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Enhanced quantum sensitivity in a vibrating diatomic molecule due to a rotational amendment
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Quantum sensitivity is an important issue in the field of quantum metrology where sub-Planck scale structures
play a crucial role in the Heisenberg limited measurement. We investigate the mesoscopic superposition structures,
particularly for well-known catlike and compasslike states, in the rotating Morse system where sub-Planck scale
structures originate in the dynamics of a suitably constructed SU(2) coherent state. A detail study of the sensitivity
analysis reveals that rotational coupling in the vibrational wave packet can be used as a probe to enhance the
sensitivity limit in a diatomic molecule. The maximum sensitivity limit is identified with the rotational amendment,
and a quantitative measure of the angle of rotation for different rotational levels is also given. The correspondence
of the numerical result with the angle of rotation is also delineated in phase-space Wigner representation.
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I. INTRODUCTION

Improvement in parameter estimation has often led to
scientific breakthroughs and technological advancement. Re-
cent advances in experimental techniques allow us access
to unprecedented levels of control over quantum systems.
Quantum metrology is the field which exactly deals with
the fundamental limits to measurement [1]. To reach the
ultimate sensitivity limit, one can repeat the measurement
process N times and take the average over the outcomes.
It reduces the error which scales as 1/

√
N , known as the

standard quantum limit. This is the ultimate limit one can
reach using classical properties. To push this boundary, one
needs the help of quantum properties. In quantum metrology,
special states, such as entangled or squeezed states, have
been employed for estimation of these parameters to beat the
standard quantum limit [1,2]. In this case, the sensitivity can
be enhanced

√
N times and can reach the Heisenberg limit.

On the other hand, the Planck scale executes a fundamental
role in quantum mechanics. Phase-space quasiprobability
distributions of certain quantum superposition states reveal
structures on a scale that is smaller than the Planck dimension.
The existence and importance of these small structures (called
sub-Planck structures) were first pointed out in Ref. [3].
These smallest interference (sub-Planck scale) structures play
a crucial role in high-precision parameter estimation and
Heisenberg limited measurement. Recently, sub-Planck scale
structures have drawn considerable attention and have been
found in different situations [4–14]. In all of these studies,
the sub-Planck interference phenomena appear with a suitable
combination of appropriate superposition of coherent states
(CSs) [15]. In our earlier studies, we found the existence
of sub-Planck structures in a molecular system and showed
their decoherence sensitivity [7,10]. It involved the vibrational
motion of a diatomic molecule described by the evolution
of a suitable wave packet. Governed by a nonlinear energy
spectrum, the initial wave packet breaks into mesoscopic
superpositions at a later time and gives rise to sub-Planck
structures in phase space.
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In recent years, vibrational dynamics of diatomic molecules
has gained importance due to its potential application in
quantum computation. For example, ultrafast Fourier trans-
forms can be performed using a femtosecond laser-driven
molecule [16,17]. High-precision molecular wave-packet in-
terferometry has been used to read and write the amplitude and
phase information of wave functions [18,19], which is a vital
task for quantum information processing and the development
of quantum gates.

A key concern, however, is the effect of rotational coupling
on the vibrational motion of diatomic molecules. Our goal is
to study the sensitivity limit vis-á-vis sub-Planck structures
in phase space by introducing the rotational coupling with
the vibrational motion of a diatomic molecule. Visualization
of the rovibrational dynamics needs a three-dimensional
scenario [20–22], hence it is difficult to observe its dynamics
in phase space which will require a six-dimensional configura-
tion. To unravel this intricacy, we recall an appropriate model,
called the rotating Morse system, which can describe the
rotational and vibrational coupling nicely in one-dimensional
symmetry [23–25]. The energy eigenstates of a rotating Morse
system in phase space are elucidated in Ref. [26]. To the
authors’ knowledge, there is no study about the wave-packet
dynamics of this system in phase space. In this study, we
choose a model [25] where the effective potential becomes
minimum around a certain equilibrium internuclear distance,
which is a function of the rotational quantum number j.
This can satisfactorily describe the coupling between the
two degrees of freedom, i.e., the rovibrational interplay. This
coupling is also captured in mesoscopic superpositions states,
such as catlike states and compasslike states [27,28]. The
most sensitive structures in phase space, called sub-Planck
scale structures, are found to determine the sensitivity limit of
a quantum state. We have chosen the example of an iodine
molecule (I2), which is a uniquely suited seed molecule
for laser-induced fluorescence, and an appropriate CS wave
packet is constructed to see the system dynamics. We show
the amendment in vibrational wave-packet dynamics due
to the presence of rotational coupling. Significant advances
have been made in manipulating and controlling rotational
population in rovibrational wave packets by using shaped
femtosecond pulses [29] and wave-packet interference [30].
To make the effect of rotational coupling transparent, we
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have considered a single rotational level for a rovibrational
wave packet [22]. The sub-Planck dimension in mesoscopic
superposition structures is found to vary with the rotational
quantum number j . Maximum sensitivity is achieved for
a particular value of j and a scheme is provided to find
the exact orientation of the corresponding system in phase
space. Additionally, the corresponding phase-space Wigner
distribution is numerically calculated and delineated in phase
space to further verify the orientation and the structures in the
maximum sensitive state.

The paper is organized as follows. We present a brief
overview of a 1D rotating Morse system and its validity.
We construct the corresponding SU(2) CS wave packet to
analyze the dynamics of the CS and to explain the effect of
rovibrational coupling in configuration space. In Sec. III, we
study the rotational sensitivity in a vibrating diatomic molecule
through mesoscopic superposition structures. Specifically, we
have focused on catlike and compasslike states where the
sensitivity issue is explored at the sub-Planck level. The scaling
law is verified and the maximum sensitivity limit is achieved
for rotational amendment. A quantitative measure of the angle
of rotation in phase space is also depicted. Furthermore, a
numerical study shows the phase Wigner distribution, which
reveals a nice correspondence with the angle of rotation.
Finally, we end up with some conclusions in Sec. IV.

II. DYNAMICS OF COHERENT STATE IN ROTATING
MORSE POTENTIAL

We start with the effective potential Veff(r), known as the
rotating Morse potential,

Veff(r) = D[e−2β(r−r0) − 2e−β(r−r0)] + j (j + 1)�2

2μr2
. (1)

The first part describes the well-known Morse potential, an
appropriate model for a vibrating diatomic molecule. D is
the dissociation energy of the molecule, r0 is the equilibrium
internuclear separation, and β is the range parameter. The
second part stands for the centrifugal contribution of rotation.
A description of the system can be obtained with a modified
equilibrium internuclear distance rj and a dissociation energy
Dj [25]. Using a semianalytical method [23], one can find

rj = r0

(
1 + A

β2r2
0 D

)
, Dj = D−A

(
1 − A

β2r2
0 D

)
, (2)

where A= j (j+1)�2

2μr2
0

. We define Aj = j (j+1)�2

2μr2
j

and expand the

centrifugal term of Eq. (1) around r = rj . Keeping terms up
to second order, the Schrödinger equation is solved to obtain
the eigenfunctions of the rotating Morse system as

ψn,j (y) = Nn,j e
−y/2ybL2b

n (y), (3)

where the variable y: y=2λje
−β(r−r0)=2λjue−β(r−rj ) (0<

y<∞) and u=e−β(rj −r0). n is the vibrational quantum
number, L2b

n (y) stands for the associated Laguerre poly-

nomial, b =
√

(c0 − Ev,j )λ2
j /c2, and λj =

√
2μc2

β2�2 . Here the

constants are expressed as c0 = 3Ajb
2
j − 3Ajbj + Aj , c1 =

(3Ajb
2
j − 2Ajbj + uD)/u, c2 = (3Ajb

2
j − Ajbj + u2D)/u2,

and bj = (βrj )−1 are dependent on quantum number j .

Defining λ̄j = c1
c2

λj , one obtains the constraint condition,
2b + 2n = 2λ̄j − 1. Nn,j is the normalization constant: Nn,j =
[ β(2λ̄j −2n−1)�(n+1)

�(2λ̄j −n) ]1/2.
The rovibrational energy eigenvalues En,j turn out as

En,j = 2
c1

λj

(n + 1/2) − c2

λ2
j

(n + 1/2)2 + c0 − c2
1

c2
. (4)

It is worth pointing out that in the absence of rotation,
c0 =0, c1 =c2 =D, the system describes a vibrating diatomic
molecule, i.e., the well-known Morse potential.

Alternatively, one can compute rj numerically by solving
the transcendental equation

dVeff(r)

dr

∣∣∣∣
r=rj

= 0. (5)

These two sets of rj ’s are plotted in Fig. 1(a), which show
very good agrement for j < 160 for the I2 molecule. It shows
that the rotational motion increases the equilibrium distance
[Fig. 1(a)] and decreases the dissociation energy [Fig. 1(b)].
Physically, in the presence of the rotational centrifugal force,
the two constituent atoms of a diatomic molecule tend to settle
at a larger distance and are more prone to dissociate, reducing
the amount of energy required to make them independent.

We construct a rovibrational wave packet of the I2 molecule,
which is a CS, dependent on the particular rotational quantum
number. Many theoretical and experimental investigations
have been carried out on this molecule, in particular, Zewail
and co-workers investigated rovibrational wave-packet dy-
namics in the well-characterized electronic B0+

u state [31].
Lohmüller et al. [22] discussed the pump-probe experiment
of I2 at room temperature and the detection of fractional
revivals using a full-dimensional quantum wave packet. Here,
we consider an initial rovibrational wave packet which is
centered around the 10th vibrational energy level with j = 45.
Under the laser polarizations magic angle conditions [22], it
takes into account the vibrational as well as the rotational
motions. Once the bound states of the potential are included,
the dynamical symmetry group becomes SU(2). For Morse
system, the corresponding SU(2) generators are given [32]. In
this case, we find

Ĵ+ =
[

d

dy
(2b − 1) + 1

y
b(2b − 1) − λ̄j

]√
b − 1

b
,

Ĵ− = −
[

d

dy
(2b + 1) − 1

y
b(2b + 1) + λ̄j

]√
b + 1

b
, (6)

Ĵ0 =
[
y

d2

dy2
+ d

dy
− b2

y
− y

4
+ n + 1/2

]
.

Ĵ0 is the projection operator of the angular momentum m:
m = n − λ̄j + 1/2. We obtain the SU(2) CS by operating
the displacement operator exp(αĴ+ − α∗Ĵ−) on the highest
bound state n′, defined by Ĵ+ψn′,j (y) = 0, where α is the CS
parameter. Temporal evolution of the CS wave packet is given,
in the eigenfunction basis, by

�(y,t) =
n′∑

n=0

dj
n ψn,j (y)e−iEn,j t , (7)
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FIG. 1. (Color online) (a) The variation of rj with the rotational quantum number j . It implies that the numerical values, obtained by
solving the transcendental Eq. (5) (red filled circles) match nicely with the approximate values from Eq. (2) (black circles). It starts to differ for
higher values of j (>160). (b) The change of the dissociation energy of the effective potential with j . We have chosen the I2 molecule where
β = 0.9605 a.u.−1, reduced mass μ = 11.56 × 104 a.u., r0 = 5.716 a.u., and D = 0.0198 a.u.

where the weighting coefficients are evaluated as

dj
n = (−α)n

′−n

(n′ − n)!

[
n′!�(2λ̄j − n)

n!�(2λ̄j − n′)

] 1
2

. (8)

The presence of a nonlinear term in the energy expression
leads to interesting phenomena, called fractional revivals,
which occur at some specific instances between two full
revivals [33,34]. The short-time evolution displays a classical
periodicity. The classical and revival time periods are, respec-
tively, given by

Tcl = 2πλj

2c1−c2/λj

and Trev = 2πλ2
j /c2. (9)

At fractional revival times (p̄/q̄)Trev (where p̄ and q̄ are
mutually prime integers), the wave packet breaks into a number
of subsidiary wave packets. For even (odd) values of q̄,
the wave packet breaks into q̄/2 (q̄) parts. In the inset of
Fig. 2, the 10th vibrational energy levels for different rotational
numbers are zoomed and the rovibrational coupling effect
is shown at t = 0.25 Trev, when CS is split into two parts.
For j = 0, the two parts are situated at 5.3 and 6.48 a.u.
(dark filled plot). For j = 45, they come close to each other,
situated at 5.62 and 6.36 a.u., respectively (dashed line). For
a greater value of j (j = 65), the position-space probability
structure looks completely different and shows oscillatory
structure (light filled plot). The interpretation lies in the fact
that the two split CSs oscillate inside the potential well in a
back-and-forth motion. In the first quarter of the oscillation,
they approach each other, while in the next quarter, they recede.
At the halfway point of the oscillation, they are reflected
from the potential well with a phase change of π and again
become counterpropagating. For j = 65, they overlap each
other in the course of their oscillation and produce the
oscillatory ripples, clearly visible in the inset of Fig. 2. A
single interference ripple has dimension ∼0.1 a.u. or 5.3
picometers. Although the experimental observation of small
quantum interference structures is very challenging, similar
interference ripples in the picometer scale were recently
visualized experimentally for the I2 molecule [35,36].

III. ROTATIONAL SENSITIVITY

Until now, we have explored the wave-packet dynamics
in position space only. For a better description, we present a
phase-space picture of the dynamics. Here, we make use of
the Wigner function [37], which is defined as

W (r,p,t) = 1

π�

∫ +∞

−∞
�

′∗(r − r ′,t)

×�
′
(r + r ′,t)e−2ipr ′/�dr ′. (10)

Here, �
′
(r,t) is the coherent state as a function of r . This

Wigner function presentation can reveal interesting meso-
scopic superposition structures of the CS at different times.
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FIG. 2. (Color online) Effective potentials for j = 0 (solid line),
j = 45 (dashed line), and j = 65 (dotted line) are depicted. Inset:
Zoom of the corresponding 10th energy levels, where the wave
packets at t = 0.25 Trev are shown as dark filled (j = 0), dashed
(j = 45), and light filled (j = 65) plots, respectively. The potential
and the internuclear distance are in atomic units. The corresponding
parameter values are β = 0.9605 a.u., reduced mass μ = 11.56 ×
104 a.u., r0 = 5.716 a.u., D = 0.0198 a.u., and α = 1.6.
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In addition to its positive regions, the Wigner function can
also possess negative regions for nonclassical states. In the
course of time evolution, one obtains the Schrödinger catlike
state at 1/4th of the revival time. Four-way breakup or the
compasslike state emerges at 1/8th of the revival time. Sub-
Planck scale structures appear in the Wigner function at the
interference region of these mesoscopic superposition states.
These structures are alternate tiles of maxima and minima.
For symmetric potentials such as the harmonic oscillator,
these tiles are rectangular in shape and one can easily find
the area of these structures by multiplying two side arms,
by measuring the distances between the zeros of the Wigner
function. However, for an asymmetric potential, it is quite
nontrivial. We find the zeros of the Wigner function around a
particular structure (either positive or negative) by projective
plots of the Wigner function in both the conjugate coordinates.
Then we perform a set of measurements and, finally, take the
average. The smallest sub-Planck structures are formed due to
the superposition of off-diagonal superposition structures in a
compasslike state.

In addition to the above procedure, one can follow an
alternative methodology, mentioned in one of our papers [11].
The idea is as follows: In typical experimental situations, a
small perturbation can be applied through a weak constant
force, which will physically shift the state in phase space. This
can be mathematically incorporated by finding an appropriate
displacement operator for the coherent state, then applying the
operator on the state for a small displacement. When the state
is displaced by the length of a sub-Planck structure, the two
states become quasiorthogonal and distinguishable. Hence, it
decides the minimum amount of perturbation and force, which
the system can detect.

The overlap between the initial and final states in terms of
the Wigner distribution is

|〈�′
(r,t)|�′′

(r,t)〉|2= 2

π�

∫ ∞

−∞

∫ ∞

−∞
W

′
(r,p,t)W

′′
(r,p,t)drdp,

(11)
where prime denotes the state before perturbation and double
primes stand for the same after the application of an external
perturbation. One can try to find the displaced state and its
Wigner function after carrying out a lengthy calculation. The
overlap function is oscillatory and the period of each oscillation
will give the length of the structure in some particular direction
in phase space. This direction is exploited by utilizing the
complex form of the coherent-state parameters. One can, in
principle, find the length in a number of phase-space directions
to have a better idea of the shape of the structure. The method
is cumbersome and not worthy to apply in the context of the
present application because we need many of such kind of
measurements.

In the following, we will investigate how rotational coupling
affects the quantum sensitivity. Specifically, we explore the
sensitivity limit due to rotational amendment in the vibrating
molecule.

A. Mesoscopic superposition states and their sensitivity

In this section, we make a quantitative analysis of
the sensitivity of the sub-Planck dimension with rotational
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FIG. 3. (Color online) Verification of scaling law between the
sensitivity measured from a Wigner plot and numerically calculated
by evaluating the classical action. Here, the proportionality factor is
3.78 and slope is 0.99 (∼1.0).

coupling. Here, we denote the dimension of the smallest
structure by s, which is proportional to ∼�

2/A (∼1/A in
atomic units), where A is the classical action of the state
in phase space [3,11]. The classical action is defined by the
product of the effective support of its state in position and
momentum spaces: A ∼ 	r × 	p, where 	r =

√
〈r2〉 − 〈r〉2

and 	p =
√

〈p2〉 − 〈p〉2. These quantities should be evaluated
on the basis of the coherent-state wave packet given by Eq. (7).

Now it brings out the question of evaluating the sensitivity
or the area of the sub-Planck scale structures. In principle,
the area can be estimated by either (i) measuring the area
of the structures in the phase-space Wigner distribution or
(ii) measuring the classical action. The first approach needs
a huge computational time to evaluate the Wigner function
integral in each case, upon choosing a proper phase-space
region. Hence, it should be avoided, when one needs a large
number of data. On the other hand, the latter approach requires
the proper scaling law between the actual sub-Planck area and
the classical action. In our technique, we have made use of
both of the approaches to prevail over the situation. In the
first step (i), we plot the Wigner function at 1/8th revival time
for only six chosen j values (j = 0, 64, 94, 116, 136, 150)
and measure the area of sub-Planck structure in each case
as a reference value. In step (ii), we compute the inverse of
classical actions for the same parameters and, finally, compare
with the reference values obtained from Wigner plot. The
scaling is depicted in Fig. 3, which produces slope ∼1.0.
Hence, this is a confirmation of the scaling law: the inverse
of the classical action is directly proportional to the quantum
sensitivity. Now one would be able to perform a thorough
quantitative estimate of the sensitivity. A systematic analysis
is performed to quantify the dependence of sensitivity with
different rotational angular momentum quantum numbers and
at different evolution times.

Variation of sub-Planck dimension with the rotational
coupling is shown in Fig. 4. As displayed in Fig. 1, here
we keep increasing the value of j up to 160. Figure 4(a)
shows the variation of the smallest interference region with
rotational amendment for a catlike state. Points depict the
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FIG. 4. Variation of the sub-Planck dimension with j : (a) sub-Planck variation in catlike state and (b) sub-Planck variation in compasslike
state. (c) Comparison between these two cases.

numerical values of sub-Planck dimensions which vary with
the rotational coupling parameter j . It is interesting to see
that the variation follows an oscillatory behavior where all the
minima represent the high sensitive regions. With increasing
value of j , all minima acquire comparatively higher values.
In the catlike state, the first minimum occurs at j = 38. It is
noteworthy to mention that the presence of rotational coupling
with particular j values corresponding to the minima shown
in Fig. 4 raises the sensitivity limit as compared to the case for
j = 0. Figure 4(b) gives the variation of the sub-Planck region
in a compasslike state. In this case, numerical data show the
oscillatory nature where all the minima capture the regions of
greater sensitivity. The first minimum corresponds to j = 64.
A comparison is made between these two cases in Fig. 4(c).
It shows that the compasslike state brings out the maximum
sensitive state. A detailed study is given in Fig. 5. In the catlike
state, minima or the most sensitive sub-Planck dimensions are
depicted by the points which are joined by a solid line. It
shows that j = 82 brings out the most sensitive region in the
catlike state. In the compasslike state, minima are joined by
a dotted line and it shows that the most sensitive sub-Planck
region arises at the first minimum corresponding to j = 64.
In the next section, further study involves the examination of
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FIG. 5. (Color online) Points show the variation of all minima
or most sensitive sub-Planck structures in catlike and compasslike
states. The solid line is drawn for catlike-state minima where alternate
points depict maximum sensitivity. Among them, second minima
corresponding to j = 82 gives the most sensitive sub-Planck region in
the catlike state. The dotted line shows the compasslike-state minima
variation, where it brings out the most sensitivity for j = 64, occurs
in the first minima.

the orientation of the system in phase space due to rotational
coupling.

B. Angle of rotation

The rotational quantum number introduces rotation of the
wave packet in phase space, and in the above section we have
found the states with maximum sensitivity for some particular
values of the rotational quantum number. Hence it is worth
finding out the exact amount of rotation φ corresponding
to the states of maximum sensitivity. Here, we provide a
numerical estimation of this rotation angle. It is well known
that Ĵ0 is the generator of rotation and is related to the angular
momentum [32]. The corresponding rotation operator would
be U = eiĴ0φ . This operator upon operating on the initial wave
packet gives

U�(y,t)j=0 =
n′∑

n=0

d0
nei(n−λ̄j +1/2)φψn,0e

−iEn,0t

= χ (y,t). (12)

The resulting state is rotated by an angle, depending implicitly
on j .

There is a one-to-one correspondence between the above
state and the wave packet �(y,t), directly obtained from
the time evolution. Hence we find the angle of rotation by
maximizing the overlap |〈χ (y,t)|�(y,t)〉|2 for a given j .
Numerically estimated angles of rotation for specific important
values of j are shown in Table I. The catlike states reveal
maximum sensitivity for j = 82 for which the rotation angle
is found to be 0.72 π . The angle for the most sensitive
compasslike state (j = 64) is 0.22π .

TABLE I. Angle of rotation of the wave packet corresponding to
the black dots in Fig. 5 for both catlike and compasslike states.

Catlike state Compasslike state

j φ j φ

38 0.16 π 64 0.22 π

82 0.72 π

104 1.16 π 116 0.72 π

126 1.71 π

142 2.16 π 150 1.21 π

160 2.77 π
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FIG. 6. (Color online) Time evolution of the Wigner function of
the CS. The first row shows the catlike state at t = Trev/4 for (a) j = 0
and (b) j = 82, and the second row shows the compasslike state at
time t = Trev/8 for (c) j = 0 and (d) j = 64. (d) The mesoscopic
superposition of maximum sensitivity in Rotating Morse potential.

C. Phase-space picture

To obtain greater insight into what has been predicted in the
previous section, we again invoke the phase-space picture. Fig-
ures 6(a) and 6(b) display the Wigner distribution functions of
the catlike state for j = 0 and j = 82, respectively. Figure 6(b)
clearly shows rotation of the wave packet in phase space
due to rovibrational coupling. It shows 0.72π rotation in the
anticlockwise direction. Similarly, Figs. 6(c) and 6(d) show the
Wigner distribution functions of the compasslike state for j =
0 and j = 64, respectively. Following the sensitivity study,
we found that the compasslike state for j = 64 provides the
maximum precision in this rotating Morse system. Although

rotation of this particular state is obtained as 0.22π from
Table I, there is another crucial factor: the ratio of the revival
and classical time scales. This ratio is not an exact integer
in most cases and the extra fraction introduces an additional
phase in the evolution. The extra rotation is calculated to be
0.029π at 1/8 Trev. When added to the rotation due to j , the
resulting state is expected to rotate by 0.249π ∼ 1/4 π , which
is in conformity with the Wigner function in Fig. 6(d).

IV. CONCLUSION

Proper resource accounting is crucial when investigating the
precision or sensitivity in quantum systems and formulating
the ultimate limits in quantum metrology. In this study, we have
considered the rotational coupling in the vibrating diatomic
molecule (I2) and explored the sensitivity of mesoscopic
superposition structures. Special attention is paid to catlike
and compasslike states where sub-Planck scale structures
exist in the quantum interference region. Our sensitivity
analysis of quantum interference structures reveals the fact
that rotational coupling enhances the sensitivity limit in a
vibrating diatomic molecule. We have also identified the
rotational levels corresponding to the maximum sensitivity
limit. Our study avoids the complication of six-dimensional
phase space for rovibrational dynamics of a diatomic molecule.
The 1D rotating Morse potential can well capture the rota-
tional effect throughout the time evolution in phase space.
Moreover, we provide a quantitative measure of the angle of
rotation for different angular momentum states. Our numerical
result shows a nice correspondence between the angle of
rotation and the phase-space Wigner representation. This
study leads to an enhancement in the sensitivity limit and
hence provides improvement in the Heisenberg limit for
quantum metrology, which is not possible without rotational
amendment.
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