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The Lipkin-Meshkov-Glick (LMG) model describes critical systems with interaction beyond the first-neighbor
approximation. Here we address quantum metrology in LMG systems and show how criticality may be
exploited to improve precision. At first we focus on the characterization of LMG systems themselves, i.e.,
the estimation of anisotropy, and address the problem by considering the quantum Cramér-Rao bound. We
evaluate the quantum Fisher information of small-size LMG chains made of N = 2, 3, and 4 lattice sites
and also analyze the same quantity in the thermodynamical limit. Our results show that criticality is indeed a
resource and that the ultimate bounds to precision may be achieved by tuning the external field and measuring
the total magnetization of the system. We then address the use of LMG systems as quantum thermometers
and show that (i) precision is governed by the gap between the lowest energy levels of the systems and
(ii) field-dependent level crossing is a metrological resource to extend the operating range of the quantum
thermometer.
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I. INTRODUCTION

During the last decade a plentiful contamination between
condensed-matter physics and quantum-information theory
has been exploited. On the one hand, many-body systems ex-
hibiting quantum phase transitions (QPTs), usually studied in
terms of order parameters, correlation lengths, and symmetry
breaking [1] have been fruitfully analyzed in terms of quantum-
information-based tools, such as dynamics of correlation in the
ground state (GS) of the systems [2] and quantum-information
geometry [3–7]. On the other hand, quantum critical systems
have been shown to provide a resource for quantum esti-
mation and metrology, offering superextensive precision in
the characterization of coupling parameters and thermometry
[8–10].

The keystone of quantum estimation theory (QET) resides
in the quantum version of the Fisher information [11,12],
a measure that accounts for the statistical distinguishability
of a quantum state from its neighboring ones. Indeed, the
geometrical approach to QPT has shown how to improve
estimation strategies for experimental inaccessible parameters
by driving the system toward critical points, where a sudden
change in the ground-state structure takes place [8,13]. In
particular this behavior has been tested in models where
the interaction is restricted to first neighbors [9,10,14], e.g.,
quantum Ising and X-Y models in an external field, in order to
precisely estimate the parameters of the system and to provide
useful information about the phase diagram. In view of the
attention paid to systems with more sophisticated interaction
among lattice sites [15–18] a question thus naturally arises as
to whether criticality may be exploited to enhance metrol-
ogy in systems with interaction beyond the first-neighbor
approximation.
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In this framework, systems described by the Lipkin-
Meshkov-Glick (LMG) model provide nontrivial examples
to assess quantum criticality as a resource for quantum
estimation. LMG was first proposed as a simple test for
many-body problem approximations [19–21] and since then
it has been used to describe the magnetic properties of several
molecules, notably Mn12Ac [22]. It also found applications
in several different fields, leading to a variety of results in
terms of entanglement properties of its ground state [23–25]
and spin squeezing [26]. For finite-size chains LMG have
been characterized in terms of fidelity susceptibility [27–29]
and adiabatic dynamics [30–32]. Although the LMG model
cannot be solved analytically for a generic chain size, some
of its extensions are amenable to an exact solution [33]. We
also mention that the LMG model received attention not
only theoretically: experimental implementations have been
proposed using condensate systems in a double-well potential
[34] or in cavities [35,36]. It has been also shown that it is
possible to map the dynamics of such a model on circuit QED
[37] and ion traps [38] systems.

For what concerns metrology, the crucial feature of
the LMG model is that its Hamiltonian depends on two
parameters: one is the anisotropy parameter, not acces-
sible to the experimenter, while the other is the exter-
nal magnetic field, thus experimentally tunable, at least
to some extent, in order to drive the system toward
criticality.

In this paper, we address quantum metrology in LMG sys-
tems. We first consider the characterization of LMG systems,
i.e., the estimation of anisotropy, and show how criticality may
be exploited to improve precision. To this aim we evaluate
exactly the quantum Fisher information of small-size LMG
chains made of N = 2, 3, and 4 lattice sites and also address
the thermodynamical limit by a zeroth-order approximation
of the system Hamiltonian. Our results show that the maxima
of the quantum Fisher information are obtained on the critical
lines in the parameter space, i.e., where the ground state of
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the system is degenerate. We also show that the ultimate
bounds to precision may be achieved in practice by tuning
the external field and by measuring the total magnetization
of the system. We also address the use of LMG systems
as quantum thermometers, i.e., we consider a LMG chain
in thermal equilibrium with its environment and analyze the
estimation of temperature by quantum-limited measurements
on the sole LMG system. We show that the precision is
governed by the gap between the lowest energy levels of the
systems such that the field-dependent level crossing provides
a metrological resource to extend the operating range of the
quantum thermometer.

The paper is structured as follows: in Sec. II we briefly
review the relevant features of the LMG model in its most
relevant forms, whereas in Sec. III we introduce the tools of
quantum estimation theory and establish notation. In Sec. IV
we analyze in detail th estimation of anisotropy, while Sec. V
is devoted to LMG systems as quantum thermometers. A
perturbation analysis to discuss the robustness of the optimal
estimators against fluctuations of the external field is the
subject of Sec. VI. Finally, in Sec. VII we address the ther-
modynamical limit by means of a zeroth-order approximation
of the system Hamiltonian. Section VIII closes the paper with
some concluding remarks.

II. LMG MODEL

In this section we review the main features of the Lipskin-
Meshkov-Glick model. As a matter of fact, the model has
been widely studied in many branches of science and it
is known in several equivalent forms. We present the most
relevant ones, with emphasis on the symmetries of the
system.

The original formulation [19–21] describes a system of N

fermions occupying two N -fold degenerated levels separated
by an energy gap ε. Let s = −1,1 be an index for the level and
p = 1, . . . ,N an index exploring the degeneracy of the levels,
and let us consider a fermion algebra {αps,α

†
p

′
s
′ } = δpp

′ δss
′

with αps ( α
†
ps) the annihilation (creation) operator of a fermion

in the pth degenerated state of the s level, then the LMG
Hamiltonian reads

H =ε

2

∑
ps

s α†
psαps + μ

2

∑
pp′s

α†
psα

†
p′sαp′−sαp−s

+ ν

2

∑
pp′s

α†
psα

†
p′−sαp′sαp−s . (1)

The first term takes into account the single-particle energies,
the second term introduces a scattering between couples of
particles in the same level, and the third term is a level
swapping for a couple of particles with different s. The model
has the advantage of being simple enough to be solved exactly
for small N or numerically for large N . In fact, the symmetries
of the system allows one to reduce the size of the largest matrix
to be diagonalized. At the same time, the system is far from
being trivial, and allows one to test the goodness of many
approximation techniques [39,40], as well to compare classical
and quantum phase transitions [41].

The Hamiltonian in Eq. (1) may be rewritten in terms of
angular momentum operators defined by

Sz = 1

2

∑
ps

s α†
psαps,

S+ =
N∑
p

α
†
p+1αp−1, S− = S

†
+,

(2)

and introducing new parameters

ν = − 1

N
(1 + γ ), μ = 1

N
(1 − γ ), ε = −2h, (3)

leading to [46] (apart from an energy shift)

H = − 1

N
(1 + γ )

(
S2 − S2

z − N

2

)

− 1

2N
(1 − γ )(S2

+ + S2
−) − 2h Sz. (4)

Finally, upon writing the S operators as collective spin
operators

Sα ≡ 1

2

N∑
k=1

σ k
α ,

we may rewrite the LMG Hamiltonian as the Hamiltonian
acting on the space of N interacting spin- 1

2 systems, also
exposed to an external field, i.e.,

H = − 1

N

∑
j<k

(
σ j

x σ k
x + γ σ j

y σ k
y

) − h

N∑
k

σ k
z , (5)

where σ k
α is the Pauli matrix associated with the direction

α = x,y,z of the kth spin. The sum is extended over all the
spins, thus describing a system where the interaction is not
limited to first neighbors. The first term in Eq. (5) introduces
a spin-spin interaction whose strength is made anisotropic in
the xy plane by the γ parameter, which is the ratio between
the coupling energies in this direction (γ = 1 means no
anisotropy). Finally the strength of the interaction with the
external field is described by the parameter h.

It is worth pointing out some symmetries of the system. At
first we notice that the swap h → −h modifies the Hamiltonian
as the (unitary) operations of describing spin flip, i.e., U =
⊗N

k=1σ
k
x ,

H (γ,h) = U †H (γ,−h)U, (6)

so that there is no need to study the h < 0 semiplane, since
the eigenvalues here are the same as in the h > 0 case, and
the eigenvectors are related by the transformation matrix U .
Similarly, the γ parameter may be taken in the range [−1,1]
since any map sending this range into (−∞, − 1] ∪ [1,∞]
modifies the Hamiltonian as a π/2 rotation around the z axis,
i.e., as the unitary V = ⊗N

k=1σ
k
z together with a rescaling of

the field

H

(
1

γ
,h

)
= V † H (γ,hγ ) V. (7)

The parameter space is therefore restricted to (γ,h) ∈
[−1,1] × [0,∞).
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The LMG model spectrum has been extensively studied
in the thermodynamic limit [23–25,42–45]. Following the
method suggested in [23] the spectrum of H in the large N limit
is computed using first a Holstein-Primakoff bosonization

S+ = N1/2(1 − a†a/N )1/2a, S− = S
†
+,

Sz = N/2 − a†a,
(8)

and considering at most term in (1/N)0 in the expansion of
the square root. Subsequently in order to diagonalize H a
Bogoliubov transformation is performed

a = cosh 	b + sinh 	b†, (9)

where 	 ≡ 	(γ,h) is chosen such that the Hamiltonian reads
(neglecting a constant energy shift)

H
N	1= 
(γ,h) b†b. (10)

The study of the ground state reveals two phases in the
parameter space: for h � 1 the system shows an ordered phase
with


(γ,h) = 2[(h − 1)(h − γ )]1/2,

while for 0 � h < 1 we have a disordered (broken) phase with
an energy spacing among levels given by


(γ,h) = 2[(1 − h2)(1 − γ )]1/2.

III. QUANTUM ESTIMATION THEORY

In this section we briefly review the basics of quantum
estimation theory and the tools it provides to evaluate bounds
to precision of any estimation process involving quantum
systems. Let us consider a situation in which the quantum
state of a system is known unless for a parameter λ, e.g.,
a system with a known Hamiltonian in thermal equilibrium
with a reservoir at unknown temperature T . This situation is
described by a map λ → ρλ associating with each parameter
value a quantum state. In this framework when one measures
an observable X the outcomes x occur with a conditional
probability distribution pX(x|λ) given by

pX(x|λ) = Tr[Pxρλ], (11)

where Px is the projector onto the eigenspace relative to x. To
estimate the value of λ from the data one needs an estimator,
i.e., a function λ̂ ≡ λ̂(x1,x2, . . . ) of the measurement outcomes
to the parameter space. Of course one requires some properties
for this estimator, primarily to be unbiased

E[λ̂ − λ] =
∏

i

∑
xi

λ̂(x1, . . . xn) − λ = 0 ∀ λ, (12)

where E[. . . ] denotes the mean with respect to the n identically
distributed random variables xi and λ the true value of the
parameter. Additionally one requires a small variance for the
estimator

Var(λ,λ̂) = E[λ̂2] − E[λ]2, (13)

since this quantity measures the overall precision of the
inference process. A lower bound for the variance of any

estimator is given by the Cramer-Rao theorem

Var(λ,λ̂) � 1

MFλ

, (14)

where M is the number of independent measurements and Fλ

is the Fisher information (FI) given by

Fλ =
∑

x

[∂λpX(x|λ)]2

pX(x|λ)
. (15)

An estimator achieving the Cramer-Rao bound is said to
be efficient. Although an efficient estimator may not exist
for a given data set, in the limit of large samples, i.e., for
M 	 1, an asymptotically efficient estimator always exists,
e.g., the maximum likelihood estimator. In summary, once a
map λ → ρλ is given it is possible to infer the value of a
parameter of a system by measuring an observable X and
performing statistical analysis on the measurements results.
Upon choosing a suitable estimator we may achieve the
optimal inference, i.e., saturate at least asymptotically the
Cramer-Rao bound.

It is clear that different observables lead to a different
probability distribution, giving rise to different FIs and hence
to different precisions for the estimation of λ [12]. The ultimate
bound to precision is obtained upon maximizing the FI over
the set of observables. This maximum is the so-called quantum
Fisher information (QFI). To obtain an expression for the QFI
one introduces the symmetric logarithmic derivative (SLD),
which is the operator Lλ solving

Lλρλ + ρλLλ

2
= ∂ρλ

∂λ
. (16)

SLDs allow us to rewrite the derivative of ρλ so that Eq. (15)
becomes

Fλ =
∑

x

Re(Tr[ρλPxLλ])2

Tr[ρλPxLλ]
, (17)

which is upper bounded by

Fλ � Tr
[
ρλL

2
λ

] ≡ Gλ, (18)

where Gλ is the quantum Fisher information. To obtain an
explicit form for the QFI one has to solve Eq. (16), arriving
at

Lλ = 2
∫ ∞

0
dt e−ρλt ∂λρλ e−ρλt . (19)

Then, upon writing ρλ = ∑
n wn(λ)|ψn(λ)〉〈ψn(λ)| in its

eigenbasis, we have

Lλ = 2
∑
nm

〈ψn|∂λρλ|ψm〉
wn + wm

|ψn〉〈ψm|, (20)

and finally

Gλ = 2
∑
nm

|〈ψn|∂λρλ|ψm〉|2
wn + wm

, (21)

with the sum carried over those indexes for which wn + wm 
=
0. Upon rewriting ∂λρλ in terms of the eigenvectors and the
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eigenvalues of ρλ, we have

∂λρλ =
∑

n

∂λwn|ψn〉〈ψn| + wn|∂λψn〉〈ψn|

+ wn|ψn〉〈∂λψn|, (22)

and the QFI assumes the following form:

Gλ =
∑

n

(∂λwn)2

wn

+ 2
∑
n
=m

σnm|〈ψn|∂λψm〉|2, (23)

with

σnm = (wn − wm)2

wn + wm

. (24)

The first contribution in the Eq. (23) depends solely on the
eigenvalues of ρλ, i.e., on the fact that ρλ is a mixture,
whereas the second term depends on the eigenvectors, i.e.,
it contains the truly quantum contribution to QFI. The two
terms are usually referred to as the classical and the quantum
contribution to the QFI, respectively. For pure states the
quantum term is the only one contributing to the QFI.

IV. ESTIMATION OF ANISOTROPY

The interaction described by the LMG model depends on
two relevant parameters: the anisotropy γ and the external field
h. To these it adds the temperature, or equivalently its inverse
β, if we allow the system to interact with the environment
by exchanging energy. Among these parameters, the external
field may be tuned by the experimenter and represents a
tool that allows one to exploit the system’s criticality as a
resource to reliably estimate the remaining less controllable
parameters.

The anisotropy is a typical quantum parameter, that is, its
variations modify both the eigenvalues and the eigenvectors of
the system. Anisotropy is not tunable by the experimenter,
since it is part of the intrinsic coupling among spins and
represents a specific characteristic of the system. Anisotropy,
however, does not correspond to a proper observable. Its
characterization may be addressed within the framework of
QET and the ultimate bound to the precision of its estimation
is set by the corresponding QFI.

We consider here LMG chains in thermal equilibrium with
their environment. The map that we mentioned in the previous
section, from parameters space to quantum states, is thus given
by the canonical Gibbs density matrix

ρ(γ,h,β) = e−βH (γ,h)

Z(γ,h,β)

=
∑

n

e−βEn(γ,h)

Z(γ,h,β)
|n〉〈n|, (25)

where Z(γ,h,β) = Tr[e−βH ] is the partition function, En(γ,h)
the nth eigenvalue of the Hamiltonian, and |n〉 a basis where
H is diagonal, such that ρ(γ,h,β) has eigenvalues equal to the
Boltzmann weights

Bn ≡ Bn(γ,h,β) = e−βEn(γ,h)

Z(γ,h,β)
. (26)

To evaluate the QFI for γ , and in turn the bounds to
precision in its estimation, we have to find the eigenvalues and
eigenvector as a function of γ and h and insert them in Eq. (23).
To gain some insight into the role of the chain size while
maintaining an analytical approach, we analyzed in detail the
cases N = 2,3,4. We will address the complementary limit
N → ∞ in Sec. VII.

Before proceeding with the results, we will make a
preliminary observation: by studying parameter estimation
through information geometric tools such as the QFI and
the FI one learns that the parameter of interest is easy to
estimate in those points where the parametrized quantum
state is easily distinguishable (in a statistical sense) from the
neighboring ones, corresponding to slightly different values
of the parameter. In our case, upon looking at the very form
(25) of the quantum state, one sees that for small values of
β, ρ is almost independent of γ , going toward a uniform
mixture of all the eigenstates. In this regime, one thus expects
the estimation of γ to be inherently inefficient. On the other
hand, high precision is expected in the large β limit, since the
mixture is peaked at the ground state, which is intuitively more
sensitive to γ fluctuations.

Using Eq. (23) and the results of diagonalization (see
the Appendix), one arrives at the QFI Gγ ≡ Gγ (γ,h,β). For
N = 2 the explicit expression is given by

Gγ = 1

r2

[
β2 κ1

2κ2
+ 16h2

r2

(1 − eβr )2

(1 + eβr )
√

κ2

]
, (27)

where

κ1 = e− 1
2 β(v−r)

[
1
2 (u − r)2 + 4(8h2 + u2)e

1
2 β(v+r)

+ 1
2 (u − r)2eβ(v+r) + 1

2 (u + r)2eβr + 1
2 (u + r)2evβ

]
,

κ2 = [1 + eβr + e
1
2 β(v+r) + e− 1

2 β(v−r)]2,

with u = γ − 1, v = γ + 1, and r = √
u2 + 16h2. For N = 3

and N = 4 the expressions are quite cumbersome and we are
not reporting them.

Optimal estimation of the anisotropy at fixed temperature
may be achieved by maximizing the QFI over the external field
h. Results of this maximization show that the optimal values of
the field correspond to the critical lines of the model, i.e., the
lines in the parameter space corresponding to a degenerated
ground state (GS), i.e.,

N = 2 → hc =
√

γ

2
, (28)

N = 3 → hc = 2
√

γ

3
, (29)

N = 4 → hc =
√

γ

4
, and hc = 3

√
γ

4
. (30)

For N = 2 the maximized QFI Gγ (γ, 1
2

√
γ ,β) is given by

Gopt
γ = 8γ + κ2 + γ (γ κ2 − 8) sech2 1

2κ

4(1 + γ )4
, (31)
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FIG. 1. (Color online) Estimation of anisotropy in the LMG
model. The plots show the QFI Gγ for the anisotropy as a function
of the anisotropy parameter γ itself and of the magnetic field h for
two values of β. The panels on the left refer to β = 10; those on the
right to β = 100. The rows, from top to bottom, contain the results
for N = 2,3,4 lattice sites, respectively. Comparing the two columns
it is clear that Gγ reaches its maximum along the critical lines of the
system as β2, with such divergence modulated also by a nontrivial
function of γ . Note the peculiar absence of divergence in the N = 3
case for h = 0.

where κ = β(1 + γ ). In the low-temperature regime, i.e.,
β 	 1 we may write

Gopt
γ � β2 (u + r)2

8r2

{
e

1
2 β(v−r), h � √

γ /2,

e− 1
2 β(v−r), h <

√
γ /2.

(32)

Notice that the exponent is the energy gap between the two
lowest energy eigenvalues, which vanishes on the degeneracy
line. For N = 4 the absolute maximum corresponds to hc =
3
√

γ

4 . For N = 3 also the condition h = 0 individuates a
degenerated GS, but this does not correspond to a maxima
of the QFI for reasons that will be clear in the following.

The role of criticality is illustrated in detail in Fig. 1, where
we show Gγ as a function of γ and h for different values
of β. As it is apparent from the plots, when the temperature
decreases, Gγ diverges as β2 on the critical lines, whereas in
any other point of the parameter space it assumes a finite value.
In other words, for any value γ � 0 it is possible to tune the
external field to an optimal value which drives the system into
the degeneracy lines, i.e., into critical points. In this way, one
maximizes the QFI and, in turn, optimizes the estimation of
γ . This result confirms that criticality is in general a resource
for estimation procedures. The degeneracy line at the h = 0
line for N = 3 is an exception, since no gain in precision is
achieved despite a crossing between the two lowest energy
states being present. We will address this issue and clarify the
point in the following section.

A. Two-level approximation to assess estimation of anisotropy
in the low-temperature regime

An intuitive understanding of our findings may be achieved
by means of an approximation for the Gibbs states, where we
consider only the two lowest levels of the system

ρ(γ,h,β) ∝ e−βE0 |0〉〈0| + e−βE1 |1〉〈1|, (33)

where E0,1 are the smallest eigenvalues. In fact, for the
values of N we have considered, the energy spectra of
the Hamiltonians show a common structure: the two lowest
eigenvalues, i.e., the GS and the first excited level, cross
each other but they remain smaller than the other levels for
the whole range of γ and h values. As a consequence, for
large β (i.e., in the low-temperature regime) the Boltzmann
weights corresponding to the smallest eigenvalues are only
appreciable in the sum in Eq. (25) and the density matrix
is well approximated by the expression in Eq. (33). The
approximation is more and more justified as far as β increases.
We now proceed by noticing that for the family of states
(33), the quantum contribution to G(γ ) does not contain any
divergent term in γ , h, or β. This may be easily seen from
Eq. (23) and from the fact that the eigenvectors are smooth
functions of the parameters. Actually, this is the case also for
other first-neighbor models [8,9], so the approximation here
described may apply to other models. We thus introduce a
general notation in order to analyze the classical contribution.

Consider a qubit with eigenenergies f (a,b) and g(a,b) =
f (a,b) + x(a,b), depending on the parameters a and b (b may
also be a set of parameters). With the usual map to the thermal
state, the QFI for parameter a rewrites

Ga(a,b,β) = β2 eβx(a,b)

[1 + eβx(a,b)]2
[∂ax(a,b)]2. (34)

It is easy to see that Ga(a,b,β) diverges only in those points
a0 and b0 such that f (a0,b0) = g(a0,b0) and ∂af (a0,b0) 
=
∂ag(a0,b0). When this happens, QFI is proportional to β2.
The two conditions are indeed satisfied on the degeneracy
lines mentioned above, except for the case N = 3 and h = 0,
where the partial derivatives of the eigenvalues are equal, thus
preventing the divergence of the QFI.

B. Achieving the ultimate bound to precision using
feasible measurements

In the previous sections we have evaluated the ultimate
bound to precision for the estimation of anisotropy, and have
shown that the level crossing driven by the magnetic field
is a resource for the estimation. To exploit this quantum
critical enhancement one has in principle to implement the
measurement of the symmetric logarithmic derivative which,
in turn, should be an accessible observable for the LMG system
under investigation. Since it is unlikely to have such a control
on a quantum system that any observable is measurable, one
is generally led to assess the estimation procedure based on
realistic observables, i.e., to evaluate their Fisher information
and to compare this function with the QFI.

In this section we consider a realistic observable, the
total magnetization of the LMG system, and compute the
corresponding FI for the estimation of anisotropy. As we will
see, this quantity approaches the QFI in the critical region,
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thus showing that quantum critical enhancement of precision is
indeed achievable in an an experimentally accessible scenario.

The total magnetization is diagonalized in the basis
⊗N

k=1|mz〉k , where mz ∈ 1, − 1 and |x〉k denotes the eigen-
vectors of the z spin component of the kth spin. If Nz is the
number of spins up for a given basis element, the corresponding
eigenvalue is simply

∑N
k=1 i = 2Nz − N , and the probability

of such measurement outcome, with the notation of Eq. (15),
is given by

p(2Nz − N,λ) = Tr
[
PNz

exp −βH
]

Z
, (35)

where PNz
denotes the projector onto the subspace spanned

by the basis elements with Nz spins up. Finally, to compute
the corresponding Fisher information Fγ we substitute these
probabilities in Eq. (15).

We are not going to report the explicit formula for the Fγ ,
which is quite unhandy. Rather, we introduce and discuss an
approximation which allows us to reproduce its main features.
We anticipate that Fγ shares with the QFI the nice behavior
in the critical region, i.e., it diverges as β2 on the degeneracy
lines, except for the case of the h = 0 line for N = 3.

Let us consider a two-dimensional system prepared in
the mixed state ρ(λ) = p|0〉〈0| + (1 − p)|1〉〈1| where both
the eigenvalue p and the eigenvectors are functions of a
parameter λ to be estimated. If a measurement of an observable
A = x1|x1〉〈x1| + x2|x2〉〈x2| is performed, the outcomes are
distributed according to

P (xi) = Tr[ρ|xi〉〈xi |] = p|〈0|xi〉|2 + (1 − p)|〈1|xi〉|2,
where taking into account the normalization of the basis
involved, we have the following relations:

q = |〈0|x1〉|2 = |〈1|x2〉|2, (36)

1 − q = |〈0|x2〉|2 = |〈1|x1〉|2. (37)

We will also denote δq = q − (1 − q) and δp = p − (1 − p).
With this notation the FI for A is rewritten in a compact form
as

F(λ) = (∂λp δq + ∂λq δp)2

(p δq − q)(p δq + 1 − q)
(38)

Specializing this to the case of our interest, we have 1 − p =
exp(−βε)/Z where ε = ε(γ,h) denotes the energy of the first
excited level. Without lost of generality we can assume the
energy of the GS is to be null, we thus arrive at

∂γ p = β eβε

[1 + eβε]2
∂γ ε. (39)

Equation (39) implies that the FI Fγ of any observable of
the form A = x1|x1〉〈x1| + x2|x2〉〈x2| diverges as β2 in the
large β limit, provided that δq 
= 0 (this means that the two
eigenstates must be distinguishable by that measurement),
∂γ ε 
= 0 (similar to what we found for the QFI), and ε = 0,
i.e., we are at a critical point. Notice that the above model,
basically the same we used to explain the results obtained for
the QFI, is valid to discuss the estimation performances of the
total magnetization, but cannot be used to approximate the FI
of any observable A of the LMG model in the limit of low

temperature. In fact, even though the state of the system may
be always approximated by a qubit, there is no reason for a
general observable to be approximated by an operator acting
only in the qubit space.

V. LMG CRITICAL SYSTEMS AS QUANTUM
THERMOMETERS

In this section we explore the performances of LMG critical
systems as quantum thermometers, i.e., we consider a LMG
systems in thermal equilibrium with its environment and
analyze the estimation of temperature by quantum-limited
measurements on the sole LMG system. In other words,
we address the estimation of the temperature, viewed as an
unknown parameter of the Gibbs distribution, on the family of
states defined in Eq. (25) [47,48].

Upon inspecting Eq. (25) one easily sees that temperature
influences the eigenvalues of the density matrix, but not its
eigenvectors, and thus only the classical contribution to the
QFI G(β) survives, i.e., the sum depending on the Boltzmann
weights in the general expression for QFI of Eqs. (23). We
thus have

Gβ(γ,h,β) =
d∑

n=1

(∂βBn)2

Bn

, (40)

where Bn denotes the nth Boltzmann weight. It is worth
underlining that Gβ(γ,h,β) is equal to the energy fluctuation’s
mean value over the ensemble, in fact

Gβ(γ,h,β) =
d∑

n=1

(∂βBn)2

Bn

=
d∑

n=1

Bn

[
E2

n + (∂β ln Z)2 + En∂β ln Z
]

(41)

= E2 − E
2 = 
E2.

To assess LMG chains with N = 2,3,4 as quantum thermome-
ters we evaluate the QFI and maximize its value by tuning
the external field. In Fig. 2 we show the optimal values of
the field as a function of the anisotropy for different values
of β and for sizes of the LMG chain. In contrast to what
happened for the estimation of the anisotropy, the optimal
values of the field h∗ do not correspond to the critical ones.
On the other hand, there is clear connection between the two
concepts: for each critical line different optimal lines exist,
corresponding to slightly larger and slightly smaller values of
the field. As the inverse temperature is increased, the optimal
lines are smoothly deformed, approaching the corresponding
critical one from above and below. This link between critical
and optimal lines will be examined in more detail later in this
section.

The explicit expression of the QFI Gβ(γ,h∗,β) for N = 2
is given by

Gβ = 1

2

κ3

κ4
, (42)
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FIG. 2. Quantum thermometry using LMG systems. The plots
show the optimal field h∗, maximizing the QFI Gβ , as a function
of the anisotropy of the system for different values of β and for
different lengths of the LMG chain. Each row shows the optimal
field vs γ at fixed value of N = 2,3,4, respectively. The two columns
correspond to β = 10 (left) and β = 100 (right). The optimal values
of the field are the solid lines; the dashed lines are the critical lines hc

of Eq. (30).

where

κ3 = e
1
2 β(v+r)[ 1

2 (v + r)2 + 4(1 + 8h2 + γ 2)e
1
2 β(v+r)

+ 1
2 (v − r)2eβ(v+r) + 1

2 (v + r)2eβr + 1
2 (v + r)2eβv

]
,

κ4 = [
e

1
2 βv + e

1
2 βr + e

1
2 β(v+2r) + eβ(v+ 1

2 r)
]2

,

with v and r as in Eq. (27). Analog expressions, with several
more terms, are obtained for N = 3 and N = 4; we are not
showing the explicit expressions here. In the low-temperature
regime Eq. (42) may be rewritten as

Gβ � 1

4
(v − r)2

{
e

1
2 β(v−r), h � √

γ /2,

e− 1
2 β(v−r), h <

√
γ /2,

(43)

where, as in Eq. (32), the exponent is the energy gap between
the two lowest energy levels.

To gain more insight into the QFI behavior, in Fig. 3 we
show Gβ as a function of the anisotropy and of the external
field for different values of β and the number of sites. At first
we notice that the presence of optimal lines clearly emerges
from the plot. The QFI decreases with β for any value of
the anisotropy and the external field and this may be easily
understood intuitively: as temperature decreases ρ(γ,h,β)
approaches the projector on the GS space and because this
projector is independent of the temperature, the QFI vanishes.
On the other hand, the quantitative features of the decay, e.g.,
how fast the optimal Gβ tends to zero, are strongly influenced

FIG. 3. (Color online) Quantum thermometry using LMG sys-
tems. The plots show Gβ vs γ and h for different β and number of
sites. The three rows (top to bottom) report results for N = 2,3,4,
respectively. The two columns refer to β = 10 (left) and β = 100
(right).

by the criticality of the system. Indeed, outside the critical
regions the QFI vanishes exponentially, whereas along the
optimal lines it vanishes as 1

β2 independent of γ . For increasing
β two phenomena occur: (i) the optimal lines approach the
critical ones, h∗ → hc; (ii) the QFI Gβ shows a behavior
independent of N , i.e., Eq. (43) may be generalized to N = 3,4
and rewritten as

Gβ � k(γ,h)e−β f (γ,h), (44)

where the functions k(γ,h) and f (γ,h) are non-negative,
independent of β, and zero only on the critical and/or optimal
lines. Overall, we have that the presence of degeneracy, i.e.,
crossing between the lowest eigenvalues, allows us to find
optimal fields where Gβ decreases as 1/β2, suggesting that
the criticality itself is the reason behind such enhancement.

To confirm this intuition and to gain more insight into the
QFI behavior in the low-temperature regime we again consider
the two-level approximation used before. Using the notation
of Eq. (34), the QFI rewrites

Gβ(a,b,β) = eβx(a,b)[βx(a,b)]2

[1 + eβx(a,b)]2

1

β2
= F (βx(a,b))

β2
, (45)

where F (y) is a symmetric function vanishing in the origin,
F (0) = 0, and it shows two global maxima at y = ±yopt. This
explains the behavior shown in Figs. 2 and 3 where for each
critical line, i.e., x(a,b) = 0, two optimal lines are present,
corresponding to βx(a,b) = ±yopt. Moreover, the dependence
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of F (y) on the product of β with x(a,b) clarifies why, as β

increases, the optimal lines approach the critical ones. Finally,
we see that on the optimal lines the QFI vanishes as 1/β2,

independent of any parameter, since the maximization of F (y)
factored out the parameter dependence. In other words, the
precision is basically governed by the energy gap between the
two lowest energy levels. This behavior, in the limit of large
β, is independent of the actual model, so that the argument
may be equally employed to describe any system with an
energy spectrum made of two crossing lowest levels well
separated from the other levels. We finally emphasize that
the ultimate bound to precision may be practically achieved,
since, as shown by Eq. (41), the SLD turns out to be the total
energy of the system, which we assume to be measurable.

VI. ROBUSTNESS AGAINST FLUCTUATIONS
OF THE EXTERNAL FIELD

The results reported in the previous sections show that
criticality is a resource for quantum metrology in LMG
systems. As it has been extensively discussed, in order to
achieve the ultimate bounds to precision one should tune
the external field to the appropriate value, driving the system
toward the critical region. A question thus arises on whether
and how an imprecise tuning of the external affects the
metrological performances of the system.

This issue basically amounts to a perturbation analysis in or-
der to discuss the robustness of the optimal estimators against
fluctuations of the external field. The canonical approach to
attacking this problem would be that of considering the state
of the system as a mixture of different ground states, each
one corresponding to a different value of the external field,
and then evaluating the quantum Fisher information for this
family of states. This is a very challenging procedure to pursue,
even numerically, and some approximated approach should be
employed instead. In fact, it is possible to provide an estimate
of this effect by averaging the QFI over a given distribution for
the external field: this is an approximation since the QFI is a
nonlinear function of the density operator, but it is not a crude
one, owing to the small value of fluctuations that we should
consider for this kind of perturbation analysis.

To obtain a quantitative estimate we assume that the actual
value of the external field is normally distributed around the
optimal one hc, and evaluate the averaged QFI for the anistropy

Gγ (β) =
∫

dh Gγ (γ,h,β) g�(h) (46)

as a function of the width � of the Gaussian g�(h), viewed as
a convenient measure of the fluctuations (i.e., of the imprecise
tuning) of the external field. In particular, we choose the range
of � so as to describe an imprecise tuning of the external
field up to ±5%. In Fig. 4 we show the ratio between the
field-averaged QFI and the optimal one

ξ = Gγ (β)

Gγ (γ,hc,β)
, (47)

as a function of the width � of the Gaussian distribution, for
different values of γ and for different temperatures. As it is
apparent from the plots, the ratio is close to unity, showing the
robustness of the optimal estimator. The plots also show that

FIG. 4. (Color online) Ratio ξ = Gγ (β)/Gγ (γ,hc,β) between
the field-averaged QFI and the optimal one as a function of the width
� of the field distribution. The upper panel shows results for γ = 0.1
and the lower one for γ = 0.5. In both panels we show the behavior
for β = 5 (red points), β = 25 (blue squares), and β = 50 (green
diamonds).

the detrimental effects of an imprecise tuning of h increase
with γ and decrease with temperature. Analog results may be
obtained for N = 3 and N = 4 as well as for the estimation of
temperature. Overall, we have that the optimal estimators are
robust against possible fluctuations of the external field, thus
providing a realistic benchmark for precision measurements
on LMG systems.

VII. QUANTUM ESTIMATION IN LARGE LMG SYSTEM:
THE THERMODYNAMICAL LIMIT

The study of the thermodynamic limit of the model could
be conducted using the diagonal form of the Hamiltonian
in Eq. (10). The family of quantum states we are dealing
with may be expressed as ρ	 = U	ρ(γ,h,β)U †

	, where U	 =
exp [−i	(γ,h)G] is a unitary operator, and G ≡ (a2 + a†2) is
the Hermitian operator related to the Bogoliubov transforma-
tion in Eq. (9). This lets us compute the QFIs for anisotropy
Gγ and temperature Gβ using Eq. (23), where the parameter λ

turns out to be in the first case γ and in the second the inverse
temperature β. It is useful to underline that in the limit of an
infinite number of particles, the sum in Eq. (23) is infinite thus
leading to a region where the quantum Fisher information is
divergent.

We do not report here the analytic expressions of the QFIs
since they are quite cumbersome. Rather we discuss their
behavior analyzing their main features. In Fig. 5 we show
Gγ as a function of the external field h and of the anisotropy
γ itself. As it is apparent from the plot, in the ordered phase
(h > 1), Gγ has a finite value everywhere, showing a cusp
for h approaching the critical value. In the broken phase, Gγ
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FIG. 5. (Color online) Characterization of anisotropy in the ther-
modynamical limit. The plots show the behavior of Gγ for the LMG
model as functions of the anisotropy parameter γ and the external
magnetic field h. The left panel refers to β = 1 and the right one to
β = 105.

increases with γ showing a divergent behavior approaching
γ = 1 for all values of the magnetic field in the region, thus
signaling the sudden change of the universality class of the
system. In both phases the scaling with the temperature on the
critical regions goes as β2. More specifically, we have

Gγ (γ,h∗,β) � 9

4(h − 1)2
− 25β2

12
+ O(h), (48)

in the ordered phase, h > 1, and

Gγ (γ,h∗,β) � 9

4(γ − 1)2
− 25β2(h − 1)

6(γ − 1)
+ O(h), (49)

in the broken one, i.e., for 0 � h < 1.
The evaluation of the quantum Fisher information for

the temperature shows how it reaches is maximum, without
showing divergences, along the degeneracy lines previously
outlined, but this time it scales as β−2 at the first order near
the critical field. If h � 1 we have

Gβ(γ,h,β) � 1

β2
+ 1

3
(γ − 1)(h − 1) + O

(
h

3
2
)
, (50)

instead in the other phase, where 0 � h < 1, we obtain

Gβ(γ,h,β) � 1

β2
− 2

3
(γ − 1)(h − 1) + O

(
h

3
2
)
. (51)

We notice that these results could be improved only by going
beyond the Gaussian approximation performed in Eqs. (8) and
(9) since in the broken phase region the effective separation
between the degenerate ground state vanishes as exp(−N ). As
a matter of fact, it would be possible to recover the results
obtained for the finite chain cases, i.e., divergences along
h∗ � √

γ , only looking at the fine structure of the level in
the broken phase.

VIII. CONCLUSIONS

We have addressed quantum metrology in the LMG model
as a paradigmatic example of criticality-assisted estimation in
systems with interaction beyond the first-neighbor approxima-
tion. In particular, we analyzed in detail the use of criticality
in improving the precision of measurement procedures aimed
at estimating the anisotropy of the system or its temperature.

Upon considering LMG systems in thermal equilibrium
with the environment we have evaluated exactly the quantum
Fisher information of small-size LMG chains made of N =
2, 3, and 4 lattice sites and analyzed the same quantity

in the thermodynamical limit by means of a zeroth-order
approximation of the system Hamiltonian. In this way we
proved that quantum criticality of the system represents a
resource in estimating the anisotropy. In fact, the quantum
Fisher information Gγ is maximized at the critical lines, where,
in the low-temperature regime, it diverges as β2, while being
finite everywhere else. We have then shown that the ultimate
bounds to precision may be achieved by tuning the external
field and by measuring the total magnetization of the system.

We have also addressed the use of LMG systems as
quantum thermometers showing that (i) precision is governed
by the gap between the lowest energy levels of the systems
and (ii) field-dependent level crossing provides a resource
to extend the operating range of the quantum thermometer.
Our results are encouraging for the emergent field of quantum
thermometry. Indeed, despite the fact that the QFI Gβ vanishes
everywhere for decreasing temperature, criticality continues
to represent resource: the QFI is maximized along optimal
lines approaching the critical ones for decreasing temperature,
and there the optimal QFI vanishes as 1/β2 instead of
exponentially.

Finally, we have introduced a simple model, based on a
two-level approximation of the system, which allows us to
provide an intuitive understanding of our findings for both Gγ

and Gβ . Our model also suggests that similar behaviors may be
expected for a larger class of critical systems with interaction
beyond the first-neighbor approximation.
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APPENDIX: LMG SYSTEMS WITH N = 2, 3, 4 SITES

Here we provide the explicit expression, in the compu-
tational basis, of the Hamiltonian for LMG systems with
N = 2, 3, 4 sites, as well as the eigenvalues and eigenvectors
for N = 2, 3. Throughout the Section we use the shorthand
u = (γ − 1) and v = (γ + 1).

1. N = 2

The matrix form of the two-site LMG Hamiltonian in the
computational basis reads as follows:

H2 = −1

2

⎛
⎜⎝

4h 0 0 u

0 0 v 0
0 v 0 0
u 0 0 −4h

⎞
⎟⎠. (A1)

The eigenvalues are given by

λ1 = −1

2
v, λ3 = −1

2

√
16h2 + u2, (A2)

λ2 = 1

2
v, λ4 = 1

2

√
16h2 + u2, (A3)
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and the corresponding (unnormalized) eigenvectors by

uT
1 = (0, 1, 1, 0), (A4)

uT
2 = (0, −1, 1, 0), (A5)

uT
3 =

(
4h + √

16h2 + u2

u
, 0, 0, 1

)
, (A6)

uT
4 =

(
4h − √

16h2 + u2

u
, 0, 0, 1

)
. (A7)

2. N = 3

The Hamiltonian for the three-site LMG system is given by

H3 = −1

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9h 0 0 −u 0 −u −u 0
0 3h v 0 v 0 0 −u

0 v 3h 0 v 0 0 −u

−u 0 0 −3h 0 v v 0
0 v v 0 3h 0 0 −u

−u 0 0 v 0 −3h v 0
−u 0 0 v 0 v −3h 0
0 −u −u 0 −u 0 0 −9h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A8)

leading to the eigenvalues

μ1,2 = 1

3
(v − 3h), μ3,4 = 1

3
(v + 3h), (A9)

μ5 = 1

3
(−3h − v − 
−), (A10)

μ6 = 1

3
(−3h − v + 
−), (A11)

μ7 = 1

3
(3h − v − 
+), (A12)

μ8 = 1

3
(3h − v + 
+), (A13)

and eigenvectors

vT
1 = (0, −1,0,0,1,0,0,0), (A14)

vT
2 = (0, −1,1,0,0,0,0,0), (A15)

vT
3 = (0,0,0, −1,0,0,1,0), (A16)

vT
4 = (0,0,0, −1,0,1,0,0), (A17)

vT
5 =

(
δ+ − 
−

u
, 0, 0, 1, 0, 1, 1, 0

)
(A18)

vT
6 =

(
δ+ + 
−

u
, 0, 0, 1, 0, 1, 1, 0

)
(A19)

vT
7 =

(
0,

δ− − 
+
3u

,
δ− − 
+

3u
, 0,

δ− − 
+
3u

, 0, 0, 1

)
,

(A20)

vT
8 =

(
0,

δ− + 
+
3u

,
δ− + 
+

3u
, 0,

δ− + 
+
3u

, 0, 0, 1

)
,

(A21)

where 
± = 2
√

1 + 9h2 ± 3hv + γ u and δ± = −6h ± v.

3. N = 4

The Hamiltonian of a four-site LMG system may be
expressed in a block-diagonal form given by

H4 =

⎛
⎜⎝

A 0 · · · 0
0 B · · · 0
0 · · · B 0
0 · · · 0 C

⎞
⎟⎠, (A22)

where

A = −1

4

⎛
⎜⎜⎜⎜⎝

16h 0 −√
6u 0 0

0 3v + 8h 0 −3u 0
−√

6u 0 4v 0 −√
6u

0 −3u 0 3v − 8h 0
0 0 −√

6u 0 −16h

⎞
⎟⎟⎟⎟⎠,

(A23)

B = 1

4

⎛
⎝ v − 8h 0 u

0 0 0
u 0 v + 8h

⎞
⎠, (A24)

C = 1

4

⎛
⎜⎜⎜⎝

2v 0 0 0 0
0 v − 8h 0 u 0
0 0 0 0 0
0 u 0 v + 8h 0
0 0 0 0 2v

⎞
⎟⎟⎟⎠. (A25)
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