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Probabilistic quantum phase-space simulation of Bell violations and their dynamical evolution
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Quantum simulations of Bell inequality violations are numerically obtained using probabilistic phase-space
methods, namely, the positive-P representation. In this approach the moments of quantum observables are
evaluated as moments of variables that have values outside the normal eigenvalue range. There is thus a parallel
with quantum weak measurements and weak values. Nevertheless, the representation is exactly equivalent to
quantum mechanics. A number of states violating Bell inequalities are sampled, demonstrating that these quantum
paradoxes can be treated with probabilistic methods. We treat quantum dynamics by simulating the time evolution
of the Bell state formed via parametric down-conversion and discuss multimode generalizations.
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I. INTRODUCTION

The importance and complexity of quantum dynamics has
been emphasized by many physicists, including Dirac and
Feynman [1,2]. We live in a dynamical, multimode universe
described by quantum mechanics, yet the equations involved
quickly become too complex to solve. Quantum simulations
provide a means of carrying out such dynamical calculations.
In principle, one may do this either using computational
methods [3–8] or through a physical system that imitates
the required properties [2,9–13]. However, while physical
imitations can be useful, they are often unavailable with the
required parameter values. Universal quantum computers are
another possibility and realizations of up to six qubits now
exist [14], but this is too small for many problems.

Probabilistic quantum phase-space methods, which are
potentially scalable, are often the only practical route to-
wards quantum simulation of large systems [15]. Hence, this
approach is of great utility when simulating a multimode
quantum system. This is because number state methods are
unable to handle exponential complexity. Methods such as
linearization fail when there are nonlinear effects. However,
these issues do not greatly increase the complexity of
probabilistic phase-space equations. The number of variables
required increases linearly, not exponentially, with the number
of spatial modes.

Such methods have been widely used to treat quantum
dynamical problems in quantum optics and atom optics. They
have been used to model propagation of radiation fields
in superfluorescence [3], reproducing the observed delay
statistics. They have been applied to dynamical propagation
of quantum solitons, where the observed entanglement and
squeezing were predicted to very high accuracy, including
non-Markovian thermal reservoirs [4,16]. Simulations of the
quantum dynamics of critical points in parametric down-
conversion have been carried out [17]. Recently, very large
three-dimensional systems of colliding Bose-Einstein conden-
sates have been treated [5,18,19]. These are first-principles,
multimode, quantum dynamical calculations of substantial
complexity, which show the potential of phase-space tech-
niques.

An important question is whether these approaches can
treat highly nonclassical states. We are especially interested
in cases that violate Bell inequalities. Here we investigate this

issue by demonstrating that Bell states have a probabilistic
mapping that can be computationally sampled. Our motivation
is to illustrate how these techniques work in a situation
where the quantum behavior is readily understood. We give
a careful analysis of the different types of Bell inequalities,
their loopholes when present, and the techniques required to
simulate them, for both static and dynamic simulations. In this
latter case we focus on how the positive-P distribution can
be used to perform simulations of the time evolution of the
violation of Bell-type inequalities. The models used can be
readily scaled to larger multimode treatments.

We treat bipartite states using the Clauser-Horne [20]
(CH) version of the Bell inequalities [21], the Clauser-Horne-
Shimony-Holt (CHSH) inequalities [22], and the multiparticle
generalization of the CH inequalities [23,24] that are used
in photonic experiments, which we call the Clauser-Horne-
Drummond (CHD) inequality. Our main focus here is on dy-
namical quantum simulations of these different Bell violations.
This requires an analysis of the different types of measurement
strategy used in these experiments. A summary of the static
results for the CHD Bell inequality is published elsewhere
[25]. In Sec. IV we explain in depth both the computational
strategy that allows probabilistic sampling of the positive-P
distribution and the methods used to evaluate the correlations
for the static results of the CHD Bell inequality, as well as
the other inequalities. We also compare the relative sampling
errors obtained in the dynamic and static cases.

In the dynamical simulations, which illustrate these is-
sues in specific cases relevant to experiment, we simulate
the simplest model of the loophole-free violation of Bell-
type inequalities in parametric-down-conversion experiments
[26–29], using the positive-P representation to simulate
different types of Bell violation. For the CHSH Bell inequality
we also take into account the postselection process that is often
used in experiment, which excludes null events. Surprisingly,
these time-dependent quantum simulations of Bell inequality
violations have lower sampling errors than static cases. We
also describe how to extend our simple model to complex
multimode systems.

The phase-space distributions used in this paper are positive
[30,31]. They exist for all quantum states and their statistical
moments correspond to correlations of the type observed in
Bell violations. We focus here on the usual photonic Bell state
experiments that have been experimentally studied, with an
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emphasis on recent parametric-down-conversion experiments
[26–28,32,33], in order to give a simple model for dynam-
ical simulations. Large-scale Bell violations of multipartite
systems have been treated elsewhere [34].

In order to understand this approach, we emphasize
some important points. While stochastic, this technique is
very different from conventional path-integral Monte Carlo
methods. Path integrals can give probabilistic behavior for
ground states or finite-temperature steady states, but they are
not positive for real-time dynamical evolution. Since quantum
systems have no objective reality until measured, phase-space
quantum simulation methods do not need to give dynamical
evolution in terms of classical paths. We therefore use a more
general definition of simulation. The probabilistic sampling
that we employ gives quantum physical moments 〈 〉qm as
equal to probabilistic averages 〈 〉st over variables that may not
be eigenvalues of observables. Thus, the mean value for the
Pauli spin σ̂x is given as 〈σ̂x〉qm = 〈σx〉st , where the stochastic
variable σx can assume values beyond the eigenvalue spectrum,
1/2 and −1/2. Such properties are closely associated with the
quantum notion of weak measurements and weak values [35].
From the perspective of quantum mechanics, this difference
is not important as long as one can predict experimentally
measurable correlations and operator averages.

The paper is organized as follows. First, in Sec. II we review
and analyze several different Bell inequalities in order to
examine which inequalities are most suitable for simulating a
loophole-free Bell test based on parametric down-conversion,
which does not generate a simple Bell state. In Sec. III we dis-
cuss the positive-P representation, while Sec. IV treats static
quantum simulation of a Bell state. In Sec. V we demonstrate
the quantum dynamical simulations of violations of the CH and
CHSH inequalities in parametric down-conversion. Finally,
Sec. VI summarizes our conclusions.

II. BELL INEQUALITIES

The assumption of a local-hidden-variable (LHV) theory
(which assumes local realism) leads to a constraint—a Bell
inequality—on the observable correlations of a physical
system [21]. These inequalities can be violated by quantum
mechanics. In this paper our goal is to provide a probabilistic
quantum simulation of these violations. There are many
different Bell inequalities. Here we describe only the Bell
inequalities to be considered in this paper. We focus on three
cases: the CHSH inequality, the CH inequality, and the CH
Bell inequality using moments extended to N photon pairs,
which we will call the N -photon CHD inequality.

A. The CHSH inequality

The CHSH Bell inequality was formulated to account for
Bell’s original proposal, where two particles are emitted from
a common source and the measurement performed on each of
the particles gives a binary outcome. It allows rigorous tests of
LHV theories in realistic experimental scenarios where losses
can be important.

In the case of two particles emitted from a common source,
measurements by spatially separated observers (usually called
Alice and Bob) are modeled in the LHV theory by taking

random samples of a common set of parameters (the hidden
variables) symbolized by λ. Here P (λ) denotes the probability
distribution for the hidden variables λ, which can be discrete
or continuous. Measured values are then functions of some
local detector or analyzer settings a and b at each location and
the hidden parameters λ. The value observed by Alice with
detector settings a is A(a,λ) and similarly B(b,λ) is defined
for Bob’s value with detector settings b. For binary outcomes,
A,B = ±1.

We now introduce the specific notation of A(θ,λ) and
B(φ,λ) for Alice and Bob with variable analyzer settings θ and
φ, respectively. In most experiments so far, θ and φ correspond
to polarizer angles [32,33,36,37]. Here the measurement event
includes the selection of the measurement settings θ and φ

at each site, done after the emission of the particles. The
measurement events are assumed to be spacelike separated. In a
local-hidden-variable theory the correlations are thus obtained
from a probabilistic calculation of the form

E(A,B) =
∫

A(θ,λ)B(φ,λ)P (λ)dλ. (1)

Clauser, Horne, Shimony, and Holt obtained a version of
Bell inequality known as the CHSH Bell inequality [22,38],
which gives classical limits to the expected correlation for the
above experiment conducted by Alice and Bob, and is given by
E[A,B] − E[A,B ′] + E[A′,B] + E[A′,B ′] � 2, where A,A′
and B,B ′ are two sets of measurements made by Alice and Bob.
We rewrite this as

E(θ,φ) − E(θ,φ′) + E(θ ′,φ) + E(θ ′,φ′) � 2. (2)

Here E(θ,φ) is the correlation and θ and θ ′ are measurements
at location A with two different analyzer settings, while φ and
φ′ are the corresponding measurements at locationB. From the
Tsirelson theorem [39], it is known that 2

√
2 is the true upper

bound for the left-hand side of this inequality within quantum
mechanics and that the operators giving this maximal value can
always be isomorphically mapped to the Pauli spin matrices.
In the simulation graphs, we will plot a normalized ratio and
its LHV bound as

SCHSH = 1
2 [E(θ,φ) − E(θ,φ′) + E(θ ′,φ) + E(θ ′,φ′)] � 1.

(3)

To violate the LHV bound quantum mechanically, one
well-known route proposed by Bell is for Alice and Bob
to make Pauli spin measurements on the spatially separated
yet entangled particles created by the spin-1/2 singlet state
[21]. Alternatively, any measurements with binary outcomes
that have equivalent correlations in quantum mechanics will
suffice, for example, polarization entangled photon pairs
[37,40].

Such Bell states are described by the wave function

|ψ〉 = 1√
2

(|1〉a|−1〉b − |−1〉a|1〉b), (4)

where |±1〉a (b) represents the eigenstate of Pauli spin operator
SZ for the system a (or b). The spin measurements performed
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are as follows:

Â = Sz ⊗ I, Â′ = Sx ⊗ I,

B̂ = − 1√
2

I ⊗ (Sz + Sx), B̂ ′ = 1√
2

I ⊗ (Sz − Sx).
(5)

A calculation within quantum mechanics shows that, for the
Bell state, the Bell inequality is predicted to be violated:

〈ÂB̂〉 − 〈ÂB̂ ′〉 + 〈Â′B̂〉 + 〈Â′B̂ ′〉 = 2
√

2 > 2. (6)

B. Clauser-Horne Bell inequality

The CH inequality was developed to test LHV theories in
situations relating to photons and polarizers where one of the
outcomes may not be detectable. The CH inequality has proved
useful for tests of LHV theories where the effect of detection
inefficiencies is significant. We discuss this inequality because
it will also prove useful in establishing rigorous Bell tests
of LHV theories where we use parametric down-conversion
(PDC) as the photon pair source [26–28,32,33].

This test is designed to detect nonclassical behavior in the
prototypical photonic Bell state, which is

|1B〉 = 1√
2

(â†
1b̂

†
1 + â

†
2b̂

†
2)|0〉. (7)

Here the relative phase of the two terms is irrelevant—it just
changes the polarizer settings—and we choose a positive sign
for convenience. In the measurements, we consider two modes
of orthogonal polarization incident on the polarizer at A and a
second pair of orthogonal modes incident on the polarizer at B.
The modes at A and B are denoted by boson operators â1 (â2)
and b̂1 (b̂2), respectively. The two polarizers are independently
rotated to settings θ and φ. At each polarizer there are two
possible output fields: the transmitted and reflected modes.

If a single photon is incident on one of the polarizers,
there are two outcomes, which we label up (+) and down (−)
depending on whether the photon is detected in the transmitted
or reflected mode, respectively. The transmitted and reflected
modes at polarizer A are defined by rotated operators

ĉ+ = â1 cos θ + â2 sin θ,
(8)

ĉ− = −â1 sin θ + â2 cos θ.

Similarly, at B the two outputs are defined by boson operators

d̂+ = b̂1 cos φ + b̂2 sin φ,
(9)

d̂− = −b̂1 sin φ + b̂2 cos φ.

An experimentalist can measure at each location whether a
single photon passes into the up or down mode at the polarizer.
The outcome of measurement is assigned the Pauli spin value
+1 if up and −1 if down. In this way, one can establish the
joint probability P AB

++ (θ,φ) for detecting one photon at A up
(i.e., in mode c+) with setting θ and one photon up (i.e., in
mode d+) at B with setting φ. It is also possible to measure the
marginal probability P A

+ (θ ) for detecting up at A with setting
θ . The marginal P B

+ (φ) is defined similarly.
We note that there can be a third outcome (apart from up and

down) at each detector. This is the null event where no photon
is detected. This outcome is usually given the value A,B = 0.
The null outcome can occur either because of nonideal

detection efficiencies or because of the nature of the quantum
state describing the incident photon. For example, the state
could be a vacuum state. For the PDC process, there will be a
nonzero probability for detecting zero and multiple photons at
each up and down location.

Now we introduce the CH Bell inequality, which is satisfied
for all LHV theories [20,36]:

P AB
++ (θ,φ) − P AB

++ (θ,φ′) + P AB
++ (θ ′,φ) + P AB

++ (θ ′,φ′)

� P A
+ (θ ′) + P B

+ (φ). (10)

This type of Bell inequality has been studied extensively in the
literature [23,24,41–45]. It is useful in establishing loophole-
free violations of LHV theories where the probability η for
detecting a photon incident on a detector is reduced below
unity [32,33].

For convenience in comparing graphs, we will define a
normalized Bell inequality and its LHV bound as

SCH = P AB
++ (θ,φ) − P AB

++ (θ,φ′) + P AB
++ (θ ′,φ) + P AB

++ (θ ′,φ′)
P A+ (θ ′) + P B+ (φ)

� 1. (11)

The CH inequality may be compared with the CHSH Bell
inequality (2), which can be applied in this case:

E(θ,φ) − E(θ,φ′) + E(θ ′,φ) + E(θ ′,φ′) � 2 (12)

(or the version of the CHSH inequality introduced by Garg
and Mermin [46]). Here

E(θ,φ) = P AB
++ (θ,φ) + P AB

−− (θ,φ) − P AB
−+ (θ,φ) − P AB

+− (θ,φ)

(13)

is the expected value of the product of the Pauli spin outcomes
at each detector.

Low efficiencies η will make violation of the inequalities
(10) and (12) impossible since the marginal probabilities on
the right-hand side of the CH inequality scale as η, whereas
the joint probabilities on the left-hand side of both inequalities
scale as η2. One approach is to evaluate the inequalities over the
subensemble of jointly detected counts only, but this introduces
assumptions that create the so-called detection loophole [47].
Where detection efficiencies are fully taken into account, the
CH inequality generally becomes favorable compared to the
CHSH Bell inequality because the ratio of the left-hand side
to the right-hand side is η as compared to η2.

Experimentally, it has proved difficult to obtain a direct
loophole-free violation of these Bell inequalities, owing to
detector inefficiencies [42,44,45]. With simulations, we can
include efficiency factors or not, as we choose; in this paper we
simulate efficient detection. Nonetheless, the above reasoning
also motivates us to use the CH Bell inequality for loophole-
free tests where correlated joint null events are significant, as
in the PDC process. We will explain this in a later section.

C. Bell inequalities with intensity moments

For the experimental scenario described in the previous sec-
tion, one can reformulate the CHSH and CH Bell inequalities
in terms of intensity correlations [23,26]. This is useful for our
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calculation of the inequalities using probabilistic simulations,
as it gives a reduced sampling error.

Consider the CHSH inequality. Since only one or zero
photons is ever detected at each detector, the spin product
E(θ,φ) can be written as

E(θ,φ) = 〈(ĉ†+ĉ+ − ĉ
†
−ĉ−)(d̂†

+d̂+ − d̂
†
−d̂−)〉. (14)

Similarly for the CH inequality, the probability P AB
++ (θ,φ)

becomes

P AB
++ (θ,φ) = 〈ĉ†+ĉ+d̂

†
+d̂+〉 (15)

and the marginal probability P A
+ (θ ) is

P A
+ (θ ) = 〈ĉ†+ĉ+〉. (16)

In this case, where the number of photons incident on each
detector is always less than or equal to 1, the Bell inequality
expressed in terms of the intensity moments can be derived
rigorously (since always A,B � 1, as explained in Sec. II A)
without any extra assumptions that might introduce loopholes.

D. The N-photon CHD Bell inequalities

Following Drummond [23] and Reid et al. [24], we also
consider Bell inequalities defined where one has more than
one photon incident on each detector, for the experimental
scenario described above. Consider the case where N photons
are incident at each analyzer or detector. For example, we
might consider a source that emits correlated photon pairs in
the state

|NB〉 = (â†
1b̂

†
1 + â

†
2b̂

†
2)N |0〉

N !(N + 1)1/2
. (17)

This state is a 2N -photon generalization of the Bell singlet
state, which can be realized by a PDC [24,48]. One way to
treat this is to define higher-spin outcomes [49]. However, it
is also useful to extend the CH approach and to redefine the +
event to be that where all N photons are transmitted through
the polarizer and therefore are detected in mode +.

We define the higher-order intensity correlations

GIJ (θ,φ,N ) = 〈N |(ĉ†+)I ĉI
+(d̂†

+)J d̂J
+|N〉. (18)

These are proportional to the probability of observing I

photons of polarization + at detector A and J photons of
polarization + at detector B (exactly for I = J = N , but only
as a first approximation otherwise). Then we see that

P AB
++ (θ,φ) = κGNN (θ,φ,N ), (19)

where κ is a proportionality constant. The marginal P A
+ (φ) can

be defined by the correlation

GIJ (θ,∞,N ) = 〈N |(ĉ†+)I ĉI
+ : (b̂†+b̂+ + b̂

†
−b̂−)J : |N〉. (20)

The ∞ case and the corresponding correlation GIJ (θ,∞,N )
stand for the same measurement as for GIJ (θ,φ,N ), but with
no polarizer at the second detector. Since N photons are
incident at each detector, the marginal probability is given by

P A
+ (θ ) = κGNN (θ,∞,N ) (21)

and similarly for P B
+ (φ). This of course is useful because for

the CH inequality, the κ constant will cancel, which means

that we do not have to worry about calculating its value and
also that its smallness will not detract from a violation. We
emphasize, as above, that for the case where there are strictly N

photons incident at each location, the marginal probability can
be calculated with the summation over all possible outcomes
at the first detector (the ∞ term). Where there are also null
events (zero detections) at one detector but not the other, as
with inefficient detectors, the use of the joint correlation to
describe the marginal probability will lead to loopholes.

For the state |NB〉, which is a generalization of the Bell
singlet state, the correlation function will depend only on the
magnitude of the angle difference φ − θ . To simplify, we let
this difference be called ϕ. Also, for the states of interest,
the marginal probabilities are independent of θ or φ and
there is symmetry so that P A

+ (θ ) = P B
+ (φ). On looking at the

CH inequality, we then see that with the usual angle choice
whereby θ , φ, θ ′, and φ′ increase sequentially by ϕ [21], the
inequality has the form [23]

SCHD(ϕ) ≡ SN
N (ϕ) = 3gN

N (ϕ) − gN
N (3ϕ)

2
� 0, (22)

where

gJ
N (ϕ) = GJJ (0,ϕ,N )/GJJ (0,∞,N ). (23)

This expression generalizes the usual CH and Bell expressions
to a multiparticle form. We will call this Bell inequality the
N -photon CHD Bell inequality. The quantum mechanical
prediction for gJ

N for the state |N〉 has an especially simple
form in the case of J = N , gN

N (ϕ) = cos2N ϕ, which we use
to test our simulations.

E. Bell inequalities for parametric down-conversion

One objective of this paper is to simulate the dynamical
generation of the quantum state that violates a Bell inequality.
In recent experiments, violation of Bell inequalities has been
achieved using PDC. In this section we therefore introduce a
simple dynamical model for this process and consider which
Bell inequalities can be used to test LHV theories for PDC
generated states.

Usually, in the experiments, the statistics are evaluated only
on a subensemble of the measurement events. The subensem-
ble includes only those events whereby a single photon is de-
tected at each of the spatially separated polarizers. In that case,
it as though the Bell state was incident on the two polarizers and
traditional approaches (mentioned above) to testing Bell in-
equalities can be applied to test local realism. For the case of the
N -photon Bell inequalities, one can similarly restrict the mea-
surements to a 2N -particle subensemble. Such projected mea-
surements are typical of quantum optical tests of Bell inequal-
ities. This projection can be arranged in principle as a form
of state preparation (heralding) [38]. Also, it can be arranged
rigorously in the derivation of the CH Bell inequality by the
suitable definition of the + measurement events [24], a process
we will describe below and will refer to as event selection. Both
of these forms of projection enable in principle a loophole-free
test. However, more commonly, the projection is created by
postselection, after the detection of the photons. The postselec-
tion procedure admits a loophole, but has been necessary be-
cause of the null events created by the inefficiency of detectors.
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In this paper we model the state generation by solving
a Hamiltonian that describes the PDC process [24,26] and
consider testing Bell inequalities both with and without
projection. Here we must address the null events that are
created by the PDC process. We show that it is possible to
treat these events rigorously without introducing loopholes,
provided one uses the right Bell inequality.

The experiments that test Bell inequalities typically use
either an atomic cascade or parametric down-conversion,
where the effective Hamiltonian has the form

Ĥ = i�κE(â†
1b̂

†
1 − â1b̂1) + i�κE(â†

2b̂
†
2 − â2b̂2), (24)

with κ denoting the strength of the parametric interaction and
E the strength of the pump field, and we will take � = 1. Here
â
†
1 creates a photon at site A with polarization 1 (+) and â

†
2

creates a photon at site A with polarization 2 (−); similarly
b̂
†
1 (b̂†2) creates a photon at site B with polarization 1 (2). We

suppose that â
†
1,2 (b̂†1,2) creates a photon in the spatial modes

detected at site A (B) with one of the orthogonal polarizations
1 (2). We denote these modes by A1, A2, B1, and B2.

This model has just four relevant modes. By comparison,
real experiments are typically inhomogeneous and multimode
in character [27–29,48] since experimentalists usually employ
traveling wave packets with pulsed pump inputs to create the
required spatial separation of detection events. Such issues are
readily handled with phase-space methods and such full quan-
tum field simulations have been treated elsewhere [50–52].
However, our purpose is not to exactly model an experiment,
since the details are different in every case. Instead, we wish to
use this simple model to understand the fundamental issues of
probabilistic sampling of quantum systems that violate a Bell
inequality. A summary of the required changes to generalize
the simulations is given in Sec. V C.

The four-mode Hamiltonian generates a correlated
squeezed state, with the generic form for κEt 	 1 of

|ψ〉 = exp(−iĤ t)|0〉
= |0〉 + κEt(|1〉A1|0〉A2|1〉B1|0〉B2

+ |0〉A1|1〉A2|0〉B1|1〉B2) + O(κEt)2. (25)

This does not generate just the Bell state |1B〉. Instead, for
κEt 	 1 it generates a linear superposition of the Bell state
and a correlated vacuum state |0〉 ≡ |0〉A1|0〉A2|0〉B1|0〉B2.
Then the generated quantum state has the form

|ψ〉 ≈ |0〉 + c|1B〉, (26)

where c = √
2κEt .

Earlier, we considered the CH Bell-type inequality

P AB
++ (θ,φ) − P AB

++ (θ,φ′) + P AB
++ (θ ′,φ) + P AB

++ (θ ′,φ′)

� P A
+ (θ ′) + P B

+ (φ). (27)

Here we can define the + event at each detector to be where
N photons are detected at the + polarized mode and a total
of N photons are detected in total at the + and − modes of
the other detector [24]. The CH Bell inequality is effective
for loophole-free tests in the presence of correlated joint null
events, which are significant in the PDC process due to the
presence of the correlated vacuum state |0〉, the leading term
for low κEt . These null events will lead to a reduction in the

absolute value of the joint probabilities such as P AB
++ (θ,φ),

which substantially reduces the violation of the CHSH-type
inequalities, unless heralding or some other strategy can be
utilized. For the case of the ideal parametric amplifier, the
joint null events are correlated. As a result, because the CH
inequality is normalized by the marginal probabilities on the
right-hand side, these vacuum events will have no impact on
the violation of the CH inequality (27). Also, for PDC, the
event of a total of N particles being detected at one polarizer
is correlated with a total of N particles detected at the other
polarizer. Therefore, this strategy is useful for projecting out
the N -particle Bell state. We call this strategy event selection
and note that it is useful in providing loophole-free tests for
the N -photon CHD Bell inequalities (using PDC). In the
following sections we explain how to probabilistically simulate
the dynamics of the generation of Bell violations for PDC
experiments, by using the simple model (24).

III. POSITIVE-P REPRESENTATION

There are a number of different positive phase-space
representations. For bosonic systems, the most general class
known extends the s-ordered representations of Cahill and
Glauber [53] to include the set of all Gaussian operator bases
[54,55], defined over nonclassical phase-space coordinates.

A. Definition and existence properties

The best known of these nonclassical phase-space methods
is the positive-P representation [30], which generalizes the
Glauber-Sudarshan P representation [56,57] to all quantum
states. For M bosonic modes, this is a nonunique expansion of
an arbitrary density matrix ρ̂ in coherent-state projectors

ρ̂ =
∫

P (�α,�α+)�̂(�α,�α+)d2M �αd2M �α+, (28)

where �̂ is a coherent-state-projection operator, defined as

�̂(�α,�α+) = |�α〉〈(�α+)∗|
〈(�α+)∗|�α〉 . (29)

Here |�α〉 = |α1, . . . ,αM〉 is a multimode coherent state of a
bosonic field, which is an eigenstate of the corresponding
operators (â1, . . . ,âM ). The probability function P (�α,�α+) is
defined on an enlarged nonclassical phase space, which allows
positive probabilities for all quantum states. The complex
variable corresponding to âj is αj , while α+

j is an independent

variable that corresponds to â
†
j .

This representation maps bosonic quantum states into 4M

real coordinates

�α = �p + i �x, �α+ = �p+ + i �x+, (30)

which is double the dimension of the corresponding classical
phase space. This method leads to exact probabilistic mappings
between quantum mechanics and a classical-like phase-space
description, even for low occupation numbers. It is often
advantageous to perform a variable change to sum and
difference variables

�ν = [�α − (�α+)∗]/2, �μ = [�α + (�α+)∗]/2. (31)
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A general probabilistic construction using these variables,
which is nonunique but always exists, is [30]

P (�α,�α+) =〈�μ|ρ̂| �μ〉
(2π )2M

e−|�ν|2 . (32)

We will use this distribution for the static sampling calcula-
tions. However, our dynamical sampling calculations do not
employ this form, but rather use a dynamically generated dis-
tribution, obtained from solving coupled stochastic equations.

In all cases, with the positive-P distribution, the expectation
of any normally ordered observable Ô ≡ O(â†

1,â1, . . .) is

〈Ô〉 =
∫

O(α+
1 ,α1, . . .)P (�α,�α+)d2M �α d2M �α+. (33)

For Bell state measurements, the effects of a polarizer are
simply obtained on taking linear combinations of mode ampli-
tudes, just as in classical theory or with quantum operators
[26]. If we represent the input operators (â1,â2,b̂1,b̂2) by
complex variables (α1,α2,β1,β2), the transmitted and reflected
modes at polarizer A are defined by rotated complex phase-
space variables

γ+ = α1 cos θ + α2 sin θ,

γ− = −α1 sin θ + α2 cos θ (34)

for the up and down modes, respectively. Similarly, at B the
outputs are defined by boson operators

δ+ = β1 cos θ + β2 sin θ,

δ− = −β1 sin θ + β2 cos θ. (35)

The corresponding Hermitian conjugate terms are represented
by replacing α,β,γ,δ by independent complex variables
α+,β+,γ +,δ+. The advantage is that this can represent
entangled states: A positive-P function always exists for any
density matrix. In particular, it exists for the photonic Bell
state.

Since this is always probabilistic, there is a great similarity
between the hidden-variable theory (1) of Bell and the
positive-P formula (33) for quantum correlations from setting
λ = (�α,�α+). However, while the hidden-variable theory obeys
Bell’s theorem and hence cannot be equivalent to quantum
theory, the positive-P theory is fully equivalent to quantum
mechanics and therefore can violate Bell inequalities.

The reason for the difference is due to the different
quantities calculated in the correlations [26]. The fundamental
observables in Bell’s case, of the form X(λ), are defined as
being equal to actual observed real numbers, that is, (0,1, . . .)
for photon counts. The corresponding observables in the
positive-P case, of the form n(�α,�α+), are complex numbers
whose mean values and correlations correspond to observable
means and correlations. Given these unrestricted numbers, the
proof of the Bell inequality is no longer applicable.

This difference allows the positive-P distribution to be
exactly equivalent to quantum mechanics, even though it ap-
pears in other respects just like a probabilistic hidden-variable
theory. As a result, this approach is well suited to carrying out
probabilistic quantum simulations. This property of having
quasiobservable parameters different from eigenvalues is also
shared by weak quantum measurement strategies [35].

B. Cooperative Bell state distribution

The four-mode state (17) has the corresponding positive-P
distribution [23]

P (�α,�α+) =
{ |(α+

1 + α∗
1 )(β+

1 +β∗
1 )+(α+

2 + α∗
2 )(β+

2 +β∗
2 )|2N

(2π )8(N+1)(N !)224N

}

× exp

(
−|�α|2 + |�α+|2

2

)
. (36)

For the positive-P function in the form of (32), we perform the
variable change given in Eq. (31), which has a Jacobian 22M .
For this four-mode distribution of interest, we additionally
introduce four complex vector functions that describe the
phase-space variables corresponding to measurements at A

and B, respectively, giving a total of 16 real dimensions. These
are

�A = [μA1,μA2], �B = [μB1,μB2],
(37)

δ �A = [νA1,νA2], δ �B = [νB1,νB2].

Then the positive-P distribution (36) can be written in the form

P ( �A, �B,δ �A,δ �B) = P ( �A, �B)G(δ �A)G(δ �B) . (38)

Here we have introduced an auxiliary distribution

P ( �A, �B) =
( | �A · �B|2N

π4(N + 1)(N !)2

)
e−| �A|2−| �B|2 , (39)

together with normal distributions

G(δ �A) = 1

π2
e−|δ �A|2 . (40)

IV. SAMPLING METHOD AND STATIC BELL
VIOLATIONS

In order to use probabilistic methods for the static distri-
butions given in the previous section, it is necessary to have a
computational algorithm that generates probabilistic samples.
We can sample δ �A and δ �B as four-dimensional Gaussian
variates in real space, with a real variance of σ 2 = 1/2 in
each real coordinate. Here we note that∫

e−| �A|2d2 �A =
[
π

∫
e−RdR

]2

= π2. (41)

Hence, the eight real difference coordinates can all be exactly
sampled without rejection.

A. The von Neumann rejection algorithm

To sample P ( �A, �B) over the eight remaining real variables,
we choose the well-known von Neumann rejection algorithm,
which is an easily implemented technique. The algorithm
used here relies on sampling with a distribution proportional
to a positive, normalizable function F̃ ( �A, �B) that is always
larger than the target distribution. Once sampled, the numbers
generated are randomly accepted or rejected in proportion to
P/F̃ , to obtain samples with the required distribution. Since
it is clear that

| �A, �B| � | �A|| �B|, (42)
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we can choose the computational function according to

P ( �A, �B) � F̃ ( �A, �B) = F ( �A)F ( �B), (43)

where F ( �A) has the following structure:

F ( �A) = | �A|2N

π2
√

N + 1N !
exp(−| �A|2). (44)

Hence, we can use the rejection method described above.
We note that it might be feasible to use hyperspherical
coordinates and sample this without rejection, but as the
algorithm described here works well, we did not attempt this
refinement.

The function F ( �A) has to be normalized to establish the
acceptance-to-rejection ratio. In order to do that we note that∫

| �A|2N exp(−| �A|2)dk �A = Sk−1(1)
∫ ∞

0
r2N+k−1e−r2

dr

= 1

2
�(N + k/2)Sk−1(1), (45)

where k is the number of components in �A. In this case �A
contains two complex numbers, so k = 4, and Sk−1(r) is the
surface area of a k-dimensional ball:

Sk−1(r) = 2πk/2rk−1

�(k/2)
. (46)

Therefore, the normalization gives

N =
∫

F ( �A)d4 �A = �(N + 2)

2π2
√

N + 1N !
× 2π2

�(2)

= √
N + 1 (47)

and F ( �A) = N P̃ ( �A), where P̃ is a probability distribution

P̃ ( �A) = | �A|2N

π2(N + 1)!
exp(−| �A|2), (48)

which is a combination of a gamma distribution of the vector
length and a uniform distribution of its direction and therefore
can be sampled exactly.

It can be represented as a product of two independent
distributions [58]

P̃ (r,�n) = Sk−1(r)g(r2)U (�n) = R(r)U (�n), (49)

where r = | �A|, �n is a unit vector on a k-dimensional sphere,
and U = 1/Sk−1(1) is a uniform distribution of vector direc-
tions (or, in other words, a uniform distribution on the surface
of a k-dimensional ball). The distribution of directions can be
sampled by sampling a vector of k normally distributed random
numbers and normalizing it to 1 [59,60]. In order to sample
the distribution of lengths, we have to do another change of
variable r2 → x so that

R(x) = 1

2
√

x
Sk−1(

√
x)g(x)

= 1

2
√

x

2πk/2x(k−1)/2

�(k/2)

xN

π2(N + 1)!
exp(−x)

= xN+1

�(N + 2)
exp(−x). (50)

FIG. 1. (Color online) Simulated moment-based CHD Bell vio-
lation SCHD(ϕ) as a function of the relative polarizer angle ϕ for
one photon pair using the positive-P distribution. Green dashed lines
show the result of static sampling with 218 samples. Blue solid lines
show the results of the dynamical simulation with 218 trajectories at
dimensionless time τ = 0.1. For each of the sampled states, the filled
region represents the range of the estimated error around the mean of
SCHD(ϕ). The exact quantum mechanical prediction of this value is
represented by the gray dotted line.

The result is exactly the gamma distribution with a shape
parameter N + 2.

B. Probabilistic violation of a Bell inequality

In Figs. 1 and 2 we give computational results that show
the probabilistic violation of the bipartite N -photon CHD
Bell inequality of Eq. (22) for polarized photons of the state
(17). Here we use N = 1 and 2 photons pairs, respectively.
In both figures the dotted line corresponds to the quantum
mechanical prediction. Also plotted is the corresponding
dynamical calculation, which is explained in the next section.

We have plotted the violation of SCHD defined in (22),
where the correlations GIJ were calculated using averages
of the corresponding phase-space variable moments. In order
to evaluate the N -photon CHD Bell inequality, the relevant

FIG. 2. (Color online) Simulated moment-based Bell violation
SCHD(ϕ) as a function of the relative polarizer angle ϕ for two
photon pairs using the positive-P distribution. Green dashed lines
show the result of static sampling with 224 samples. Blue solid lines
show the results of a dynamical simulation with 218 trajectories at
dimensionless time τ = 0.1. For each of the sampled states, the filled
region represents the range of the estimated error around the mean of
SCHD(ϕ). The exact quantum mechanical prediction of this value is
represented by the gray dotted line.
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correlations are given by

GIJ (θ,φ,N ) = 〈(γ+γ +
+ )I (δ+δ+

+)J 〉P ,
(51)

GIJ (θ,∞,N ) = 〈(γ+γ +
+ )I (δ+δ+

+ + δ−δ+
−)J 〉P .

These results indicate a clear violation of the Bell inequality
in both the standard two-particle case (N = 1) and the
four-particle case (N = 2). This has also been observed
experimentally [48]. The computational results demonstrate
a complete agreement with quantum predictions up to the
sampling error. This shows that these Bell violations can
certainly be simulated probabilistically.

The simulated Bell violations for this inequality are shown
in Fig. 1 for the N = 1 case and in Fig. 2 for the N = 2 case.
This demonstrates a clear violation of a Bell inequality using
a probabilistic simulation, in both cases. The graphs include
results from a static simulation just of the Bell state and also
from a dynamical simulation of a typical experiment using
parametric down-conversion, which will be explained next.
We used 218 trajectories for dynamic simulations, 218 samples
for the static sampling with N = 1, and 224 samples for the
static sampling with N = 2 (to accommodate for the quickly
growing sampling error in the static case). The sampling error
could be reduced if we used more samples.

We could instead have investigated the violations of
other Bell inequalities that use state probabilities rather than
moments. All these inequalities are operationally equivalent
for the states used here, as explained in Sec. II C. However,
state-projection calculations give larger sampling errors than
moments when using the standard canonical positive-P distri-
bution of Eq. (36). This nonunique form is easily computed,
but it is more suitable for calculating moments rather than
probabilities.

There are other expressions for the positive-P distribution,
as well as alternative representations such as the general
Gaussian representations [54], which are better for sampling
probabilities [61] but are outside the scope of this article. The
CH and CHSH state-projection Bell inequalities will be treated
in the next section, which deals with quantum dynamics.

V. DYNAMICAL SIMULATIONS

In this section we explain the model used to perform
dynamical simulations for the N -photon CHD Bell inequality,
together with the CH and CHSH inequalities. In this latter
case we also include the postselection or heralding process.
This dynamical approach, as well as being more physically
realistic, has lower sampling errors than the static calculations.
The reason for this is that the dynamical equations generate
a more compact phase-space distribution, which is readily
calculated using stochastic methods. This improved sampling
efficiency more than compensates for the need to calculate the
time evolution, which is rather straightforward.

A. Dynamical simulations for the N-photon CHD inequality

In order to illustrate quantum dynamical simulations of
violations of Bell-type inequalities using the positive-P
representation, we will consider the process of parametric
down-conversion described earlier, which is modeled by the
effective Hamiltonian of Eq. (24). The positive-P representa-

tion provides a mapping that transforms the time evolution of
a density matrix into a set of phase-space stochastic equations.

For the Hamiltonian of Eq. (24) we obtain the following set
of stochastic equations [17,26]:

dα1 = κEβ+
1 dt +

√
κEdW1,

dβ1 = κEα+
1 dt +

√
κEdW ∗

1 ,

dα2 = κEβ+
2 dt +

√
κEdW2,

dβ2 = κEα+
2 dt +

√
κEdW ∗

2 ,
(52)

dα+
1 = κEβ1dt +

√
κEdW+

1 ,

dβ+
1 = κEα1dt +

√
κE(dW+

1 )∗,

dα+
2 = κEβ2dt +

√
κEdW+

2 ,

dβ+
2 = κEα2dt +

√
κE(dW+

2 )∗,

where the only nonvanishing correlations are

〈dWidW ∗
j 〉 = 〈dW+

i (dW+
j )∗〉 = dtδij . (53)

This set of Stratonovich stochastic equations (52) can be solved
numerically to find the complex variables αi(t) and βi(t) as a
function of time. The rotated complex phase-space variables
γ+(t) and δ+(t) are defined in Eqs. (34) and (35), respectively.
We use these complex variables to evaluate the intensity
correlations for one photon pair, described in Eq. (18), as well
as the time evolution of the Bell-type inequality of Eq. (22).

The expressions for the intensity correlations that we use
are given, as in the static case, by Eq. (51). We graph our
results against a dimensionless time τ = κEt .

In Figs. 1 and 2 we show the results of dynamical simu-
lations for N = 1 and 2 photon pairs, respectively, using the
moment-based CHD Bell inequality. These figures are plotted
at τ � 0.25, which we found was a suitable time that mini-
mizes the production of unwanted higher-spin multiple pairs.

Here we find that the sampling error in the dynamical case
is smaller than in the static case. This is because the static
distribution we used has a simple existence theorem, but is
not unique and usually does not give the minimum variance
possible. For all dynamical simulations we used the central
difference numerical algorithm [62], with coupling κE = 1
and time step dt = 2 × 10−4, which is sufficient to make the
discretization error negligible.

At very short times we observe a large sampling error.
There is a very clear physical reason for this. For these times
the distribution is dominated by the photonic vacuum state,
giving a large sampling error due to the fluctuations in the
projection operator for the Bell states. At times larger than
about τ = 0.1, the onset of multiple pair production occurs,
which starts to reduce the Bell violation, as we no longer have
an ideal state.

B. Dynamical simulations for the PDC process

In order to obtain the time evolution of the violation of
the Clauser-Horne and CHSH Bell-type inequalities using the
positive-P representation, we will now derive the appropriate
operator mappings. As described above, we use the positive-P
representation in order to obtain the complex variables αi(t)
and βi(t) as a function of time and also the complex variables
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FIG. 3. (Color online) Evolution of a single probability
P AB

++ (θ ′,φ′) demonstrating that the sampling error increases after
τ = 0.5.

γi(t) and δi(t), which are defined through Eqs. (34) and (35),
respectively.

1. The CH inequality

The next step is the evaluation of each of the probabilities
of the CH inequality (27) as well as all the probabilities of
the CHSH inequality of Eq. (12). Let us consider one of these
probabilities, for instance, the probability of detecting one
photon in the up position at the polarizer with location A and
one photon in the up position at location B, P AB

++ (θ,φ), which
is evaluated as follows:

P AB
++ (θ,φ) = Tr(ρ̂|1100〉〈1100|)

=
∫

P ( �γ , �γ +)
〈1100| �γ 〉〈( �γ +)∗|1100〉

〈( �γ +)∗| �γ 〉
=

∫
P ( �γ , �γ +)e−�γ +· �γ γ1γ

+
1 δ1δ

+
1 d �γ d �γ +. (54)

Here �γ = (γ1,γ2,δ1,δ2) and �γ + = (γ +
1 ,γ +

2 ,δ+
1 ,δ+

2 ). The other
probabilities are evaluated similarly. The marginal probabili-
ties P A

+ (θ ) and P B
+ (φ) are evaluated as follows:

P A
+ (θ ) =

∫
P ( �γ , �γ +)e−(γ +

1 γ1+γ +
2 γ2)γ +

1 γ1d �γ d �γ +,

P B
+ (φ) =

∫
P ( �γ , �γ +)e−(δ+

1 δ1+δ+
2 δ2)δ+

1 δ1d �γ d �γ +. (55)

To test the Clauser-Horne inequality, we evaluate the
predictions for P AB

++ (θ,φ) and P A
+ (θ ) for the state created by

the Hamiltonian (24). Here we have defined the + event to
be the detection of a single photon at the up position, which
means that the number of photons at the down position does
not need to be detected. This is the original formulation of the
CH inequality.

In our simulations we noticed that after τ = 0.5 the sam-
pling error increased, as indicated by additional fluctuations
after this time in Fig. 3, which shows the evolution of a single
probability P AB

++ (θ ′,φ′). The sampling error increase at long
times is due to a larger proportion of four and six particle states
and a correspondingly increased distribution radius in phase
space. However, this is not optimal for Bell violations, for
which the short-time behavior is more physically important, as
experimentally these higher photon numbers are not utilized.
Accordingly, we take our samples at relatively short times with

τ < 0.25, which is the most physically relevant time scale.
Experimentally this corresponds to using a relatively short
pump pulse or short interaction distance since this controls the
evolution time.

For the purpose of calculation, we can choose our basis a+
to correspond to the mode axis c+ defined by θ of polarizer A.
This amounts to setting θ = 0 in the calculation. We note that
the Hamiltonian â

†
+b̂

†
+ + â

†
−b̂

†
− is invariant under this type of

rotation.
We can gain further insight into the solutions by writing the

Hamiltonian as Ĥ = Ĥ1 + Ĥ2, where Ĥ1(2) = κEâ1(2)b̂1(2) +
H.c. The evolution of the PDC is given by

|ψ〉 = e−iĤ t/�|0〉
= e−iĤ1t/�e−iĤ2t/�|0〉

=
(∑

n=0

cn|n〉a1 |n〉b1

)( ∑
n=0

cn|n〉a2 |n〉b2

)
, (56)

where we have taken the initial state to be the multimode
vacuum state |0〉, which is the product of the vacuum states
of each of the four modes. Since e−iĤ1t/�|0〉 is by definition
a two-mode squeezed state, we have used in the last line the
well-known result for the expansion of the two-mode squeezed
state in terms of the Fock number state basis. Here the Fock
state for mode a is denoted |n〉a and cn = xn

(1−x2)1/2 , where
x = tanh r [63]. For small r , we can expand (56) as explained
in Sec. II E:

|ψ〉 = c̃0|0〉 + c̃1|1〉 + · · · , (57)

where |1〉 is a Bell state, c̃1 = c2
0, and c̃1 = √

2c0c1. To gain
an understanding of the predictions for the Bell inequalities in
this limit, we transform to the modes of the measured basis c+
and d+:

|1〉 = 1√
2
{(ĉ†+d̂

†
+ + ĉ

†
−d̂

†
−) cos ϕ

+ (−ĉ
†
+d̂

†
− + ĉ

†
−d̂

†
+) sin ϕ}|0〉, (58)

where ϕ = φ − θ . Then we see that

P AB
++ (θ,φ) = P AB

−− (θ,φ) = |c̃1|2 1
2 cos2(θ − φ) (59)

and

P AB
+− (θ,φ) = P AB

−+ (θ,φ) = |c̃1|2 1
2 sin2(θ − φ) (60)

and the marginal probabilities are

P A
+ (θ ) = P B

+ (φ) = P A
− (θ ) = P B

− (φ) = |c̃1|2/2. (61)

We note that |c̃1|2 is the probability that the PDC process
generates the correlated photon-pair state, whereby a single
photon is incident on each detector. Choosing the usual case
where the angles θ , φ, θ ′, and φ′ increase sequentially by
π/8 [21], we see that for the CH inequality (27) the left-hand
side is {|c̃1|2/2}{3[cos(π/4)/2 + 1/2] − (cos 3π/4 + 1)/2} =
|c̃1|2(

√
2 + 1)/2, whereas the right-hand side is |c̃1|2. Thus, in

the limit of small r , the ratio of the left- to the right-hand side
of the CH inequality is predicted to be (

√
2 + 1)/2, which,

being greater than 1, violates the prediction of LHV theories.
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FIG. 4. (Color online) Evolution of the violation of the Clauser-
Horne Bell-type inequality for the state generated by the parametric
down-conversion process (24): Plotted is the ratio SCH, defined in
Eq. (62) for the angle choices θ = 0, φ = π

8 , θ ′ = π

4 , and φ′ = 3 π

8 .
Violation of the Bell inequality occurs when SCH > 1. The filled
region represents the range of the estimated error around the mean
of SCH. The horizontal dotted line is the expected value with no
high-order components. Here we consider 218 samples.

This result is indeed evident from our full solution, plotted
in Fig. 4, where we have defined

SCH = P̃ (θ,φ) − P̃ (θ,φ′) + P̃ (θ ′,φ) + P̃ (θ ′,φ′)
P A+ (θ ′) + P B+ (φ)

, (62)

where P̃ ≡ P AB
++ . The violation of the CH inequality as shown

when SCH > 1 is a rigorous (loophole-free) test of LHV
theories.

In Fig. 4 we show the time evolution simulations of the
violations of the Clauser-Horne inequality using 218 samples.
Since we are considering a ratio in this case, the results are
the same with or without the postselection process. In fact,
postselection, which could introduce loopholes in principle for
other Bell inequalities, simply has no effect on the measured
data.

For higher τ , correlated number states |n〉|n〉 where n � 2
will also contribute to the statistics. Since we have defined the
+ outcome to be that where a single photon is detected at the
up position, the violation of the CH inequality (27) diminishes.
This is because a + event at one detector can arise from either
the single or multiphoton Fock states.

We note that the violation can be retained if one defines
the + outcome differently, to be the detection of one photon
in the up position and one photon at the other detector with
either polarization, as we explained above in Sec. II E [24].
This latter definition amounts to the event selection method of
projection of the Bell state and would prove a loophole-free
test for larger times. Nonetheless, the probability of the actual
measured + event becomes smaller in that case and here we
calculate the behavior of the original CH inequality (27) to
show the dynamical evolution of the statistics.

We find that these quantum dynamical simulations give a
clear violation of the Clauser-Horne inequality, which occurs
when SCH > 1. By choosing a particular time duration of
τ = 0.1, we can examine the detailed predictions for angular
correlations with respect to the relative polarizer angle ϕ =
φ − θ = φ′ − θ ′ = θ ′ − φ. This is shown in Fig. 5.

FIG. 5. (Color online) Angular dependence of the simulated
Clauser-Horne Bell-type inequality for the state generated by the
parametric down-conversion process (24): Plotted is the ratio SCH,
defined in Eq. (62) as a function of the relative polarizer angle
ϕ = φ − θ = φ′ − θ ′ = θ ′ − φ at dimensionless time τ = 0.1. The
filled region represents the range of the estimated error around the
mean of SCH. Here we consider 218 samples.

2. Sampling the CHSH inequality with and without postselection

In our calculations, we also consider how to simulate the
experimental postselection or heralding process, in which data
are discarded in the case where no photon is detected (the null
event). In order to do this we consider a projection operator
defined as

P̂ = 1̂ − |0〉〈0|. (63)

In this case the density matrix will be of the form

ρ̂ ′ = P̂ †ρ̂(t)P̂

Tr[P̂ †ρ̂(t)P̂ ]
. (64)

For the positive-P representation we will have a normalization
given by

Tr

(
P̂ † | �γ 〉〈( �γ +)∗|

〈( �γ +)∗| �γ 〉 P̂

)
= 〈1 − e−�γ +· �γ 〉. (65)

If we consider the postselection process, the probabilities
will have a normalization factor of the form of Eq. (65).
For instance, if we consider the postselection process for the
probability P AB

++ (θ,φ), which will be denoted by P P (|1100〉),
we will obtain

P P (|1100〉) = 〈γ+γ +
+ δ+δ+

+e−�γ +· �γ 〉
〈1 − e−�γ +· �γ 〉 . (66)

Plotted in Fig. 6 are the predictions for the CHSH inequality
both with and without postselection. As previously, we have
defined

SCHSH = E(θ,φ) − E(θ,φ′) + E(θ ′,φ) + E(θ ′,φ′)
2

(67)

and we get violations when SCHSH > 1.
In Fig. 7 we show the CHSH Bell-type inequalities as a

function of the relative polarizer angle ϕ = φ − θ = φ′ − θ ′ =
θ ′ − φ. The simulations were performed at τ = 0.1. In the
figure we show the expected behavior for the CHSH inequality,
including postselection, as a function of the angle. Also plotted
in these figures is the corresponding quantum mechanical
prediction, showing excellent agreement.
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FIG. 6. (Color online) Evolution of the violation of the CHSH
Bell inequality for the state generated by the parametric down-
conversion process (24): Plotted is the ratio SCHSH, defined in
Eq. (67) for the angle choices θ = 0, φ = π

8 , θ ′ = π

4 , and φ′ =
3 π

8 . Violation of the Bell inequality occurs when SCHSH > 1. The
blue lines corresponds to the case with postselection or heralding,
where we consider the projector operator defined in Eq. (63) and
exclude the joint null events from the statistics, while the red lines
corresponds to the simulation of the CHSH Bell-type inequality
without postselection. In each case, the filled region represents the
range of the sampled error. The horizontal axis is the expected value
at τ = 0.

C. Extended simulations

As an example of multimode problems that are of increasing
interest in physics, Bell violation PDC experiments in the
laboratory have much more complexity than the simple model
we have used so far. Effects not present in our model include
multimode spatial propagation, nonlinearity, and loss. While
it is the principle of probabilistic quantum simulation of Bell
violations that is of interest here, scalability is also important.
Therefore, we now show how our simulations can include such
effects.

To treat these more realistic cases, we consider a waveguide-
based gedanken experiment. As our model, we suppose
that a single pump field interacts with four down-converted
waveguide modes such that each pair of polarization modes
is generated in a single waveguide. This is only one possible

FIG. 7. (Color online) Angular dependence of the simulated
CHSH Bell inequality for the state generated by the parametric
down-conversion process (24): Plotted is the ratio SCHSH, defined
in Eq. (67) as a function of the relative polarizer angle ϕ = φ − θ =
φ′ − θ ′ = θ ′ − φ for dimensionless time τ = 0.1. In this case we
consider the postselection or heralding process. The filled region
represents the range of the sampled error.

strategy to create a Bell violation. Laboratory experiments
use a variety of approaches, with different details in each
implementation.

While many methods are known experimentally, the ex-
tended model we treat here is chosen as it is the closest to the
four-mode treatment given above, to allow a comparison. This
waveguide proposal is actually more complex than waveguides
currently used. The stochastic equations for this system have
been obtained previously in simpler cases [52,64] and we
extend this earlier analysis using the same techniques.

The main conclusion one reaches is that the ordinary
stochastic differential equations given in Eq. (52) are replaced
by a very similar set of partial stochastic differential equations
for stochastic fields. We assume for simplicity that all group
velocities are equal to v. The equations are [52,64][

∂

∂z
+ ik′′

2

∂2

∂t2
v

]
�a

i = −γ�a
i + κ∗��b+

i +
√

κ∗�ζi,

[
∂

∂z
+ ik′′

2

∂2

∂t2
v

]
�b

i = −γ�b
i + κ∗��a+

i +
√

κ∗�ζ ∗
i ,

[
∂

∂z
+ ik′′

p

2

∂2

∂t2
v

]
� = −γp� − κ

∑
i

�a
i �

b
i . (68)

Here � is the stochastic pump field, while �a
i and �b

i are the
down-converted fields for i = 1,2. There are five equations
for these fields and five more independent equations for the
corresponding fields �+, �a+

i , and �b+
i . All fields are flux

amplitudes defined so that 〈��+〉 is the photon flux, with
field units of s−1/2. This normalization is the most useful for
the treatment of photon propagation.

The coordinate z is the distance along the waveguide, tv =
t − z/v is a moving frame time coordinate, k′′ = d2k/dω2

gives the group velocity dispersion, and γ and γp are the
amplitude loss rates. The noise terms ζi are defined as
previously, except that they are now δ correlated in both
time and space, rather than just in time. These equations
include nonlinearity, multimode dispersion, and coupling to
a dissipative reservoir describing losses.

Apart from these modifications, solving these equations
is very similar to the original stochastic differential equations,
with robust numerical algorithms being available [65]. Waveg-
uide experiments of this type are known to be an efficient
method of generating correlated photons [66], providing a
useful alternative to atomic cascade [37] or bulk crystal PDC
[67] experiments.

We note that the mode indices a and b describe mode
polarizations, while i is a spatial mode index. The polarizations
need to be swapped with a polarizing beam splitter in order
to obtain the correlated Bell state outputs that are required.
Here beam splitting is a unitary operation that is obtained
through linear combinations of stochastic terms. These issues
are described in the original theoretical proposals for PDC
methods [26,27].

VI. CONCLUSION

In his work on quantum computers [2], Feynman treated
an example of Bell states with correlations equivalent to
the Bell violating measurements we study. He showed that
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a probabilistic simulation was not possible with simulations
that sample the observed eigenvalues since they would be
equivalent to hidden-variable theories. This raises the question
of whether other types of probabilistic simulations can be
carried out for these states.

Our main result is very simple. There is no barrier to
simulating Bell violations probabilistically. The reason is
that our phase-space simulations do not use the operator
eigenvalues. Instead, they employ complex values whose
averages and correlations are the same as the known quantum
correlations that violate a Bell inequality. For this reason, such
probabilistic quantum simulation methods are not hidden-
variable theories, but are instead like quantum weak mea-
surements [35]. Therefore, they are not restricted to classical
predictions that satisfy Bell inequalities.

The simulations treated here were carried out in a number
of ways, either from known static phase-space distributions
for the Bell state or dynamically. Time-dependent dynamical
simulations in fact are simpler to implement than the static
ones. We have investigated three different types of Bell
inequality and have successfully simulated them all, although
the moment-based Bell inequalities are more well suited to the
representation chosen here than ones using state projections
and quantum probabilities. The chief limitation of these
methods is their sampling error, which depends on the precise
measurement simulated. Another issue is the growth rate of
sampling errors, which tend to increase with time in a way that
is not unlike the growth of error in many classical dynamical
systems.

Classical simulations of quantum systems commonly are
thought to require an exponentially large memory. With
phase-space methods this requirement disappears since the
phase-space dimension is simply proportional to the mode
number. Instead, one must analyze the scaling of sampling
errors, which depends on the correlation order and the number
of modes and samples. This is analyzed in more detail in

related investigations into multipartite correlations [34,68],
which reached a size of 60 qubits and 60th-order moments.
In these papers it was shown that exponentially large numbers
of samples can be required for simulations of mesoscopic
quantum superpositions, in cases where measured correlations
have an order comparable to the mode or qubit number. Such
issues can result in exponentially long simulation times. In
practice, issues of inefficiency and noise limit the order of
correlations that can be measured in the laboratory [69],
hence this is not usually a problem when simulating real
experiments.

If the measured correlations have a more realistic fixed
order, as in the present work, the scaling is much more
favorable. Phase-space methods have already been shown to
provide accurate results even for extremely large systems
of bosons [4,5], with such finite-order moments. A more
serious limitation of the present method is the growth of
sampling errors in time, which provides a time horizon for
accurate quantum predictions. We also emphasize that the
specific techniques used here are for bosonic, not fermionic,
systems.

In summary, the positive-P representation method was used
because it is a complete, positive representation of any bosonic
quantum state, with known procedures for obtaining dynam-
ical quantum simulations. This is especially useful in the
case of the photonic parametric-down-conversion experiments
widely utilized for Bell violations. The technique can easily
be expanded to treat more complex multimode Hamiltonians.
Other methods for phase-space mappings exist as well [54]
and some of these methods may converge even more rapidly.
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