1

10
π,

3

10
π,

5

10
π,

7

10
π,

9

10
π,

11

10
π,

13

10
π,

3

2
π,

17

10
π,

19

10
π

}
.

The solutions z = ±1 are spurious and there are only four
genuine roots, z = ±(1 ± √

5)/4, and two values, z2 = (1 ±√
5)2/16, to substitute into (36) to get the eight roots of the

polynomial P2 in (31).
In general, in the region of unbroken PT symmetry the

roots λ in (36) are all real. Thus,

0 < γ <

√
ω2/2 − √

ω4/4 − ε2z2
min,

(37)
γ
√

ω2 − γ 2/
√

zmin < ε < ω2/(2zmax),

where zmin = sin[π/(4N + 1)] and zmax = sin[π (2N −
1)/(4N + 1)]. Condition (37) identifies the region in the
parameter space (γ,ε) where the PT symmetry is unbroken.
Note that as N → ∞, zmin → 0 and zmax → 1. Thus, as
N → ∞ the only allowed γ is 0 (so that there is no loss
and gain), and the range of ε shrinks to 0 � ε < ω2/2.

Let us examine further how the allowed γ decreases as a
function of increasing N . We can see from Fig. 2 that at the
lower end of the unbroken region the curves open to the left and
at the upper end of this region the curves open to the right. For
fixed N and fixed ε = ω2/(2zmax), if we increase γ , the left-
opening curves will eventually touch the right-opening curves
and the unbroken region in ε will disappear. We designate as
γcrit the critical value of γ at which the unbroken region in ε

disappears. When we compute γcrit as a function of N and plot
in Fig. 3 these values of γcrit versus 1/N , we see clearly that
the critical value of γ decreases to 0. Thus, if there are too
many oscillators, there cannot be a region of unbroken PT
symmetry in a system with uniform nonzero loss and gain.

The only way for an unbroken region of PT symmetry to
survive as N → ∞ is for the loss-gain parameter to decrease
with increasingly distant oscillators. Our numerical calcula-
tions show that if the loss-gain parameter is γ /(N − n + 1)
(where n ranges from 1 to N ), there will be an unbroken region

022114-6



SYSTEMS OF COUPLED PT -SYMMETRIC . . . PHYSICAL REVIEW A 90, 022114 (2014)

FIG. 3. (Color online) Plot of γcrit as a function of 1/N . This
sequence evidently converges to 0 with increasing N . Thus, a system
of coupled oscillators with a uniform loss-gain parameter γ > 0 has
no unbroken PT -symmetric region if N is sufficiently large.

if γ is less than about 0.1 (Fig. 4, left), and if the loss-gain
parameter is γ /(N − n + 1)2 (where n ranges from 1 to N ),
there will be an unbroken region if γ is less than about 0.2
(Fig. 4, right).

V. LOCALIZED IMPURITY IN THE CONTINUUM MODEL

In Sec. IV we have shown that if the effect of loss and gain
is localized about the central oscillators and decays for more
distant oscillators, then the unbroken PT -symmetric region
can survive as N → ∞. This suggests that for the continuum
model developed in Sec. III A it would be interesting to
examine what happens when γ (x) decreases with increasing
|x|. The simplest case to study is that for which γ (x) = γ δ(x);
that is, the case of a localized pointlike PT -symmetric
loss-gain impurity at the origin. Studies of this type have been
performed for tight-binding models by Joglekar et al. [17,18]
and Longhi [19].

Let us assume that the loss-gain parameter is a localized
function of x at the origin, γ (x) = γ δ(x), and seek a solution
to (29) with frequency �:

S(x,t) = ei�t s(x), D(x,t) = ei�td(x). (38)

If we assume that a2 = ω2 − �2 + ε > 0 and that −b2 =
ω2 − �2 − ε < 0, where a and b are positive, the coupled

wave equations become coupled ordinary differential equa-
tions:

c2s ′′(x) − a2s(x) = 2i�γ δ(x)d(x) and

c2d ′′(x) + b2d(x) = 2i�γ δ(x)s(x). (39)

The functions s(x) and d(x) are continuous at x = 0 and the
δ function gives rise to a discontinuity in the derivatives of s

and d at x = 0:

2iγ�d(0) = c2[s ′(0+) − s ′(0−)] and

2iγ�s(0) = c2[d ′(0+) − d ′(0−)]. (40)

A simple solution to (39) has the form

s(x) = e−a|x|/c and d(x) = i
ac

γ�
cos

bx

c
+ i

γ�

bc
sin

b|x|
c

.

(41)

This solution is PT symmetric, where P changes the sign of
x and interchanges u and v, which in turn changes the sign
of d while leaving the sign of s unchanged, and T performs
complex conjugation.

This solution can be viewed as a pseudobound-state solution
in the sense that s(x) decays exponentially as |x| → ∞.
However, while d(x) also has a cusp at x = 0, it is not
localized and oscillates as |x| → ∞. This solution resembles
that found by Hatano et al. [20,21] and Longhi [19]. It is
interesting that no localized bound-state solution exists if
a2 = ω2 − �2 + ε > 0 and b2 = ω2 − �2 − ε > 0, where a

and b are positive.

VI. THREE PLANAR OSCILLATORS

It appears that for all one-dimensional chains of oscillators
there is just one region of unbroken PT symmetry. However,
it is possible to have more than one region of unbroken PT
symmetry if the oscillators are coupled in a planar array. For
example, let us consider three oscillators in a plane, where the
first (the x oscillator) has loss, the second (the y oscillator)
has gain, and the third (the z oscillator) has neither loss nor
gain. The x and y oscillators are coupled directly and are also
coupled indirectly through the z oscillator. The Hamiltonian
for this system is

H = ω2
2

4
q2 + ω2

2

2
pr + y2 + 2

ω2
1 − γ 2

ω2
2

xz − 2
ε1

ω2
2

(xy + yz)

− ε2

ω2
2

(x2 + z2) + γ (zr − xp). (42)

FIG. 4. (Color online) Analog of Fig. 3: Oscillatory convergence of γcrit when the loss-gain parameter γn decreases like γ /n (left) and like
γ /n2 (right). Evidently, if the loss-gain parameter decays to 0 for more distant oscillators, a region of unbroken PT symmetry can persist as
N → ∞.
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FIG. 5. (Color online) Regions in the space of parameters (ε1 horizontal axis; ε2, vertical axis) for which the PT symmetry is unbroken;
that is, the roots of P (λ) in (46) are all real and positive. The frequency ω = 0.8 and the damping parameter has the values γ = 0.02, 0.06,
0.10, 0.20, 0.28, 0.34, 0.40, and 0.50. As γ increases, the unbroken PT -symmetric regions in (ε1,ε2) space decrease in size and eventually
disappear. Unlike the case of linear chains of PT -symmetric coupled oscillators, as ε2 increases from 0 for fixed ε1, there is a range of γ and ω

such that one can observe five regions of broken, unbroken, broken, unbroken, and broken PT symmetry. For example, there are five regions
when γ = 0.10, ε1 = 0.10, and 0 � ε2 � 0.70.

This Hamiltonian gives the equations of motion

ẍ + ω2
1x + 2γ ẋ = ε1y + ε2z, ÿ + ω2

2y = ε1(x + z),

z̈ + ω2
1z − 2γ ż = ε1y + ε2x. (43)

This oscillator system can have two regions of unbroken
PT symmetry. Without loss of generality, we choose ω2 = 1
and ω1 = ω, so that H in (42) becomes

H = 1
4q2 + 1

2pr + y2 + 2(ω2 − γ 2)xz − 2ε1(xy + yz)

− ε2(x2 + z2) + γ (zr − xp) (44)

and the system of equations (43) becomes

ẍ + ω2x + 2γ ẋ = ε1y + ε2z, ÿ + y = ε1(x + z),

z̈ + ω2z − 2γ ż = ε1y + ε2x. (45)

To find the frequencies of this classical system, we seek
solutions to (45) of the form x(t) = Aeiλt , y(t) = Beiλt ,
and z(t) = Ceiλt . We use Cramer’s rule to eliminate the
coefficients A, B, and C and find that the resulting equation
for the frequency λ is

P (λ) = λ6 + λ4(4γ 2 − 2ω2 − 1) + λ2(ω4 + 2ω2 − 2ε2
1

− ε2
2 − 4γ 2) + 2ε2

1 (ε2 + ω2) + ε2
2 − ω4.

With the substitution μ = λ2, this polynomial becomes

p(μ) = μ3 − αμ2 + βμ − σ, (46)

with coefficients α = 1 + 2ω2 − 4γ 2, β = ω4 + 2ω2 − 2ε2
1 −

ε2
2 − 4γ 2, and σ = ω4 − 2ε2

1 (ε2 + ω2) − ε2
2 . Positive real

roots of (46) are obtained by searching for the regions in the pa-
rameter space where the minimum μm = (α −

√
α2 − 3β)/3

and maximum μp = (α +
√

α2 − 3β)/3 are real and positive,

FIG. 6. (Color online) Same as Fig. 5, but with ω = 0.9.
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FIG. 7. (Color online) Same as Fig. 5, but with ω = 1.0.

and p(μm) > 0 and p(μp) < 0. Figures 5, 6, 7, and 8 display
the regions of unbroken PT symmetry [where the roots of
P (λ) in (46) are all real] for various values of ω, γ , ε1, and ε2.
For special ranges of the parameters ω, γ , and ε1 one can get
five distinct regions of broken and unbroken PT symmetry
as ε2 increases continuously from 0. (For the case of linear
chains of PT -symmetric coupled oscillators one can have, at
most, three regions.) The imaginary parts of the frequencies
λ as functions of ε2 are plotted in Fig. 9. The unbroken
PT -symmetric regions are characterized by the vanishing of
Im λ.

VII. CONCLUDING REMARKS

The purpose of this paper has been to examine physically
constructable PT -symmetric systems consisting of many
coupled oscillators. (Similar studies have been done for PT -
symmetric arrays of optical waveguides with loss and gain
[22,23].) We have implemented PT symmetry by arranging
the oscillators so that loss and gain are balanced pairwise. We

have examined one-dimensional systems consisting of both
even and odd numbers of oscillators and have also studied
the limiting behavior as the number of oscillators approaches
infinity. We have shown that the Hamiltonians associated with
these systems can be formulated in two ways: first, as a sum
representation and, second, as a product representation. The
latter representation has a gaugelike coupling structure that
can be used to demonstrate that the Hamiltonian is not unique.

We have shown that when the oscillators are arranged in a
one-dimensional chain, for sufficiently many oscillators there
cannot be a region of unbroken PT symmetry (where the
frequencies are all real) unless the loss-gain parameter γ

decays with the distance from the center of the chain. Our
numerical calculations show that if γ decays rapidly enough,
then a region of unbroken PT symmetry will always exist,
even if the number of oscillators is infinite. We have also shown
that in the continuum limit, a localized gain-loss impurity can
give rise to a pseudobound state.

Our analysis shows that for a one-dimensional chain of
oscillators, as the coupling constant ε increases from 0, one
can find, at most, only three regions: two regions of brokenPT

FIG. 8. (Color online) Same as Fig. 5, but with ω = 1.1.
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FIG. 9. (Color online) Imaginary parts of the frequencies λ plotted as a function of ε2 for various values of the parameters ω, γ , and ε1.
The regions of unbroken PT symmetry occur when the imaginary parts vanish and all frequencies are real.

symmetry surrounding a region of unbroken PT symmetry.
However, a two-dimensional array of oscillators can exhibit
more than three regions. For example, a triangle of coupled
oscillators can exhibit five regions. Optics experiments are
currently under way to study such a system [24].
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