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Physical origin of the universal three-body parameter in atomic Efimov physics
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2Department of Physics, University of Tokyo, 7-3-1 Hongō, Bunkyō-ku, Tōkyō 113-0033, Japan
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We address the microscopic origin of the universal three-body parameter that fixes the spectrum of three-atom
systems in the Efimov regime. We identify it with the van der Waals two-body correlation, which causes the
three-atom system to deform when the three atoms come within the distance of the van der Waals length, effectively
preventing them from coming closer due to the kinetic-energy cost associated with three-body deformation. This
deformation mechanism explains the universal ratio of the scattering length at the triatomic resonance to the van
der Waals length observed in several experiments and confirmed by numerical calculations.

DOI: 10.1103/PhysRevA.90.022106 PACS number(s): 03.65.Ge, 31.15.ac, 31.15.xj, 67.85.−d

I. INTRODUCTION

In recent years, the investigation of Efimov physics [1,2],
the universal physics of few particles interacting via nearly res-
onant short-range interactions, has developed tremendously,
both on the experimental [2–22] and theoretical fronts [23–27].
The essence of this physics is the appearance of a universal
1/R2 attraction between three particles at an average sepa-
ration R. This long-range three-body attraction, discovered
by V. Efimov [1], emerges from the pairwise interactions,
despite their finite range. It can be interpreted as an interaction
between two particles mediated by a third particle. Its strength
is universally determined by the masses and quantum statistics
of the particles. The Efimov attraction extends from distances
on the order of the range of the interaction b to distances on
the order of |a|, where a is the scattering length of the pairwise
interaction. It therefore requires |a| > b, a condition well sat-
isfied for resonant pairwise interactions. At the unitarity limit
a → ∞, the Efimov attraction extends to infinity. Decaying as
1/R2, it supports an infinite number of bound states known as
the Efimov trimers. Furthermore, each bound state is related
to the neighboring state by a scale transformation, due to the
scale invariance of 1/R2 potentials [1,24], so that the energy
spectrum forms a geometric series. This constitutes the most
remarkable and characteristic feature of the Efimov trimers.
However, since the three particles are attracted to each other,
the physics at short separations comparable to the range b fixes
the wave functions and spectrum of the Efimov trimers.

Until recently, little had been known about this short-
distance physics. Efimov’s original investigation made use of
the asymptotic two-body behavior (or the zero-range potential
limit) to derive the three-body attraction but did not address the
short-distance region directly. Its effect on the longer-distance
region was accounted for by a three-body boundary condition,
expressed either as a phase in the three-body wave function or a
log-periodic inverse length � known as the Efimov three-body
parameter [1]. This long-distance picture is equivalent to a
zero-range low-energy picture, where � plays the role of
the parameter that renormalizes the low-energy effective field
theory [26]. The Efimov effect is the only known physical
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example of the renormalization-group limit cycle [28]. Since
the short-distance region involves the short-range details of
the interaction potentials, � has long been thought to be
a nonuniversal quantity that is strongly dependent on the
individual properties of the system.

Later, it was found that � is universally determined in cases
where a length scale larger than b arises in the problem, most
notably in the case of a narrow Feshbach resonance in the
pairwise interaction [29], which entails a large and negative
effective range setting the value of � [23], and the case of
particles with additional dipolar interactions, whose strength
also sets the value of � [30]. In the absence of such large
length scales, however, it was believed that � ∼ 1/b, but its
precise value would vary by a factor within the entire log period
eπ/s0 ≈ 22.7 from one system to another, or even from one
Feshbach resonance to another within the same system [31].

However, several recent experiments with identical ultra-
cold atoms [2–22] have revealed Efimov trimers and thereby
determined their three-body parameters. In these experiments,
rather broad Feshbach resonances are used, implying that
the range b of the interactions between atoms is typically
the van der Waals length rvdW = 1

2 (mC6/�
2)1/4 associated

with the −C6/r6 tail of the open-channel potential [29]. The
measured value of the three-body parameter expressed in
units of rvdW turned out to stay fairly constant for different
atomic species [2], nuclear spin states [16], or even different
resonances of the same atomic species [18]. This indicates that
the three-body parameter is universally determined by the van
der Waals length and relatively insensitive to other short-range
details specific to individual atomic species.

It was first suggested that this van der Waals universality
was due to the very deep well of the potentials for these species,
which support many two-body bound states. According to this
conjecture, when the three atoms enter the short-range region
of the potential, they feel such a deep potential well that for
all these species it results in the same effect on the phase of
the wave function and leads to the same three-body parameter
�. However, Efimov features for helium atoms, which interact
through a shallow potential supporting only one two-body
bound state, were shown to also follow the van der Waals
universality, both theoretically [32] and experimentally [22].

A first attempt [33] to explain this universality suggested
that it could be due to quantum reflection in the sum of pairwise
−1/r6 potentials. Particles coming from large distances to
separations on the order of the van der Waals length would
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experience a sudden drop in the resulting effective three-body
potential, which would reflect the particles before they start to
probe short-range physics. However, a numerical study [34]
showed that the relevant three-body potential in the van der
Waals region does not exhibit a sudden drop, but a sudden
repulsive barrier. The numerical results indicate that this
three-body repulsion is universally located around R ≈ 2 rvdW

for several model potentials and arises whenever a pairwise
interaction potential features a deep well supporting many
two-body bound states or a short-range hardcore repulsion,
which is the case for all atomic species. Reference [34]
attributes the appearance of the repulsive barrier to an increase
of kinetic energy due to the squeezing of the hyperangular
wave function into a smaller volume caused by the suppression
of two-body probability inside the two-body potential well.
Reference [35], on the other hand, attributes it to the hard-core
repulsion of the two-body potential. It is therefore necessary
to clarify how precisely the repulsive barrier emerges, what
physical picture it corresponds to, and why it is universal.
The purpose of this work is to show that the universality of
the three-body parameter indeed originates from the two-body
correlation, through a deformation of the three-body system in
the van der Waals region.

This paper is organized as follows. In Sec. II, we review
how the three-body repulsion setting the three-body parameter
arises in the hyperspherical formalism. In Sec. III, we interpret
the three-body repulsion as a consequence of three-body
deformation induced by pair correlation and show why it is
universal. In Sec. IV, we confirm this scenario by using two
simple models. In Sec. V, we give the conclusion of this work.

II. THE THREE-BODY REPULSION

The three-body repulsion is observed in the hyperspherical
formalism, where the three-body wave function � is expressed

in terms of the hyperradius R =
√

2
3 (r2

12 + r2
23 + r2

31), which
corresponds to the global size of the three-body system,1 and
the hyperangles, which describe the shape of the three-body
system and are collectively denoted by �. We present here a
simple approximation that captures the bare essentials of both
the Efimov attraction and the universal three-body repulsion.

The three-body wave function can be expanded over a
basis of hyperangular wave functions �̃n(�; R) which are
normalized to unity:

�(R,�) = 1

R5/2

∑
n

fn(R)�̃n(�; R). (1)

The hyperangular wave function �̃n itself can be decomposed
into three Faddeev components φ(i)

n :

�̃n(�; R) =
∑

i=1,2,3

φ(i)
n (�; R)

sin 2αi

. (2)

1There are several conventions for the definition of the hyperradius.
We choose the definition of Ref. [1], which differs by a factor√√

3/2 ≈ 0.93 from that of Ref. [34] for the case of three identical
bosons.

Here, αi = arctan
√

3rjk

2ri,jk
= arcsin rjk

R
is the Delves hyperangle

in the ith Jacobi coordinate system (�rjk,�ri,jk), where (i,j,k)
denotes the cyclic permutations of (1,2,3). For identical
bosons, the functional forms of all Faddeev components are the
same, φ(i)

n = φn. The advantage of this Faddeev decomposition
is that it treats the three particles on equal footing. In the low-
energy Faddeev approximation [36], φn is assumed to depend
only upon the Delves hyperangle α. In this approximation, one
ignores the dependence of φn on the directions of �rjk and �ri,jk ,
i.e., higher angular momentum partial waves. This excludes
the possibility of accidental resonances with higher partial
waves [31,34] and gives less accurate results. Nevertheless,
this approximation is good enough for our purpose, as we
shall see below.

The Faddeev component φn is chosen to be the eigensolu-
tion with the eigenvalue λn of the Faddeev equation:(

− ∂2

∂α2
− λn

)
φn(α)

= −R2 m

�2
V (R sin α)

(
φn(α) + 4√

3

∫ αmax

αmin

φn(α′)dα′
)

,

(3)

where m is the particle mass, V is the pairwise interaction po-
tential, αmin = |π

3 − α|, and αmax = π
2 − |π

6 − α|. We assume
that three-body interactions are negligible.2

Each solution φn defines a channel n, and one finds in
general that the hyperradial functions fn(R) are solutions of
the coupled equations:(

− ∂2

∂R2
+ λp(R)

R2
− 1

4R2
− m

�2
E

)
fp(R)

+
∑

n

(
Qpnfn(R) + 2Ppn

∂fn(R)

∂R

)
= 0, (4)

with the nonadiabatic couplings

Qpn = −
∫

d��̃∗
p

∂2�̃n

∂R2
, Ppn = −

∫
d��̃∗

p

∂�̃n

∂R
. (5)

If we restrict our consideration to a particular channel
n (neglecting couplings to other channels) and note that
Pnn = 0 due to the normalization of �̃n, we arrive at a simple
Schrödinger equation:(

− ∂2

∂R2
− 1

4R2
+ Un(R) − m

�2
E

)
fn(R) ≈ 0, (6)

with the three-body potential

Un(R) = λn(R)

R2
+ Qnn(R). (7)

This potential is the sum of adiabatic (first term) and
nonadiabatic (second term) contributions. The Efimov attrac-
tion manifests itself in this framework as the appearance
in a particular channel n = 0 of a negative eigenvalue

2This is justified to the extent that the range of the physical three-
body force does not exceed the range of the three-body repulsion.
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FIG. 1. (Color online) Three-body potentials U0(R) and U1(R)
for different pairwise interactions at unitarity: soft-core van der
Waals potential (blue) with nb = 1–10 two-body bound states,
Lennard-Jones potential (green) with nb = 1–10 two-body bound
states, and helium potential (red) rescaled to reach unitarity with
nb = 1 two-body bound state. Note that only the case of the soft-core
van der Waals potential with one bound state is significantly different
from the other cases. The dashed curve shows the asymptotic Efimov
attraction.

λ0(R) → −s2
0 at large hyperradii, with s0 ≈ 1.00624. One can

show that Q00(R) → O(1/R3), so that the potential U0(R)
tends to the 1/R2 Efimov attraction at large R. At shorter
distance, the potential becomes repulsive. This is illustrated
in Fig. 1, where the three-body potentials Un(R) obtained by
solving Eq. (3) are represented for several two-body potentials
with a van der Waals tail. Namely, we used the following
soft-core van der Waals and Lennard-Jones potentials:

Vsoft(r) = −C6
1

r6 + σ 6
, (8)

VLJ(r) = C6

(
σ 6

r12
− 1

r6

)
, (9)

where the length σ is adjusted to produce a shape resonance
(divergence of the scattering length, leading to the unitarity
limit a → ∞). There are several possible choices of σ ,
corresponding to different depths of the potential well, or
equivalently different numbers of s-wave two-body bound
states nb (including the one at the breakup threshold). We
also use a realistic helium potential [37] rescaled to reach
unitarity [32], which is qualitatively similar to a Lennard-Jones
potential at unitarity with one two-body bound state.

Figure 1 shows that for all these two-body potentials the
three-body potential U0(R) in the Efimov channel (n = 0)
exhibits both the Efimov attraction at large distance and a
repulsive barrier at short distance. Consistent with Ref. [34],
for all these pairwise potentials with the exception of the
soft-core van der Waals potential with one bound state, the
repulsive barrier is universally located around R ≈ 2rvdW.

III. INTERPRETATION OF THE THREE-BODY
REPULSION

A. Repulsion due to deformation

One might think that the repulsive barrier is a consequence
of the hard-core repulsion in the two-body potential, as
suggested in Ref. [35]. However, this is not the case since
it occurs also for the soft van der Waals potential which has no
repulsive core and is purely attractive. Another counterintuitive
observation is that the depth of the three-body potential U0

remains relatively stable as the two-body potential is made
deeper and deeper. Our calculation shows that the adiabatic
contribution λ0(R)/R2 in Eq. (7) gets indeed deeper but
is compensated by the purely repulsive nonadiabatic term
Q00. The fact that the nonadiabatic kinetic energy is indeed
repulsive at large distance can be understood by rewriting
Q00 as

Q00(R) =
∫

d�

∣∣∣∣∂�̃0(�; R)

∂R

∣∣∣∣
2

� 0, (10)

using the normalization of �̃0 and the fact that it can be chosen
to be real. This shows that Q00 is positive and, since it has to
vanish at large distance, it must be repulsive (if one excludes
unlikely oscillations at infinitely large distance).

Equation (10) shows that the nonadiabatic kinetic energy
Q00 arises from a change in the hyperangular wave function
�̃0 with respect to the hyperradius, i.e., from a change in the
probability distribution of the shape of the three-body system
as a function of its size. To visualize this change, we use �̃0

to plot in Fig. 2 the probability density of finding a particle 3
for a given separation r12 of the two other particles 1 and 2:

P (�r12,3) = (sin 2α3)2|�̃0(�; R)|2. (11)

When particle 3 is far from particles 1 and 2, the hyperangular
wave function is given by the zero-range limit (corresponding
to the Efimov theory), which at unitarity admits the following
analytical solution [1]:

�̃
(ZR)
0 (�) =

3∑
i=1

φ
(ZR)
0 (αi)

sin 2αi

,

with φ
(ZR)
0 (α) = sinh

[
s0

(
π

2
− α

)]
, (12)

which is independent of the hyperradius. The probability den-
sity therefore remains the same up to a scale transformation.
In other words, the probability distribution of the shape of
the three-particle system remains the same; namely, the third
particle is typically located closer to one of the other two. This
invariance of the hyperangular wave function with respect to
the hyperradius results in Q00 = 0.

When particle 3 comes close to particle 1 or 2, however,
this zero-range picture becomes invalid because the finite-
range effects of the interaction are no longer negligible.
In Fig. 2, one can clearly see two regions of suppressed
probability near particles 1 and 2. This exclusion is an expected
consequence of the known two-body physics. It is expected
indeed that for short-range interactions the three-body density
distribution becomes proportional to the relative two-body
density distribution whenever two particles come sufficiently
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FIG. 2. (Color online) Three-dimensional contour plots of the
probability distribution in Eq. (11) of finding a particle for a given
separation of the two other particles (which are indicated by a pair of
small gray balls connected by a black line). For clarity, we only show
the probability density behind a plane containing the two particles
and shade the contours with an opacity increasing with probability
density: the darker, the higher the probability of finding the third
particle. The top figures correspond to a separation of 6.0 rvdW, while
the bottom ones correspond to a separation of 1.4rvdW. To appreciate
the change in configuration between the figures, a typical location
of the third particle is indicated by a small green ball connected
to the other two particles by green lines. The left figures were
computed from the zero-range Efimov theory at unitarity; they show
the invariance of the Efimov configuration distribution with respect to
the size of the system. The right figures were computed for a Lennard-
Jones pairwise potential at unitarity supporting four two-body bound
states. At large separations, the probability distribution is consistent
with the Efimov configuration distribution, but around each of the
two particles there is a noticeable sphere of radius ∼rvdW in which
the probability is significantly suppressed. This suppression leads to
an abrupt change in configuration probability when the particles come
close.

close, as recently illustrated in nuclear physics [38]. The
relative radial probability density distribution |ϕ|2 for two
particles at zero scattering energy is represented in Fig. 3
for different two-body potentials at unitarity. One can see that
the probability is indeed suppressed below some radius on the
order of rvdW due to either the presence of a repulsive wall or,
in contrast, the acceleration in the well of the potential.

As particles 1 and 2 come close, this two-body exclusion
confines the probability distribution for particle 3 to a region
forming a ring in between the two particles, corresponding to
an equilateral shape of the three-particle system. We find that
this change of shape happens very suddenly, making it difficult
for the system to follow the Efimov channel adiabatically
(see the animations in the Supplemental Material [39]). This
abrupt variation results in a significant gain of nonadiabatic
kinetic energy Q00 in Eq. (10), thereby creating the three-body
repulsion.

The necessity to deform to a more equilateral shape can
also be visualized in Fig. 4, where configurations of the
three particles are shown as a function of hyperradius R and

FIG. 3. (Color online) Zero-energy two-body probability density
distribution |ϕ|2 (normalized asymptotically to unity) as a function of
interparticle distance for different two-body potentials: soft-core van
der Waals potential (blue) with nb = 1–8 bound states, Lennard-
Jones potential (green) with nb = 1–8 bound states, and helium
potential (red) rescaled to reach unitarity with one bound state. The
corresponding potentials are shown in faded colors. The probability
density corresponding to the universal van der Waals correlation given
in Eq. (13) is shown by the dashed black curve.

hyperangle α. Of all these configurations, those for which two
particles are within the van der Waals length are suppressed
by the two-body exclusion. These configurations can be easily
determined and correspond to the solid red region in Fig. 4.
One can see that in order to avoid these configurations a
three-particle system in a given shape getting smaller in size
needs at some hyperradius to deform to a more equilateral
shape.

For an Efimov trimer state, the hyperradius at which
this deformation occurs can easily be estimated from the
zero-range Efimov wave function and the radius of two-body
suppression rvdW. The system has to deform when the distance
between the two closest particles is equal to rvdW. The distance
rij between two particles i and j is equal to R sin αk . At large
hyperradii, the probability distribution of α at unitarity follows
from the Efimov hyperangular wave function in Eq. (12). From
this wave function, one can calculate the average hyperangle
〈α〉 ≈ 0.508, represented by the dashed horizontal line in
Fig. 4. This leads to an approximate location of the onset
of deformation at R = rvdW/ sin〈α〉 ≈ 2.05rvdW,3 represented
by the dashed vertical line in Fig. 4. At this hyperradius the
value of Q00 becomes large, creating a barrier that prevents
the system from further deforming into smaller configurations.
This forbidden region is hatched in Fig. 4. This simple estimate
thus reproduces the location of the repulsive barrier shown
in Fig. 1 and in Ref. [34]. Note that the knowledge of the
location of the barrier is not enough to determine precisely
the three-body parameter, as it also depends on the shape of
the barrier, as well as the couplings to other channels. In light

3According to definitions of the hyperradius in Refs. [34] and [35],
one would find, respectively, R ≈ √√

3/2 × 2.05rvdW = 1.91rvdW

and 1√
2

× 2.05rvdW = 1.45rvdW.
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FIG. 4. (Color online) Regions of three-body configurations
plotted against the hyperradius and one hyperangle, where the
molecules illustrate the corresponding configurations. The region in
solid red corresponds to the region trivially excluded when at least
two particles are within the suppression distance rvdW. The hatched
region corresponds to the region excluded by the nonadiabaticity
of the deformation occurring when the hyperradius is smaller than
∼2rvdW. The shades of blue represent the integrated three-body
probability obtained by numerically solving the three-body problem
with a separable potential Eq. (15) whose two-body correlation
reproduces that of a Lennard-Jones potential at the appearance of
the first two-body bound state. It shows that the probability is indeed
excluded from the red and hatched regions.

of this discussion, we expect these to be essentially determined
by the form of the pair correlation.

B. Van der Waals universality

The pair correlation for two particles interacting with van
der Waals interactions is known to have a universal asymptotic
form [40,41]. In particular, the zero-energy radial two-body
wave function ϕ for a given scattering length a has the
following analytical form in the van der Waals tail region:

ϕ(r) = (5/4)
√

xJ 1
4
(2x−2) − rvdW

a
(3/4)

√
xJ− 1

4
(2x−2),

(13)

where  and Jα denote the gamma and Bessel functions and
x = r

rvdW
. At large distance, ϕ(r) asymptotes to the free wave

form 1 − r
a

. For a → ∞, ϕ(r) asymptotes to unity and thus can
be regarded as a correlation function describing the deviations
from the free wave. The corresponding two-body probability
density |ϕ|2 is represented in Fig. 3 by the black dashed curve.
One can see that the probability densities obtained for all
the considered potentials nearly coincide with this analytical
form for r � rvdW. For potentials which strongly suppress
the probability for r � rvdW, the whole pair correlation is
thus very similar to the universal correlation. This similarity
holds even for shallow potentials with a short van der Waals
tail accompanied by a hard-core repulsion, such as that of

helium. The fact that the short-distance oscillations of the
universal correlation are not reproduced does not make any
major difference, because the probability density is very small
in this region. Since the two-body correlation is nearly the same
for these potentials, the same nonadiabatic deformation occurs,
leading to the same three-body repulsion and three-body
parameter. Conversely, the soft-core van der Waals potential
with one two-body bound state leads to a pair correlation that
deviates from the universal correlation more significantly, with
a less pronounced suppression of probability, as seen in Fig. 3.
According to our interpretation, this should create a softer
three-body repulsion at a shorter hyperradius. This is indeed
the case, as can be checked in Fig. 1.

In the present interpretation, the universality of the three-
body parameter is thus a direct consequence of the van der
Waals two-body correlation.

IV. CHECK WITH SIMPLE MODELS

To verify our interpretation, we construct two simple
models. The first one verifies that the pair correlation does
indeed create a three-body repulsive barrier at R ≈ 2rvdW

in the Efimov channel through the nonadiabatic kinetic
energy. The second one is a more complete model verifying
quantitatively that the pair correlation fixes the three-body
parameter to a value consistent with full numerical calculations
and experiments.

A. Pair correlation model

To simply account for the two-body suppression, we
consider a trial hyperangular wave function of the Bijl-Jastrow
form [42,43], which is the uncorrelated hyperangular function
�̃

(ZR)
0 in the zero-range (Efimov) limit given by Eq. (12),

multiplied by a product of the universal two-body correlation ϕ

given by Eq. (13), which causes the suppression of probability
in the two-body sector:

�̃
(model)
0 = �̃

(ZR)
0 ×

∏
i<j

ϕ(rij ). (14)

This simple ansatz leads to a probability density that is very
similar to the one calculated from the Faddeev equation (3).
In particular, we have confirmed that it also leads to a sudden
buildup of probability in the ring-shaped region when two
particles are close. One can also calculate the nonadiabatic
kinetic energy Q00 from Eq. (10). As expected, we find
a sudden increase of Q00 at the hyperradius R ≈ 2rvdW.
This model thus confirms our claim that the nonadiabatic
change in configuration originates from an interplay between
the suppression of two-body probability and the Efimov
configuration.

Adding the adiabatic term λ0
R2 to Q00, we obtain the full

potential U0(R). As shown in Fig. 5, it reproduces very
well the universal potential found using the solution of the
Faddeev equation (3). Note that this agreement is remarkable;
although the adiabatic and nonadiabatic terms taken separately
vary significantly for different numbers of two-body bound
states, their variations almost cancel out to give the universal
potential.
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FIG. 5. (Color online) Comparison between the Faddeev three-
body calculations (left) and the simple two-body correlation model
described in the main text (right). The dashed curves show the
nonadiabatic kinetic energy Q00 for Lennard-Jones potentials of
different depths, corresponding to the unitarity limit with different
numbers of two-body bound states ranging from 1 to 5. The solid
curves show the full three-body potential U0(R) obtained by adding
to Q00 the adiabatic contribution λ0/R

2 obtained from Faddeev
calculations, which is shown by the dotted curves.

B. Separable model

The hyperspherical formalism is useful to exhibit the
three-body repulsion mechanism, and the previous model sat-
isfactorily reproduces the three-body repulsion in the Efimov
channel. However, this channel alone only gives qualitative
results for the actual trimer energies. To be more quantitative,
one would need to solve the many coupled equations in Eq. (4),
as done in Ref. [34], but that would defeat our purpose of
using a simple model to reproduce the physics. Hence we turn
to another approach to get more quantitative results, while
keeping the central idea of the universal pair correlation in
Eq. (13), being the essential ingredient behind the universal
three-body parameter.

One of the simplest pseudopotentials that can reproduce the
universal pair correlation is the separable potential [44,45]:

V̂ = �
2

m
ξ |χ〉〈χ |, (15)

where the function χ in momentum space is chosen to be

χ (q) = 1 − q

∫ ∞

0
dr

(
1 − r

a
− ϕ(r)

)
sin(qr), (16)

and the coefficient ξ is set to

ξ = 4π

(
1

a
− 2

π

∫ ∞

0
dq|χ (q)|2

)−1

. (17)

This potential has the advantage of being easily tractable
because of its separability, and one can show (see Appendix B)
that the solution of the two-body problem at zero energy for
this potential is given exactly by ϕ(r), which is chosen to be
the universal pair correlation given by Eq. (13). Numerically,
we find that this potential is an excellent substitute for the
real van der Waals interaction in the two-body problem at low
energy: it reproduces the low-energy scattering state and the
two-body bound state over energies on the order of �

2/(mr2
vdW)

and scattering lengths |a| � 2rvdW.
For the three-body problem, substituting the real potential

by the separable potential in the three-body Schrödinger
equation leads to a one-dimensional integral equation [46,47]

FIG. 6. (Color online) Lowest trimer and dimer energy for the
separable potential given by Eq. (15), as a function of its inverse
scattering length 1/a. For comparison, the dotted and dashed curves
represent the universal dimer energy (E = − �

2

ma2 ) and the exact van
der Waals dimer energy, respectively. Both the abscissa and ordinate
are shown in units of the inverse van der Waals length r−1

vdW.

that is similar to the Skorniakov–Ter-Martirosian equation
obtained for a contact potential [48] and that can easily be
solved numerically (see the Appendix B for the derivation). We
emphasize that the only information contained in this model
is the zero-energy pair correlation.

From the numerical solution, we obtain the ground-state
trimer spectrum shown in Fig. 6. In particular, we extract the
binding wave number κ at unitarity and the scattering length
a− at which this trimer disappears in the three-body threshold
and find

κ rvdW = 0.187(1) and
a−

rvdW
= −10.86(1).

Consistent with our interpretation, similar results are
obtained for pair correlations ϕ(r) with a similar tail and low
probability at short distance. For instance, the pair correlation
for a Lennard-Jones potential with one two-body bound
state leads to κ rvdW = 0.205(1) and a−

rvdW
= −10.23(1). These

values agree within a few percent with the results of [34]
and are in fair agreement with the experimental result of
a−

rvdW
= −9.1(5) [49].

Finally, one can check that this agreement is not coinci-
dental, as the model also reproduces the deformation and
repulsion effects. This is demonstrated by the three-body
probability density plot in Fig. 4, where one can see the
probability density being trivially excluded by the two-body
suppression (causing a deformation toward higher values of
α), as well as the suppression at R ≈ 2 rvdW. The three-body
probability can be further integrated over α and is plotted as
a function of R in Fig. 7. By calculating the second-order
derivative of the corresponding wave function, one can derive
an effective hyperradial potential. This potential reproduces
very closely the three-body potential calculated from the
low-energy Faddeev equation. Only the repulsive barrier is
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FIG. 7. (Color online) Three-body probability (solid gray curve,
in arbitrary units) as a function of hyperradius and corresponding
effective three-body potential (solid black curve), obtained from the
separable model Eq. (15). For comparison, the Efimov potential
(dotted curve) and the low-energy Faddeev three-body potential
obtained from Eq. (7) (red dashed curve) are also represented.
Note that for R < 1.5rvdW the effective potential becomes strongly
oscillatory (as can be seen from the nearly vertical lines) in order
to reproduce the wave function. Since the physics in that region is
correctly described by coupled potentials, the effective potential is not
a meaningful construct in that region and the short-range oscillations
have no particular significance.

slightly shifted to a smaller hyperradius, resulting in a more
quantitatively accurate three-body parameter.

V. CONCLUSION

We have shown that the universality of the three-
body parameter revealed in recent experiments with neutral
atoms and numerical calculations originates from two-body
correlation.

The mechanism explaining this origin is the following:
two-body correlation suppresses the probability for two atoms
to be at separations smaller than the van der Waals length,
which imposes a deformation of the three-atom system when
the three atoms come within the distance of the van der
Waals length. The kinetic-energy cost associated with this
deformation creates a repulsion preventing the three atoms
from coming closer and sets the three-body parameter.

This mechanism is consistent with the findings of Wang
et al. [34]. Unlike other proposed mechanisms [33,35], this
does not necessitate a hard-core repulsion in the two-body
potential, nor is it simply the expression of quantum reflection
along a single coordinate since it involves the three-body
deformational degrees of freedom.

Because the two-body correlation is universally determined
by the van der Waals length for atomic systems, this makes
the three-body parameter universal in these systems. More
generally, we expect to find such universality in any class of
systems where the two-body suppression has a universal form.
This work also suggests that for other systems, in general,
pair correlations and their associated length scale, the effective
range, should play an essential role. These points are addressed
in more detail in a separate paper [50].
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APPENDIX A

In this Appendix, we show that the radial wave function
ϕ in Eq. (16) is the solution of the two-body problem at zero
energy for the separable potential given by Eq. (15). A more
general representation of two-body interactions in terms of
separable potentials can be found in Ref. [45].

The two-body Schrödinger equation at zero energy in
momentum space reads

�
2p2

m
ψ̃( �p) +

∫
d3 �q

(2π )3
Ṽ ( �p,�q)ψ̃(�q) = 0, (A1)

where Ṽ is the Fourier transform of the pairwise potential V

and ψ̃ is the Fourier transform of the two-body wave function.
Replacing Ṽ by the separable potential in Eq. (15), one obtains

p2ψ̃( �p) − f χ (p) = 0, (A2)

with

f = −
∫

d3 �q
(2π )3

ψ̃(�q)ξχ∗(q). (A3)

Inverting Eq. (A2) with the proper boundary conditions gives

ψ̃( �p) = (2π )3δ3( �p) + f
χ (p)

p2
. (A4)

Inserting Eq. (A4) into Eq. (A3), one obtains the explicit
expression for f :

f = −
(

1

ξ
+

∫ ∞

0

dq

2π2
|χ (q)|2

)−1

, (A5)

and using the chosen form of ξ given by Eq. (17) one
obtains f = −4πa. Inserting this value into Eq. (A4) and
transforming to space coordinates, one finds

ψ(�r) = 1 − 4πa

∫
d3p

(2π )3

χ (p)

p2
ei �p·�r , (A6)

which after angular integration yields

ψ(�r) = 1 − a
2

π

∫ ∞

0
χ (p)

sin pr

pr
dp. (A7)

Inserting the chosen form of χ given by Eq. (16), and using
the closure relation

∫ ∞
0 dp sin(pr ′) sin(pr) = π

2 δ(r − r ′), one
obtains

ψ(�r) = −a

r
ϕ(r), (A8)

which shows that the form of the zero-energy radial wave
function rψ(�r) is indeed given by ϕ(r).
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APPENDIX B

In this Appendix, we derive the equation we use to solve
the three-body problem with the separable potential given by
Eq. (15).

The three-body Schrödinger equation in momentum space
reads (

3

4

�
2

m
P 2 + �

2

m
p2 − E

)
�̃( �P , �p)

+
∑

i=1,2,3

∫
d3 �qi

(2π )3
Ṽ ( �pi,�qi)�̃( �Pi,�qi) = 0, (B1)

where Ṽ is the Fourier transform of the pairwise potential V

and �̃ is the Fourier transform of the three-body wave function
� in Eq. (1) expressed in a particular Jacobi coordinate set
( �P , �p) chosen among the three possible sets ( �Pi, �pi) with
i = 1,2,3.

Substituting Ṽ by the separable potential in Eq. (15), one
obtains(

3

4
P 2 + p2 − m

�2
E

)
�̃( �P , �p) +

∑
i=1,2,3

F ( �Pi)χ (pi) = 0,

(B2)

where

F ( �P ) = ξ

∫
d3 �p

(2π )3
χ∗(p)�̃( �P , �p). (B3)

For E < 0, Eq. (B2) can be inverted as

�̃( �P , �p) = −
∑

i=1,2,3

F ( �Pi)χ (pi)
3
4P 2 + p2 − m

�2 E
. (B4)

Inserting Eq. (B4) into Eq. (B3) gives

1

ξ
F ( �P ) = −

∑
i=1,2,3

∫
d3 �p

(2π )3
χ∗(p)

F ( �Pi)χ (pi)
3
4P 2 + p2 − m

�2 E
. (B5)

Making the choice ( �P , �p) = ( �P3, �p3), one can factorize one of
the terms in the sum with the left-hand side of Eq. (B5) as

follows:(
1

ξ
+

∫
d3 �p

(2π )3

|χ (p)|2
3
4P 2 + p2 − m

�2 E

)
F ( �P )

+
∑
i=1,2

∫
d3 �p

(2π )3
χ∗(p)

F ( �Pi)χ (pi)
3
4P 2 + p2 − m

�2 E
= 0. (B6)

The two remaining terms are equal due to bosonic exchange
symmetry, and expressing one Jacobi coordinate set in terms
of another one finally arrives at the integral equation for F :(

1

ξ
+

∫
d3 �q

(2π )3

|χ (q)|2
q2 − (

mE
�2 − 3

4P 2
)
)

F ( �P )

+ 2
∫

d3 �q
(2π )3

χ∗(∣∣�q + �P
2

∣∣)χ(∣∣ �q
2 + �P ∣∣)

P 2 + q2 + �q · �P − mE
�2

F (�q) = 0. (B7)

For spherically-symmetric solutions, it can be reduced to an
equation in which F depends only on the one-dimensional
variable P = | �P |:

D(P )F (P ) +
∫ ∞

0

q2dq

2π2
H (P,q)F (q) = 0, (B8)

with

D(P ) = 1

ξ
+

∫ ∞

0

dq

2π2

q2|χ (q)|2
q2 − (

mE
�2 − 3

4P 2
) , (B9)

H (P,q)

=
∫ 1

−1
du

χ∗(√q2+ 1
4P 2+qPu

)
χ

(√
P 2+ 1

4q2+qPu
)

P 2 + q2 + qPu − mE
�2

.

(B10)

Solving for the eigenvalues of the linear operator in the
left-hand side of Eq. (B8) and looking for the energies E

that make one of these eigenvalues equal to zero, consistent
with the right-hand side of Eq. (B8), yields the energies of
three-body bound states. The corresponding eigenvectors F

give the three-body wave functions � through Eq. (B4).
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