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Electron-beam dynamics in a strong laser field including quantum radiation reaction
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The evolution of an electron beam colliding head on with a strong plane-wave field is investigated in the
framework of strong-field QED including radiation-reaction effects due to photon emission. Employing a kinetic
approach to describe the electron and the photon distribution it is shown that at a given total laser fluence the
final electron distribution depends on the shape of the laser envelope and on the pulse duration, in contrast to the
classical predictions of radiation reaction based on the Landau-Lifshitz equation. Finally, it is investigated how
the pair-creation process leads to a nonlinear coupled evolution of the electrons in the beam, of the produced
charged particles, and of the emitted photons.
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I. INTRODUCTION

The vast experimental progress in the generation of intense
laser pulses and ultrarelativistic particle beams makes it
essential to attain a profound understanding of the dynamics
of charged particles in the presence of electromagnetic
background fields. The investigation of the latter is not only
interesting from a theoretical point of view but also crucial
for experimental applications, e.g., in accelerator and plasma
physics. Already in the realm of classical electrodynamics the
problem occurs for how to calculate the trajectory of a charged
particle in an external field, including the continuous loss of
energy and momentum due to the emission of electromag-
netic radiation [1–3]. This so-called radiation-reaction (RR)
problem consists in determining an equation of motion of the
charged particle, which self-consistently incorporates energy-
momentum loss. Historically the Lorentz-Abraham-Dirac
(LAD) equation has been suggested, and it can be obtained
by eliminating the degrees of freedom of the electromagnetic
field in the coupled system of Maxwell’s and single-particle
Lorentz equations [3]. The LAD equation contains additional
terms apart from the Lorentz force, which are responsible
for RR effects. One of these terms, however, depends on
the time derivative of the charge acceleration, which in turn
leads to the existence of so-called runaway solutions, with
the particle acceleration exponentially increasing with time
even in the absence of any driving force [1–3]. On the other
hand, it has been first noticed in Ref. [1] that in the realm
of classical electrodynamics, i.e., if quantum effects, like the
recoil in photon emission, are negligible, the LAD equation
can be consistently approximated via the so-called Landau-
Lifshitz (LL) equation, which avoids the above-mentioned
inconsistencies (see also Refs. [4–6]). Even though the LL
equation provides a consistent description of RR in classical
electrodynamics, the experimental verification of this equation
is still missing. In the so-called classical radiation-dominated
regime the electron emits an average energy in a single
laser cycle, which is comparable to its initial energy and
RR effects dominate the electron dynamics [7,8]. However,
the classical radiation-dominated regime is rather hard to be
entered with present technology. In Ref. [9] strong signatures
of RR have been predicted to occur also below the classical
radiation-dominated regime, based on the analytical solution
of the LL equation in an arbitrary plane-wave field found in

Ref. [8]. Alternative proposals to measure RR effects in the
classical domain have been suggested in Refs. [10–12].

Since classical electrodynamics is contained in the underly-
ing theory of quantum electrodynamics, the understanding of
the quantum origin of RR is of fundamental importance. As we
have mentioned, RR in classical electrodynamics includes all
effects, which go beyond the Lorentz dynamics and which stem
from the action of the electromagnetic field generated by the
charged particle, an electron for definiteness, on the electron
itself, when it is driven by a background electromagnetic
field. Analogously, RR in QED includes all possible processes
that may arise starting from a single, external-field-driven
electron [6,13–15]. Thus, the complete description of RR in
the quantum regime can be achieved by the calculation of
the full S-matrix, including effects like radiative corrections,
multiple photon emission, and pair creation following photon
emission. This implies that in the full quantum regime, the
problem of RR is intrinsically multiparticle. However, in the
moderate quantum regime, in which quantum effects are not
too large and electron-positron pair production is negligible
(see Sec. II for further details), the process that mainly gives
rise to RR effects is the incoherent emission of multiple
photons. (Note, for example, that radiative corrections δm2

to the square m2 of the electron mass are negligible as
they are of the order of 1% of m2. Indeed, such radiative
corrections roughly scale as αm2 [16], where α = e2/�c ≈
1/137 is the fine-structure constant, with e < 0 being the
electron charge.) This regime is then single particle as in
classical electrodynamics, and it has been investigated in detail
in Ref. [13] in the case of a background plane wave. In
Ref. [13] the so-called quantum radiation-dominated regime
has also been introduced, where the electron emits on aver-
age more than one photon with substantial recoil already in
one laser period. In the quantum radiation-dominated regime
the electron dynamics is dominated by both quantum and RR
effects. However, a sufficient increase of the intensity of the
background electromagnetic field and/or of the initial electron
energy will let one enter a new regime, where neglecting
pair creation is no longer permissible. In the collision of a
laser field and electrons, pair production may occur due to
two different processes [6] (see also for a recent review on
pair-production processes Ref. [17]): (1) the photons emitted
by the incoming electrons reach sufficiently high energies
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allowing for laser-assisted electron-positron production and
(2) the direct pair production by electrons via the emission of
virtual photons. These two channels are treated in a unified way
in strong-field QED [18,19] (see also Ref. [20]). In the presence
of an electromagnetic wave of sufficient high intensity, the
emission of the photon and the transformation of the photon
into an electron-positron pair do not occur in the same
formation region [20,21]. Since the created charged particles
are thereupon accelerated by the laser field, the produced pairs
will emit further photons and, under certain circumstances,
prime the formation of the so-called QED cascades [22–26].

In the present paper we first study the interaction of an
electron beam colliding head on with a strong plane wave
in the nonlinear moderate quantum regime and follow the
macroscopic kinetic approach [27] (see Sec. II), which allows
us to take into account the multiple incoherent emission of
high-energy photons by a distribution of electrons in the
quantum regime. Alternative approaches are the microscopic
approach employed in Ref. [13] or the stochastic model of RR
investigated in Ref. [28]. Since RR is, generally speaking, a
dissipative effect (see also Ref. [29] for a setup, which allows
to use RR effects to control the electron dynamics), we focus
our attention in Sec. III on the effects stemming from the pulse
shape and duration of the laser field. As we will see, such
effects can be exploited as an observable for testing the predic-
tions of QED in the quantum radiation-dominated regime. We
will see that already at available laser intensities of the order of
1022 W/cm2, the final electron distribution strongly depends
on the shape and on the duration of the pulse also at a given
pulse fluence, whereas the classical dynamics based upon the
LL equation would predict no dependence in this case. Further,
the influence of the form and of the duration of the pulse shape
at a given laser fluence on the photon spectrum emitted by the
electron distribution is also investigated. In Sec. IV we extend
the approach in Ref. [27], and we will also take into account the
possibility that emitted photons then transform into electron-
positron pairs. Therefore, we include the corresponding prob-
abilities in our kinetic approach and study how the inclusion
of the process of pair creation influences the evolution of
the charged particle and of the photon distribution functions.
Moreover, numerical simulations for different pulse durations
at a given laser fluence will be presented for two different
initial electron energy distributions, allowing us to identify two
distinguishable scenarios, where the laser pulse duration has
diverse effects on the number of produced pairs. In Appendix A
we amend a step in the derivation of the kinetic equation
given in the Supplemental Material of Ref. [27] [Eq. (5) here].
Finally, Appendix B contains an example showing numerically
the equivalence of the kinetic approach proposed here and the
previous microscopic approach developed in Ref. [13].

II. KINETIC APPROACH

We consider the collision of an electron beam with a plane
wave characterized by the electric field E(ϕ) = E0f (ϕ) ẑ.
Here E0 is the laser electric field amplitude and f (ϕ) is
an arbitrary function of the laser phase ϕ = ω0(t − y) such
that |f (ϕ)|max � 1, with ω0 being the laser central angular
frequency (units with � = c = 1 are used throughout). In
the case of a single electron with the initial four-momentum

p
μ

0 = (ε0, p0), the quantity p0,− = ε0 − p0,y plays an im-
portant role in the electron dynamics, due to the special
dependence of the plane wave on the space-time coordinates.
In fact, without taking into account radiation reaction, the
light-cone components p−(ϕ) = ε(ϕ) − py(ϕ), p⊥(ϕ), and
p+(ϕ) = [ε(ϕ) + py(ϕ)]/2 of the four-momentum pμ(ϕ) =
(ε(ϕ), p(ϕ)) of an electron (mass m) in the presence of the
mentioned plane wave are given by [1]

p−(ϕ) ≡ p0,−, (1)

p⊥(ϕ) = p0,⊥ − eA(ϕ), (2)

p+(ϕ) = m2 + p2
⊥(ϕ)

2p0,−
, (3)

where we have chosen the initial phase ϕi = 0. Further,
we have introduced the four-vector potential in Lorentz
gauge Aμ(ϕ) = (0,A(ϕ)) = (0,−E0F (ϕ) ẑ/ω0), with F (ϕ) =∫ ϕ

0 dϕ′ f (ϕ′). In order to describe the radiation of an electron
in a plane-wave field, we use the well-known single-photon
emission probability per unit of the laser phase ϕ and per unit
u = k−/(p− − k−) [16]

dPp−

dϕdu
= α√

3π

m2

ω0p−

1

(1 + u)2

[(
1 + u + 1

1 + u

)

×K 2
3

(
2u

3χ (ϕ,p−)

)
−

∫ ∞

2u/[3χ(ϕ,p−)]
dx K 1

3
(x)

]
, (4)

where we have introduced the variable k− = ω − ky for
the emitted photon with four-momentum kμ = (ω,k), where
Kν(x) is the modified Bessel function of νth order. The symbol
χ (ϕ,p−) in Eq. (4) indicates the phase-dependent quantum
nonlinearity parameter, which measures the importance of
quantum effects like photon recoil [6]. In our case this is
given by χ (ϕ,p−) = p−|E(ϕ)|/mEcr, with E(ϕ) = E0f (ϕ)
and with Ecr = m2/|e| = 1.3 × 1016 V/cm being the critical
field of QED [6]. Here the probability in Eq. (4) is averaged
over the initial electron spin and summed over the final
electron spin and photon polarization. Furthermore, Eq. (4)
is the photon emission probability in the case of a constant
crossed field of amplitude E with the substitution E → |E(ϕ)|,
and it is valid only in the quasistatic approximation [16]. In
turn, this approximation is valid if the relativistic parameter
ξ = |e|E0/mω0 of the plane wave is much larger than unity. In
fact, if λ0 = 2π/ω0 is the central wavelength of the plane wave
and thus the typical distance over which the plane wave varies,
the radiation formation length l0 of the photon production
process at ξ 	 1 is l0 = λ0/ξ and it is much smaller than λ0

[16].
In our approach, we describe the electron beam via an

electron distribution ne− (ϕ,p−). It is always assumed that the
electron distribution depends only on ϕ and on p−; i.e., the
motion along the perpendicular directions x and z is neglected
(see also Ref. [30] for a recent investigation of the influence
of RR effects on the electron transverse momentum). By
employing Eq. (2) with the initial condition p0,⊥ = 0, it can be
seen that the modulus of the transverse momentum | p⊥| has the
upper limit ∼mξ (note that for a laser field |F (ϕ)| ∼ 1) and, in
turn, that p+ does not exceed in order of magnitude the quantity
m2ξ 2/2p−. Thus, we can safely neglect the momentum
components p⊥ and p+ in our considerations in the case of
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ultra-relativistic electron bunches colliding head on with a
laser beam in which p∗

− 	 mξ , where p∗
− indicates the typical

value of the quantity p− of the electron distribution. In the case,
for example, of a typical energy ε∗ = 1 GeV (p∗

− ≈ 2 GeV)
and of an optical laser field of intensity 1023 W/cm2, with
ω0 = 1.55 eV, we obtain mξ � 78 MeV and p+ � 1.5 MeV,
which well fulfill the conditions | p⊥| � p∗

− and p+ � p∗
−

(we ensured that these conditions are fulfilled during the
whole interaction of the electron beam with the plane wave).
In general, electron-positron pairs are also produced in the
collision of the electron beam and the laser field, because the
electrons emit photons, which in turn can still interact with
the laser field [18,19]. The possibility of electron-positron pair
creation will be included in the kinetic approach, and its effects
will be discussed in Sec. IV. However, if we assume that the
typical value χ∗ = p∗

−E0/mEcr of the quantum nonlinearity
parameter does not largely exceed unity, we are allowed to
neglect pair production for the moment. In fact, we recall
that the probability of pair production contains an exponential
damping factor exp(−8/3�∗) [16], where �∗ = k∗

−χ∗/p∗
−,

with k∗
− < p∗

− being the typical value of the quantity k− of
the emitted photons (see Ref. [16]). In this framework and by
also neglecting radiative corrections, which are high order in
α, the kinetic equations [see Eq. (20.1) in Ref. [21], Ref. [24]
and Appendix A]

∂ne− (ϕ,p−)

∂ϕ
=

∫ ∞

p−
dpi,− ne− (ϕ,pi,−)

dPpi,−

dϕ dp−

− ne− (ϕ,p−)
∫ p−

0
dk−

dPp−

dϕ dk−
, (5)

∂nγ (ϕ,k−)

∂ϕ
=

∫ ∞

k−
dpi,− ne− (ϕ,pi,−)

dPpi,−

dϕ dk−
, (6)

with

dPpi,−

dϕ dp−
=

∣∣∣∣ du

dp−

∣∣∣∣dPpi,−

dϕ du

∣∣∣∣
u=(pi,−−p−)/p−

= pi,−
p2−

dPpi,−

dϕ du

∣∣∣∣
u=(pi,−−p−)/p−

, (7)

dPp−

dϕ dk−
= du

dk−

dPp−

dϕ du

∣∣∣∣
u=k−/(p−−k−)

= p−
(p− − k−)2

dPp−

dϕ du

∣∣∣∣
u=k−/(p−−k−)

, (8)

dPpi,−

dϕ dk−
= du

dk−

dPpi,−

dϕ du

∣∣∣∣
u=k−/(pi,−−k−)

= pi,−
(pi,− − k−)2

dPpi,−

dϕ du

∣∣∣∣
u=k−/(pi,−−k−)

, (9)

can be employed to calculate the phase evolution of the
electron distribution ne− (ϕ,p−) and of the photon distribution
nγ (ϕ,k−). This method provides a correct treatment of the
incoherent multiphoton emission and thus gives the possibility
of taking into account RR not only in the classical but also
in the quantum regime at moderate values of χ∗ (see also
the Appendix B and Ref. [13]). Note that the integral of
Eq. (5) over all momenta vanishes, which is in agreement

with the conservation of the total number of particles. Also, by
multiplying the kinetic equation of the electron and the photon
distributions by p− and k−, respectively, and then integrating
over all p− and k−, one obtains that

∂

∂ϕ

[ ∫ ∞

0
dp− ne− (ϕ,p−)p− +

∫ ∞

0
dk− nγ (ϕ,k−)k−

]
= 0,

(10)

expressing the conservation of the total energy minus the total
longitudinal momentum.

In the classical limit where quantum recoil effects are
negligible, i.e., at χ∗ � 1, Eq. (5) can be expanded in terms
of χ (ϕ,p−), as shown in Ref. [27]. Considering only the
terms proportional to χ2(ϕ,p−) Eq. (5) becomes the continuity
equation

∂ne− (ϕ,p−)

∂ϕ
= − ∂

∂p−

[
ne− (ϕ,p−)

dp−
dϕ

]
, (11)

where
dp−
dϕ

= −Icl(ϕ)

ω0
, (12)

with

Icl(ϕ) = 2
3αm2χ2(ϕ,p−) (13)

being the classical intensity of radiation. Equation (12) is
exactly the classical single-particle equation resulting from
the LL equation [8]. The analytical solution of Eq. (12) found
in Ref. [8],

p−(ϕ) = p0,−
h(ϕ)

, (14)

where

h(ϕ) = 1 + 2

3
α

p0,−
ω0

E2
0

E2
cr

∫ ϕ

0
dφf 2(φ), (15)

shows that the final value p−(∞) depends on the plane-wave’s
parameters only through the total fluence

� = E2
0

ω0

∫ ∞

0
dφf 2(φ). (16)

Since the analytical solution for the single-particle equation
is known, the method of characteristics can be employed
to determine the solution of Eq. (11). In fact, if the initial
distribution ne− (0,p−) is given by the Gaussian distribution

ne− (0,p−) = Ne−√
π/2σp− [1 + erf(p∗−/

√
2σp− )]

× exp

[
− (p− − p∗

−)2

2σ 2
p−

]
, (17)

where p∗
− is the average value of p−, σp− is the standard

deviation [31], Ne− is the total number of electrons, and erf(x)
is the error function, then the solution of Eq. (11) reads (see
Ref. [27])

ne− (ϕ,p−) = Ne−√
π/2σp− [1 + erf(p∗−/

√
2σp− )]g2(ϕ,p−)

× exp

{
− 1

2σ 2
p−

[
p−

g(ϕ,p−)
− p∗

−

]2}
, (18)
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FIG. 1. (Color online) Phase evolution of the electron distribution (a) as a function of p−/2 ≈ ε and the photon spectrum (b) as a function
of k−/2 ≈ ω for the shape function f1(ϕ).

with

g(ϕ,p−) = 1 − 2

3
α

p−
ω0

E2
0

E2
cr

∫ ϕ

0
dφf 2(φ). (19)

Since p0,− in Eq. (14) is positive for finite values of p0,y

and p0,− → 0 only at py → +∞, the function g(ϕ,p−)
must be non-negative for all values of ϕ, and the equa-
tion g(ϕ,p−,max) = 0 fixes the maximum value p−,max =
p−,max(ϕ) allowed for the variable p− at each ϕ. Equation (18)
also indicates that the final electron distribution depends on
the plane wave’s pulse shape only via the fluence.

Now, the leading quantum corrections to the classical
kinetic equation (11) were shown to change the structure
of the latter from a Liouville-like to a Fokker-Planck-like
equation [27]. This implies that the corresponding single-
particle equation becomes a stochastic differential equation. In
turn, the full quantum calculations predict a broadening of the
electron energy distribution explained by the stochastic nature
of photon emission [27], whereas in the classical regime,
RR was shown to reduce the energy width of laser-produced
electron [32] and ion bunches [33–36].

III. PULSE-SHAPE EFFECTS

In this section we study the influence of the laser pulse
form f (ϕ) on the electron and photon distributions, by
solving numerically the kinetic equations (5)–(6). Envisaging
an experimental investigation of these effects, we focus on
laser pulses at a given pulse fluence that can be modified
in pulse shape and pulse duration via the various available
pulse-shaping techniques (see, e.g., Ref. [37] for a discussion
of pulse-shaping techniques in the context of high harmonic
generation). We mention that in all our numerical calculations
we applied a finite difference method. In the following
simulations we will always assume a central angular frequency
of the laser field corresponding to the laser photon energy
ω0 = 1.55 eV.

First, we consider two different shapes of the laser pulse
at a given pulse fluence and pulse duration. The incoming
electron beam is described by the Gaussian beam in Eq. (17)
with Ne− = 1000, p∗

− = 1.4 GeV, corresponding to an average
energy of ε∗ ≈ 700 MeV and with σp− = 0.14 GeV. We
considered two pulses of 20 cycles (final phase ϕf = 40π ), the
first one described by the function f1(ϕ) = sin(ϕ) sin2(ϕ/40),

with a peak intensity of I0,1 = 1022 W/cm2, and the second
one by the function

f2(ϕ) =
⎧⎨
⎩

sin(ϕ) sin2
(

ϕ

4

)
if ϕ ∈ [0,2π ]

sin(ϕ) if ϕ ∈ [2π,38π ]
sin(ϕ) sin2( ϕ−36π

4 ) if ϕ ∈ [38π,40π ].
(20)

The peak intensity for the second pulse is I0,2 = 4 ×
1021 W/cm2, which leads to the same fluence � = 1.3 ×
109 J/cm2 for both pulses. The difference between the two
pulses is that for the second pulse the intensity increases
and decreases steeply over just one laser cycle instead of
the smooth alteration over the whole pulse length in case
of the first pulse. For the above physical scenario we have
that the relativistic parameter ξ and the quantum nonlinearity
parameter χ∗ are ξ1 = 48 and χ∗

1 = 0.40 for the pulse
shape f1(ϕ), and ξ2 = 31 and χ∗

2 = 0.25 for the pulse shape
f2(ϕ). Thus, since in both cases it is ξ 	 1, the quasistatic
approximation can be applied. We note that for the above
numerical parameters we are slightly below the quantum
radiation-dominated regime, which is characterized by the
conditions RQ = αξ ∼ 1 and χ∗ � 1 [13]. The evolution of
the electron distributions ne− (ϕ,p−) and the photon spectra
nγ (ϕ,k−)k− is shown in Fig. 1 for the pulse shape f1(ϕ) and
in Fig. 2 for the pulse shape f2(ϕ). In Fig. 1(b) it can be
seen, that for the pulse shape f1(ϕ) the electrons emit less
energy at the beginning and more at the peak of the pulse.
On the contrary, for the pulse shape f2(ϕ) [see Fig. 2(b)],
the emission of photons starts almost immediately, because
the laser profile increases to the maximum value only over
one cycle. This effect is also visible in the evolution of the
electron distributions in Fig. 1(a) and Fig. 2(a). Also, since the
emission probability increases at higher intensities [see also
the final photon spectra in Fig. 3(b)], the photon yield for the
pulse shape f2(ϕ) exceeds the photon yield for the pulse shape
f1(ϕ) due to the longer interaction time at a higher intensity.
Thus, the electrons lose more energy in the collision with the
laser with the shape function f2(ϕ). We point out that, since the
final electron distribution according to the classical analytical
solution in Eq. (18) depends only on �, the differences between
the two final electron distributions [see Fig. 3(a)] are due to
quantum effects in the interaction. This is in agreement with
the values χ∗

1 = 0.40 and χ∗
2 = 0.25 of the typical quantum

nonlinearity parameter for the pulse shapes f1(ϕ) and f2(ϕ),
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FIG. 2. (Color online) Phase evolution of the electron distribution (a) as a function of p−/2 ≈ ε and the photon spectrum (b) as a function
of k−/2 ≈ ω for the shape function f2(ϕ).

respectively, which are not significantly smaller than unity.
Note that these effects are however smaller than that reported
in Ref. [27], which remains the more prominent signature
of quantum RR. We also observe that the average value of
the quantity p− at the end of the interaction of the electron
bunch with the laser field (∼500 MeV) is still much larger
than the typical transverse momentum mξ (∼25 MeV for the
pulse shape f1(ϕ) and ∼16 MeV for the pulse shape f2(ϕ)) [in
this respect, see also Eq. (3) in the Supplemental Material of
Ref. [27]]. We have ensured that this condition is also fulfilled
in the other numerical examples presented below. In addition,
even though we have not considered here the dynamics of the
beam in the transverse direction, we expect from the analytical
solution of the LL equation (see Ref. [8]) that radiation reaction
does not significantly decrease the transverse momentum of an
electron (with respect to the case without radiation reaction),
as |pz(ϕ)| ∼ mξ | ∫ ϕ

0 dφ h(φ)f (φ)|/h(ϕ) � mξ , with the func-
tion h(ϕ) given in Eq. (15), and px(ϕ) ≡ 0.

Now, we perform a different comparison of two pulses
having the same fluence and the same pulse shape but with
different durations and then peak intensities. By keeping the
sin2-pulse form, we consider a two-cycle pulse (ϕf = 4π ),
i.e., f (ϕ) = f3(ϕ) = sin(ϕ) sin2(ϕ/4), with peak intensity
I0,3 = 4 × 1022 W/cm2 and a 40-cycle pulse (ϕf = 80π ),
i.e., f (ϕ) = f4(ϕ) = sin(ϕ) sin2(ϕ/80), with peak intensity

I0,4 = 2 × 1021 W/cm2. For both pulses the fluence � is
equal to 5 × 108 J/cm2. The initial Gaussian electron beam is
centered around p∗

− = 1.6 GeV, corresponding to an average
energy of ε∗ ≈ 800 MeV, and it has a standard deviation of
σp− = 0.16 GeV. For such an initial electron distribution the
quantum nonlinearity parameter χ∗ is about unity for the
shorter pulse, whereas the relativistic parameter is ξ3 = 97
such that RQ ≈ 0.7, i.e., the process occurs in the quantum
radiation-dominated regime. The results of our simulations
are shown in Fig. 4 for the pulse shape f3(ϕ) and in
Fig. 5 for the pulse shape f4(ϕ). For the two-cycle pulse we
observe a completely different phase evolution of the electron
distribution than in the previous example. In Fig. 4(a) it is
visible that the electron distribution significantly broadens as
soon as the laser pulse intensity reaches its maximum and
thereby loses its Gaussian shape. Whereas, it can be seen in
Fig. 5(a), that the changes in the electron distribution are rather
smooth for the longer pulse described by the shape function
f4(ϕ), and the Gaussian shape of the electron distribution
is almost conserved. The electron distributions appear to be
very sensitive to quantum effects also in the case of the
shape function f4(ϕ), where χ∗

4 ≈ 0.2 (ξ4 = 22). In fact, the
stochasticity of the photon emission cannot be neglected in
the quantum regime. In contrast to the classical regime, where
the effects of RR are predicted to strongly narrow the electron
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FIG. 4. (Color online) Phase evolution of the electron distribution (a) as a function of p−/2 ≈ ε and the photon spectrum (b) as a function
of k−/2 ≈ ω for the shape function f3(ϕ).

distribution, the stochastic nature of quantum emission induces
a broadening in the quantum regime [27]. We mention here that
we ensured that for values of χ∗ smaller than or of the order
of 0.01, the classical and the quantum predictions are found to
practically coincide. As in the previous example, we consider
the final electron distribution and photon spectrum in more
detail, as they can be more relevant from an experimental
point of view (see Fig. 6). As we have already pointed out,
according to the classical result in Eq. (18) following from
the LL equation the final electron distribution does depend
only on the fluence of the laser field, which is the same for
the two pulse shapes. Thus, the differences between the two
electron distributions in Fig. 6(a) arise, as in the previous
example, due to quantum effects. We also note that the photon
spectrum has its maximum at lower energies for the 40-cycle
pulse, and its yield is much higher than for the two-cycle
pulse, due to the longer interaction even though at lower laser
intensity. Finally, we observe that for the two-cycle pulse,
where quantum effects are larger, the photon spectrum is
peaked at k∗

− ≈ 0.2 GeV. Since the probability of pair creation
is approximately suppressed by η(k∗

−) = exp(−8/3�∗), with
�∗ = k∗

−χ∗/p∗
− (see Ref. [16]), we conclude that for the

peak of the photon spectrum η(k∗
−) ∼ 10−12 and thus that

pair production is negligible, as initially assumed. Further, we
ensured that numerical calculations including pair production
(see Sec. IV) lead to the same results. In addition, assuming
a nowadays feasible total number of Ne− = 6 × 108 electrons

(corresponding to a total charge of Q = 100 pC) [38] we give
the estimated number of emitted photons Nγ for the numerical
simulations above. In the case of the shape functions f1(ϕ)
and f2(ϕ), we obtain Nγ = 9.5 × 109 and Nγ = 1.1 × 1010,
respectively, whereas in the case of the shape functions f3(ϕ)
and f4(ϕ) it results in Nγ = 1.8 × 109 and Nγ = 8.5 × 109,
respectively.

IV. PAIR PRODUCTION

In this section we include the effect, that photons emitted
during the interaction of the electron beam and the laser field
may create electron-positron pairs by interacting with the laser
field itself (see, e.g., Refs. [24–26] for similar studies). As
was pointed out in Ref. [24], however, in the present setup
radiation-reaction effects, i.e., the fact that for any elementary
process (photon emission and pair photo-production) each
final particle has a value of the minus momentum smaller than
the initial particle, makes the generation of a QED cascade
impossible. Now, we include terms corresponding to pair
production in the kinetic equations (5) and (6) to investigate
the dynamics of this process together with photon emission.
Since an intense laser plane-wave field (ξ 	 1) is considered,
we are allowed to neglect pair-production processes of higher
order, e.g., the direct production of a pair by an electron via
the emission of a virtual photon [18,19]. Here, again all the
probabilities are averaged over the initial photon polarization
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k−/2 ≈ ω for the shape functions f3(ϕ) (solid, red line) and f4(ϕ) (dashed, green line).

and summed over the final electron and positron spin. The
probability that a photon with momentum k− produces a pair
with particles’ momenta p− and k− − p− per unit phase ϕ and
per unit p− is given by (see Ref. [16])

dPk−

dϕ dp−
= α√

3π

m2

ω0k
2−

[
k2
−

p−(k− − p−)
K 2

3
(κ(ϕ,k−,p−))

−
∫ ∞

κ(ϕ,k−,p−)
dx K 5

3
(x)

]
, (21)

where κ(ϕ,k−,p−) = 2k2
−/[3p−(k− − p−)�(ϕ,k−)], with

�(ϕ,k−) = (k−/m)|E(ϕ)|/Ecr. By including the process of
pair production and by introducing the distribution function
ne+ (ϕ,p−) for the created positrons, we obtain the set of kinetic
equations [see Eq. (20.1) in Ref. [21] and also Ref. [24]]

∂ne−(ϕ,p−)

∂ϕ
=

∫ ∞

p−
dpi,− ne− (ϕ,pi,−)

dPpi,−

dϕ dp−

− ne− (ϕ,p−)
∫ p−

0
dk−

dPp−

dϕ dk−

+
∫ ∞

p−
dk− nγ (ϕ,k−)

dPk−

dϕ dp−
, (22)

∂ne+(ϕ,p−)

∂ϕ
=

∫ ∞

p−
dpi,− ne+ (ϕ,pi,−)

dPpi,−

dϕ dp−

− ne+ (ϕ,p−)
∫ p−

0
dk−

dPp−

dϕ dk−

+
∫ ∞

p−
dk− nγ (ϕ,k−)

dPk−

dϕ dp−
, (23)

∂nγ (ϕ,k−)

∂ϕ
=

∫ ∞

k−
dpi,− [ne− (ϕ,pi,−) + ne+ (ϕ,pi,−)]

× dPpi,−

dϕ dk−
− nγ (ϕ,k−)

∫ k−

0
dp−

dPk−

dϕ dp−
.

(24)

Note that the electron distribution function is no longer
decoupled from the photon distribution function and thus the
final electron distributions will be affected by the evolution of

the photon spectrum. Although the total number of particles
is no longer conserved, the integral over all momenta of the
difference of Eq. (22) and Eq. (23) vanishes, which implies
the conservation of the total charge. Further, the conservation
of the total energy minus the total longitudinal momentum is
ensured by the analog of Eq. (10)

∂

∂ϕ

[ ∫ ∞

0
dp− ne− (ϕ,p−)p− +

∫ ∞

0
dp− ne+ (ϕ,p−)p−

+
∫ ∞

0
dk− nγ (ϕ,k−)k−

]
= 0. (25)

In order to investigate the dynamics of the created particles
and how the pair creation process affects the dynamics of
the electrons and photons in the regime χ∗ > 1, we consider
different numerical examples below. Note that the quantum
nonlinearity parameter cannot be increased to arbitrary values
in our approach, since the energy loss of the electrons due
to photon emission would imply a violation of the validity
condition p∗

− 	 mξ of our approach during the laser-particles
interaction. However, we ensured that all our approximations
are valid throughout the entire numerical simulations.

First, we consider that a 20-cycle sin2-pulse, i.e., f (ϕ) =
f5(ϕ) = sin(ϕ) sin2(ϕ/40), with laser peak intensity I0,5 =
4.2 × 1021 W/cm2 collides with an initially Gaussian electron
distribution with p∗

− = 100 GeV (ε∗ ≈ 50 GeV) and σp− =
10 GeV that is normalized to unity. These numerical values
correspond to the relativistic parameter ξ5 = 31 and to the
quantum nonlinearity parameter χ∗

5 = 19. The evolutions of
the electron distribution, of the positron distribution, and of the
photon spectrum are shown in Fig. 7. In Fig. 7(a) it can be seen
that during the interaction with the laser pulse the electrons
lose a large amount of their initial momentum due to the
emission of photons. As expected, the so-generated photons
have a sufficiently high energy to produce electron-positron
pairs. This implies a decrease of the yield of high-energetic
photons in the final photon spectrum and, of course, increases
the number of charged particles. In this case, the ratio of the
final and the initial number of electrons is approximately 1.56
corresponding to a growth of the number of electrons by more
than 50%. Mainly the energy of the created particles is much
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FIG. 7. (Color online) Phase evolution of the electron (a) and positron distribution (b) as functions of p−/2 ≈ ε and of the photon spectrum
(c) as a function of k−/2 ≈ ω for the shape function f5(ϕ).

smaller than the initial energy of the electrons [see Fig. 7(b)],
which can be explained by the fact that emitted photons must
have a smaller energy than the emitting electrons and that,
in addition, the energy of these photons is split up into two
particles in the pair-production process. Since the evolution
of the distribution functions shown in Fig. 7 already includes
the coupled dynamics of electrons, positrons, and photons,
it is not directly evident how radiation and pair-production
processes affect the evolution of each distribution function. In
order to gain a deeper understanding of the interplay of the
particles, we simulated the same collision process as before
but artificially switched off once pair creation and then the
radiation of the created positrons. The final distributions of
these calculations are shown in Fig. 8. As, by construction, the
positron distribution vanishes identically without the inclusion
of pair production, Fig. 8(b) shows only the final distribution
functions for the full dynamics and the one where radiation
by positrons is excluded. Further, it can be seen in Fig. 8(a)
and Fig. 8(c) that the inclusion of pair creation drastically
changes the final electron distribution and photon spectrum.
The high-energy part of the photon spectrum is significantly
decreased, as in the pair creation process the photon is
transformed into a pair of charged particles also corresponding,
in turn, to an increase in the low-energy part of the final energy

distribution of the electrons, whereas the electron distribution
at very high energies is not altered, because the produced
particles are mostly created at smaller energies. Moreover, the
photon gain is enlarged for smaller photon energies, due to
the additional emission of the increased number of charged
particles. In fact, the inclusion of RR for positrons shifts the
final energy distribution to lower energies [see Fig. 8(b)];
i.e., the created particles are able to interact with the laser
background field after the pair production and in turn will
emit photons. In accordance with the argument above, this
results in an enlarged photon gain for lower photon energies.
Furthermore, the radiation emitted by the positrons barely
affects the evolution of the electrons leading to a slightly higher
energy spectrum [see Fig. 8(a)]. In this case, the produced
positrons had a sufficiently high energy to emit photons that
were enabled to again create a small number of pairs during
the remaining interaction time with the laser pulse.

Now, we want to examine the influences of the initial
energy of the electrons and the laser peak intensities on
the final electron and positron distributions and on the
photon spectrum. As in Sec. III, we will again consider
laser pulses at a given pulse fluence that can experimentally
be modified via pulse shaping. Therefore, we consider two
initially Gaussian electron distributions the first as before with
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− = 100 GeV (ε∗ ≈ 50 GeV).

p∗
− = 100 GeV (ε∗ ≈ 50 GeV) and σp− = 10 GeV and the

second with p∗
− = 10 GeV (ε∗ ≈ 5 GeV) and σp− = 1 GeV,

which are both normalized to unity. We consider these two
electron distributions to collide with three different laser
pulses that have the same fluence � = 5.2 × 108 J/cm2 and
a sin2 pulse form, i.e., f (ϕ) = sin(ϕ) sin2(ϕ/2NL), but differ
in the number of laser cycles NL and the laser peak inten-
sities. Thus, we have chosen laser peak intensities of I0,5 =
4.2 × 1021 W/cm2 for f5(ϕ) = sin(ϕ) sin2(ϕ/40) (ϕf = 40π ,
ξ5 = 31 and χ∗

5 = 19), I0,6 = 1.7 × 1022 W/cm2 for f6(ϕ) =
sin(ϕ) sin2(ϕ/10) (ϕf = 10π , ξ6 = 63 and χ∗

6 = 37), and
I0,7 = 1023 W/cm2 for f7(ϕ) = sin(ϕ) sin2(ϕ/2) (ϕf = 2π ,
ξ7 = 153 and χ∗

7 = 91) corresponding to pulse durations
of 60 fs, 15 fs, and 3 fs, respectively. In Fig. 9 the final
electron and positron distributions as well as the photon
spectra are shown for the three collisions with the first electron
distribution. In agreement with our previous results, the photon
yield is higher for the 20-cycle pulse than for both the five-cycle
pulse and the one-cycle pulse. The reason again is the longer
interaction time of the electrons with the laser field, although
the laser peak intensity is smaller. Since the initial energy of
the electrons and the laser intensities are sufficiently high to
produce many high-energetic photons during the interaction,
the number of pairs produced by the longer pulses also exceed
the number produced by the one-cycle pulse (see Fig. 9).
In fact, the ratio of the final and the initial electron number

is reduced to 1.06 for the one-cycle pulse, even though in
comparison with the 20-cycle pulse the laser peak intensity
is larger by a factor of 24. In prospect of an experimental
investigation, an electron bunch with typical charge Q ≈ 100
pC corresponding to a total initial number of Ne− = 6 × 108

electrons is considered in order to achieve estimates for the
final number of produced positrons Ne+ and photons Nγ . From
our numerical simulations, we conclude that for the shape func-
tion f5(ϕ) it is Ne+ = 3.3 × 108 and Nγ = 5.5 × 109, whereas
for f6(ϕ) it results that Ne+ = 1.3 × 108 and Nγ = 1.7 × 109,
and for f6(ϕ) we obtain Ne+ = 3.4 × 107 and Nγ = 5.5 × 108.

Since for the second electron distribution centered at p∗
− =

10 GeV the value χ∗ is reduced by a factor of 10, the value �∗
also will be decreased, and quantum effects and pair production
are expected to be less prominent. The final distribution
functions for the collision of this electron distribution and
the aforementioned three laser pulses are shown in Fig. 10. As
in the simulations above the electrons lose most of their energy
in the collision with the 20-cycle pulse. On the other hand, the
shorter pulses lead to much broader final electron distributions
and the initial peak around p∗

− = 10 GeV (ε∗ ≈ 5 GeV) is still
pronounced for the one-cycle pulse. Although this results once
more in a much larger photon yield for the long pulse, the
spectrum has its maximum at smaller values of k− than in the
previous example [see Fig. 10(c)]. Thus, the typical value �∗
is decreased significantly leading to a lower pair-production
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probability. In fact, the number of produced pairs by the shorter
pulses now exceeds the one produced by the 20-cycle pulse.
Even though the total gain of photons is larger in the case of the
long pulse, the energy of the emitted photons and the laser peak
intensity are not sufficiently high to create a large number of
pairs. However, for the five-cycle pulse the number of produced
particles is slightly higher than for the shortest pulse; i.e., the
laser peak intensity is high enough in this case to obtain
the beneficial effects of the longer interaction time also in the
positron yield [see Fig. 10(b)]. As in the previous examples,
estimations for the final Ne+ and Nγ are given for an electron
bunch with total initial number of Ne− = 6 × 108 electrons.
Hence, in the case of f5(ϕ) one obtains Ne+ = 5.8 × 106 and
Nγ = 5.6 × 109, whereas in the case of f6(ϕ) [f7(ϕ)] it results
in Ne+ = 1.6 × 107 and Nγ = 2.5 × 109 [Ne+ = 1.4 × 107

and Nγ = 1.0 × 109].
Finally, we give an estimation for the laser peak intensities

at which electron-positron pairs will be detectable for currently
available laser accelerated electron beams [38]. Therefore,
a Gaussian electron beam centered at p∗

− = 4 GeV (ε∗ ≈
2 GeV) and σp− = 0.2 GeV with again a total number of
Ne− = 6 × 108 electrons is considered to collide with 10-cycle
sin2-shaped laser pulses with different peak intensities. Con-
sidering that the detection of a few tens of positrons is feasible,
pair production should be measurable at an intensity of
I0 = 1.5 × 1021 W/cm2, which would lead to a total number
of 26 created positrons. For a slightly lower electron energy
p∗

− = 2 GeV (ε∗ ≈ 1 GeV) the production of 19 pairs already
requires an increased intensity of I0 = 5 × 1021 W/cm2,
indicating that an increase in the beam energy is more favorable
in the studies of pair production.

V. CONCLUSION

In the present paper we have investigated how the pulse
shape of the laser and its duration influence the evolution
of an electron beam which collides head on with the laser
pulse. By employing a kinetic approach, we have included
quantum radiation-reaction effects, in a regime where they
mainly stem from multiple incoherent photon emission. In
particular, we have investigated the dependence of the final
electron distribution and of the final photon spectrum on the
pulse shape and on the duration of pulses with the same
fluence. By keeping the laser fluence fixed, we ensure that the
classical theory of radiation reaction based on the Landau-
Lifshitz equation predicts that the final electron spectrum
and the total electromagnetic energy emitted by the electrons
are the same for different pulses. Thus, possible differences
in such observables indicate an interplay of quantum and
radiation-reaction effects. Our numerical simulations show
that already for χ∗ = 0.2–0.3 the final electron distribution
and final photon spectrum are altered by quantum radiation
reaction effects. Our results also indicate that these quantum
radiation-reaction effects are measurable in principle already
at available laser intensities of the order of 1022 W/cm2 [39]
and at electron bunch energies of the order of 1 GeV [38].

Furthermore, we have studied how electron-positron pair
creation affects the dynamics of the charged particles and
photons. The inclusion of electron-positron pair production
was shown to significantly decrease the high-energy part of

the photon spectra and to increase the low-energy part of the
electron and positron distribution, due to the enhanced number
of charged particles. Moreover, a weak nonlinear coupling of
all three distribution functions became apparent in the fact that
the radiation of positrons can (slightly) alter the final electron
distribution. Since at a fixed laser fluence the photon gain was
found to be higher for longer pulses (though with smaller peak
intensity), the creation process is amplified if the initial energy
of the electrons is sufficiently high. Finally, we estimated
that currently high-intensity laser facilities [39], as well as
high-energy electron beams [38], allow in principle for an
experimental detection of pair creation in an all-optical setup.

APPENDIX A: ON THE DERIVATION OF
THE KINETIC EQUATION (5)

In this appendix we revise a step in the derivation of the
kinetic equation (5) of the main text given in the Supplemental
Material of Ref. [27]. We point out, however, that the final
form of this equation is unchanged.

In the Supplemental Material of Ref. [27], the elec-
tron distribution function fe− (φ,T ,r⊥,p−, p⊥) has been
assumed to have the structure fe− (φ,T ,r⊥,p−, p⊥) =
δ( p⊥)ρe− (φ,T ,r⊥,p−) corresponding to a distribution that is
“infinitely” peaked at p⊥ = 0 throughout the whole interaction
of the electron beam with the laser plane-wave field. Here, we
used the light-cone coordinates φ = t − y, T = (t + y)/2 and
r⊥ = (x,z), and the corresponding quantities p− = ε − py ,
p+ = (ε + py)/2 and p⊥ = (px,pz). However, the specific
choice of the delta function is not essential for the derivation
of the kinetic equation. We remind readers that a basic
assumption in our approach is that mξ � ε, which allows
us already to neglect the terms proportional to the transverse
momenta and to p+ ∼ (m2 + p2

⊥)/ε2 in Eq. (2) in the
Supplemental Material of Ref. [27]. Thus, by considering still
a well-peaked function, e.g., a Gaussian, but also allowing
for a finite transverse momentum evolving in phase, we
can seek for a solution of the form fe− (φ,T ,r⊥,p−, p⊥) =
ge− (φ, p⊥)ρe− (φ,T ,r⊥,p−). Since ρe− (φ,T ,r⊥,p−) can be
factorized by ρe− (φ,T ,r⊥,p−) = fT (T )f⊥(r⊥)ne− (φ,p−), we
employ the modified ansatz in the approximated kinetic
equation mentioned in the Supplemental Material of Ref. [27]
and obtain the following equation [which replaces Eq. (6) in
the Supplemental Material of Ref. [27]]:[

∂

∂φ
+ eE(φ)

∂

∂pz

]
ge−(φ, p⊥)ne−(φ,p−)

= ge− (φ, p⊥)

[ ∫ ∞

0
dk−

dP (φ; p− + k− → p−)

dφ dk−
× ne− (φ,p− + k−) − ne− (φ,p−)

×
∫ ∞

0
dk−

dP (φ; p− → p− − k−)

dφ dk−

]
. (A1)

We recall that in deriving this equation, we have also assumed
that the emission of photons does not significantly broaden the
electron distribution in the transverse momenta with respect
to the broadening already induced by the laser field (i.e.,
by the Lorentz force). Within our model, this assumption is
justified as in the ultrarelativistic regime the electrons mainly
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emit along the instantaneous propagation direction [21], i.e.,
almost along the negative y direction in the present case (see
also the Supplemental Material of Ref. [27]). For the sake of
consistency, in our simplified model, we have neglected the
small angular spreading (of the order of mξ/ε � 1) brought
about by the Lorentz force as well as by the emission of photons
off-axis. Now, the function ge−(φ, p⊥) can be chosen to satisfy
the Liouville-like equation[

∂

∂φ
+ eE(φ)

∂

∂pz

]
ge− (φ, p⊥) = 0. (A2)

If ge− (0, p⊥) is a given function g̃( p⊥) well peaked around
p⊥ = 0 [in the limiting case, it could also be g̃( p⊥) = δ( p⊥)],
then the solution of Eq. (A2) is ge−(φ, p⊥) = g̃( p⊥ + eA(φ)),
where A(φ) = (0,0,− ∫ φ

0 dφ′E(φ′)) [see also Eq. (2) in the
main text]. Thus, the evolution of the transverse electron
momentum driven by the external plane-wave field decouples
from the longitudinal one, and we again obtain that the
reduced distribution function ne− (φ,p−) satisfies Eq. (7) in
the Supplemental Material of Ref. [27].

APPENDIX B: THE MICROSCOPIC APPROACH

In this appendix the results of the so-called microscopic
approach developed in Ref. [13] are compared with the
“macroscopic” kinetic approach employed here. In the mi-
croscopic approach the starting point to calculate the photon
spectrum is the probability that a single electron emits more
than one photon incoherently. The single-photon spectrum is
then obtained by essentially integrating over the degrees of
freedom of all emitted photons except one. In the microscopic
approach one avoids the solution of the kinetic integro-
differential equations (5)–(6). However, the calculation of
multi-dimensional integrals is required, with dimensionality
increasing with the number of photons emitted. In the
numerical example considered in Ref. [13] the spectrum was
found to converge after the inclusion of 16 photons and the
corresponding multidimensional integrals were evaluated via
the Monte Carlo method. For the sake of comparison with that
numerical example, we consider a two-cycle sinusoidal pulse,
i.e., f (ϕ) = sin(ϕ), with a peak intensity of I0 = 1023 W/cm2

and again with ω0 = 1.55 eV (note that in Ref. [13] the given
value of the intensity was the average one). We center the
initial Gaussian electron distribution around ε∗ = 1 GeV (cor-

0.1

1

0.0001 0.001 0.01 0.1 1

n
γ
(ϕ

f
,k

−)
k
−

Quantum with RR

Quantum without RR

Classical with RR

Classical without RR

FIG. 11. (Color online) Photon emission spectra: solid, red
line (quantum spectrum with RR effects), long dashed, dark
blue line (quantum spectrum without RR effects), short dashed,
light-blue line (classical spectrum with RR effects), and dot-dashed,
green line (classical spectrum without RR effects).

responding to the value p∗
− ≈ 2 GeV employed in Ref. [13])

and consider a standard deviation of σp− = 0.1 GeV. In order
to compare with the single-particle approach in Ref. [13]
and with the numerical results presented in Fig. 2 there, we
fix Ne− = 1, and we show the photon spectra with respect
to the normalized quantity � = k−/p∗

−. The resulting final
photon spectrum is the quantum photon spectrum including RR
effects, i.e., multiple incoherent photon emissions, shown in
Fig. 11 as a solid, red line. The quantum spectrum without RR
is obtained by averaging the single-photon emission spectrum
[see Eq. (4)] with respect to the initial electron distribution.
On the other hand, the classical spectrum without RR effects
can be obtained by multiplying the single-photon emission
probability in Eq. (4) with 1 + u ≈ 1 and u ≈ k−/p− by k−,
and the classical RR effects can be included by employing the
analytical expression of p−(ϕ) in Eq. (14) according to the LL
equation. A comparison of the quantum spectrum including
RR effects in Fig. 11 (solid, red line), with the solid black line
in Fig. 2 in Ref. [13], shows the excellent agreement of the
results in the two different approaches.
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