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Elastic multibody interactions on a lattice
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We show that by coupling two hyperfine states of an atom in an optical lattice one can independently control
two-, three-, and four-body on-site interactions in a nonperturbative manner. In particular, under typical conditions
of current experiments, one can have a purely three- or four-body interacting gas of 39K atoms characterized by
on-site interaction shifts of several 100 Hz.
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Effective multibody interactions can arise even in a purely
two-body interacting system when one integrates out some
of its (high-energy) degrees of freedom or substitutes the
actual two-body potential by a pseudopotential. Such effective
forces are important in many fields from nuclear and high-
energy physics to ultracold gases. A textbook example is the
appearance of an effective three-body force in the zero-range
pseudopotential description of the hard-sphere Bose gas [1,2].
Inclusion of a three-body renormalizing potential (three-body
parameter) is unavoidable for a resonantly interacting Bose gas
[3]. We can name a few other systems for which multibody
interactions are important. The quasi-one-dimensional (1D)
Bose gas is kinematically 1D, but virtual transversal exci-
tations lead to the appearance of local three-body terms in
the corresponding effective 1D model and break integrability
[4–6]. Similar terms enter the single-Landau-level description
of quantum Hall systems when one takes into account virtual
excitations to other Landau levels [7–9]. Inclusion of these
small corrections can lead to qualitative modifications of the
phase diagram and can stabilize phases otherwise predicted
to be unstable. For bosonic atoms in an optical lattice,
effective multibody interactions emerge when one reduces
this continuum system to the single-band Hubbard model
[10–13]. In spite of their weakness compared to the two-
body interaction, they can be measured spectroscopically [14]
and give rise to a peculiar collapse and revival dynamics
[15–18].

In recent years various possibilities to independently con-
trol multibody interactions have been discussed and a number
of more or less technically complicated schemes have been
suggested [19–29]. The task is not straightforward but highly
rewarding because of many potentially interesting implica-
tions, in particular, for the creation of topological quantum Hall
phases [30], stabilizing paired bosonic superfluids [22,31–34],
observing self-trapped droplets [35], and other phenomena
[36–43].

A system in which the (effective) three-body interaction
is strong and the (effective) two-body one is negligible is
unnatural but not impossible. It requires that the two-body
scattering amplitude vanish but the wave function nevertheless
differ from the truly noninteracting one. This difference can
be thought of as a virtually excited two-body state which
can scatter other particles. The resulting multibody interactions
can thus become strong for sufficiently exotic interaction
potentials or single-particle wave functions. In Ref. [29] we
have considered the interlayer potential for dipoles in the
bilayer geometry and have shown a way to tune it to a two-body

zero crossing, at the same time obtaining a strong three-body
repulsion.

In this Rapid Communication we extend this idea to a
two-component Bose gas in an optical lattice. In this case one
can make single-particle wave functions exotic by coupling
two internal states with a nearly resonant field (the so-called
free-free transition [44]). By varying the corresponding Rabi
frequency � and detuning � one can rotate the wave function
in the space of the two dressed states and thus tune the two-
body interaction, for instance, to a zero crossing. We show that
in contrast to what one can obtain near a usual Feshbach zero
crossing [45–47], in our case multibody interactions can be
made much stronger and elastic. Curiously, the same technique
without additional efforts can be used to make the two- and
three-body interactions vanish while keeping a finite four-body
one. We discuss implications of these results for current exper-
iments and show that favorable conditions (suitable window
of inter- and intrastate scattering lengths) are provided by
hyperfine states F = 1,mF = 0 and F = 1,mF = −1 of 39K.

Considering the frequency of the hyperfine transition
(typically 107–108 Hz) the largest energy scale in our problem
we write the Hamiltonian in the rotating wave approximation
as
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where �
†
σ r is the creation operator of a boson in the internal

(dressed) state σ (= ↑,↓) with coordinate r , Vext is the external
potential of the optical lattice, and Vσσ ′(r) are the short-
range interparticle interactions, which are characterized by
the s-wave scattering lengths aσσ ′ , and we adopt the units
� = m = 1.

For a single particle, the orbital and spinor degrees of
freedom, respectively described by the first and second lines
in Eq. (1), decouple. The former is characterized by the
usual band structure in the periodic potential Vext and the
diagonalization of the latter gives two spinor eigenstates split
in energy by

√
�2 + �2. We will assume that the temperature

of the system is lower than this spinor gap so that the gas is
effectively spinless. However, this gap should not be too large
in order to allow for virtual excitations of the upper spinor

1050-2947/2014/90(2)/021601(5) 021601-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.90.021601


RAPID COMMUNICATIONS

D. S. PETROV PHYSICAL REVIEW A 90, 021601(R) (2014)

branch during collisions. The lower the gap, the stronger are
the multibody interactions.

Let us introduce the bare on-site interaction shifts gσσ ′ .
In the harmonic approximation for the on-site confinement
they equal gσσ ′ = √

2/πaσσ ′/lxlylz, where lx , ly , and lz are
the oscillator lengths. We assume that � and gσσ ′ are (i) much
smaller than the on-site confinement frequencies and (ii) much
larger than the intersite tunneling amplitude t . Condition (i)
allows us to use the single orbital mode approximation and
completely neglect virtual excitations to higher orbital bands
considering the spinor sector as the major source of effective
interactions. Assumption (ii) ensures that when a particle
tunnels, the wave function has enough time to adjust itself
to the ground state for the new configuration of the on-site
occupations. It also allows us to neglect the nearest neighbor
and more distant effective interactions [48]. Note that the
effective on-site interaction does not have to be larger than t .

With these assumptions we reduce our original problem to
the spinless Bose-Hubbard model with the on-site energy term

E(N ) = −
√

�2 + �2

2
N +

N∑
i=2

Ui

N !

i!(N − i)!
, (2)

which is the ground-state energy of N bosons governed by the
Hamiltonian

H0 = �

2
(b†↓b↓ − b

†
↑b↑) − �

2
(b†↑b↓ + b

†
↓b↑)

+
∑
σ,σ ′

gσσ ′

2
b†σ b

†
σ ′bσ bσ ′ . (3)

For a given N one can use the set of N + 1 wave functions
|i,N − i〉 describing the Fock states of i ↑ bosons and N − i ↓
ones. The Hamiltonian Eq. (3) in this representation becomes
a symmetric tridiagonal matrix with diagonal elements

〈i,N − i|H0|i,N − i〉
= �(N − 2i)/2 + g↑↑i(i − 1)/2 + g↑↓i(N − i)

+ g↓↓(N − i)(N − i − 1)/2 (4)

and off-diagonal ones

〈i,N − i|H0|i + 1,N − i − 1〉 = −�
√

(N − i)(i + 1)

2
. (5)

Its diagonalization is straightforward and Eq. (2) can be applied
iteratively to find UN , given the knowledge of UM for all
M < N .

The five-dimensional parameter space {�,�,gσσ ′ } pro-
vides enough freedom for an independent control over UN ,
at least for several lowest N . When �, �, and gσσ ′ are of
the same order of magnitude, the problem is nonperturbative,
the multibody interaction constants UN are comparable to each
other (cf. Refs. [11,18]), and quite exotic combinations of them
are possible. However, let us limit our discussion to the most
radical N -body interacting case, in which finite UN comes
along with vanishing (or very small) UM for all M < N . First
we discuss the three-body interacting case, taking into account,
as much as possible, current experimental constraints. This sets
the following optimization problem. For a given combination
of gσσ ′ , maximize U3 > 0 with respect to � and � with the
constraint U2 = 0.

Most clearly the mechanism behind the effective three-
body interaction can be seen for � = � = g↑↓ = 0 and
g↓↓ = g↑↑ = g > 0. In this case the two-body ground state
is |1,1〉, leading to U2 = 0. The ground state for N = 3 is
doubly degenerate, spanned by |2,1〉 and |1,2〉. The effective
three-body interaction equals U3 = g and is generated by the
spinor frustration: Each pair prefers to be in the ↑↓ singlet
state—the condition, which cannot be simultaneously satisfied
for all N > 2 particles. It is thus crucial that there are only two
internal states. Vanishing � is not consistent with some of
our initial assumptions, but it is clear that the result does not
change much if t,T 	 � 	 g, and we still arrive at U3 ≈ g.

In the case of generally different gσσ ′ the solution of our
optimization problem is � = 0, � = g↑↓ sgn(g↓↓ − g↑↑), the
maximum equals

U3,max =
{

min(g↓↓,g↑↑), |g↓↓ − g↑↑| > −g↑↓,

max(g↓↓,g↑↑) + g↑↓, |g↓↓ − g↑↑| < −g↑↓,
(6)

and the inequalities

0 < min(g↓↓,g↑↑), − max(g↓↓,g↑↑) < g↑↓ < 0 (7)

define the region that is interesting for us, where U2 = 0
and U3 > 0. Indeed, by treating the off-diagonal terms of H0

perturbatively, one can show that for any given combination of
gσσ ′ satisfying Eq. (7), the point � = 0, � = g↑↓ sgn(g↓↓ −
g↑↑) is a (local) maximum of U3 along the curve U2(�,�) = 0.
The correction is quadratic in � and one can introduce a finite
� while maintaining U3 close to this maximum. Note that the
three-body interaction obtained in this manner is linear in gσσ ′ .
This result is to be compared with the dependence U3 ∝ g2/ω

which arises from virtual excitations to higher orbital bands
with the interband spacing given by the on-site oscillation
frequency ω [11]. In our case the quadratic dependence
U3 ∝ g2/� would arise for gσσ ′ 	 � in the second-order
perturbation theory. Thus, the gain in the amplitude of the
three-body effective interaction in the spinor case compared
to the orbital one is due to a smaller gap (� 	 ω) between
the low-energy and high-energy (virtual) degrees of freedom.
Accordingly, U3 is maximized in the most nonperturbative
limit � → 0.

We apply the above formalism to the case of 39K in which
aσσ ′ for various hyperfine states have been studied theoretically
[49,50] and experimentally [49]. In particular, conditions
Eq. (7) are satisfied for the second and third lowest hyperfine
states, F = 1,mF = 0 (σ = ↓) and F = 1,mF = −1 (σ = ↑),
in the magnetic field region from B = 56 to 59 G. More
specifically, in this region a↑↑ decreases from approximately
1.85 to 1.56 nm, a↑↓ increases from −2.83 to −2.75 nm,
and the point B0 = 59.3(6) marks a Feshbach resonance in
the ↓↓ channel with the width �B ≈ −10 G and background
scattering length of approximately −0.95 nm.

For concreteness let us choose a↓↓ = 9.4 nm, a↑↑ =
1.7 nm, and a↑↓ = −2.8 nm, which should be, within the
claimed theoretical and experimental error bars, a good
estimate of the scattering lengths at about −1 G detuning
from the resonance. Then, let us assume an optical lattice with
the lattice constant λ/2 = 532 nm and intensity V0 = 15ER

(ER = 2π2
�

2/mλ2) in each of the three spatial directions. This
produces [51] a three-dimensional lattice with an isotropic on-
site confinement of the frequency ω ≈ 2π × 35 kHz (oscillator
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FIG. 1. U2 (thick solid) and U3 (thick dashed) vs � for � =
2π × 0.5 kHz. The thin piecewise linear curves correspond to the
limit of vanishing � where Fock states |i,N − i〉 are exact eigenstates
(see labels). The point that is interesting for us, where U2 = 0 and
U3 > 0, is given by � = −2π × 0.87 kHz, U3 = 2π × 0.48 kHz,
and can be compared to the case � = 0 where � = g↑↓ = −2π × 0.9
kHz, U3 = g↑↑ = 2π × 0.55 kHz.

lengths l = lx = ly = lz ≈ 86 nm), intersite tunneling am-
plitude t ≈ 2π × 30 Hz, and the on-site interaction shifts
g↓↓ ≈ 2π × 3.05 kHz, g↑↑ ≈ 2π × 0.55 kHz, and g↑↓ ≈
−2π × 0.91 kHz.

In Fig. 1 we plot U2 (thick solid line) and U3 (thick dashed
line) versus � for � = 2π × 0.5 kHz. For comparison we also
show the case � → 0 where the ground states are Fock states
and U2(�) and U3(�) become piecewise linear functions. Each
segment of them is labeled accordingly and the corresponding
values of E(N ) and UN can be restored from Eqs. (2) and
(4). For small finite � the segment junctions smoothen and
follow the lower or upper branches of three-body, two-body,
or one-body (for � = 0) level anticrossings. In the example
shown of � = 2π × 0.5 kHz there are two zero crossings of
U2. The right one corresponds to negative U3, but at the left
crossing point we obtain U3 = 2π × 0.48 kHz, to be compared
with U3,max = g↑↑ = 2π × 0.55 kHz [see Eq. (6)]. We see
that a rather strong elastic three-body effective interaction can
coexist with the vanishing two-body one.

A possible practical issue related to this proposal is that
three atoms on a single site can recombine to a deeply bound
molecule. This loss process can be accounted for by a negative
imaginary part of U3, which, for nonresonant two-body
interactions, is proportional to (R4

vdW/m)
∫ |φ0(r)|6d3r ∝

R4
vdW/ml6. Here φ0 is the on-site ground-state wave function

and the van der Waals range RvdW is of the same order of
magnitude as aσσ ′ . Note that |Im U3|/Re U3 ∼ (RvdW/l)3 is
very small. More quantitatively, by adopting the free-space
loss rate formula to the case of a single confined triple
we derive Im U3 = −(K3/3!)

∫ |φ0(r)|6d3r , where K3 is the
three-body recombination loss rate constant for noncondensed
atoms. For nonresonant 39K it is rather small [52], K3 <

10−29 cm6/s. For the considered scattering lengths, to be on
the safe side, we assume K3 < 10−27 cm6/s and arrive at
−Im U3 < 2π × 0.4 Hz 	 Re U3.

Another potential problem can be fluctuations δB of
the magnetic field causing an instability of the resonant
radio frequency �0(B) for the hyperfine transition, which,
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FIG. 2. U2 (solid) and U3 (dashed) vs � for �/2π = 1.3, 2.06,
2.69, 3.09, and 3.33 kHz in the vicinities of two-body zero crossings
(circles). The whole curves are plotted for the lowest (thick) and
highest (thin) values of �. At the crossings −dU2/d� = 1/2, 1/4,
1/8, 1/16, and 0, respectively.

in turn, gives rise to fluctuations of the two-body interac-
tion δU2 = −(dU2/d�)[d�0(B)/dB]δB. The first derivative
d�0(B)/dB depends on the atom, hyperfine states, and
magnetic field. For the considered hyperfine states of 39K at
B ≈ 58 G it equals d�0(B)/dB ≈ 2π × 0.7 kHz/mG [53].
The derivative dU2/d� for small � equals dU2/d� ≈ −1. In
this case, in order to realize |U3| � |U2|, the magnetic field
fluctuations should be kept below 1 mG. However, dU2/d�

decreases with � faster than U3. In Fig. 2 we show U2(�) and
U3(�) close to two-body zero crossings for � chosen such
that at the crossings −dU2/d� = 1/2,1/4,1/8,1/16, and 0,
respectively. To avoid cluttering we show the whole curves
only for the cases � = 2π × 1.3 kHz (dU2/d� = −1/2) and
� = 2π × 3.33 kHz for which U2(�) touches the horizontal
axis (dU2/d� = 0). In the latter case U3 is just above
100 Hz, but the restriction on the magnetic field stability is
relaxed.

Let us now turn to the four-body and higher-order in-
teractions. The N -body interacting case, U2 = U3 = · · · =
UN−1 = 0 and UN > 0, can in principle be realized by
extending the spin frustration idea to an atom with N − 1
internal states, provided repulsive intrastate interactions and
attractive interstate ones. Then, N − 1 atoms on a single
site can avoid the intrastate repulsion by occupying different
internal states. However, for a larger number of atoms at least
two of them have to be in the same state, leading to a positive
energy shift.

It turns out that the four-body interacting case can be
realized by coupling only two internal states. Indeed, in Fig. 2
we notice that the points U2 = U3 for � = 2π × 1.3 kHz
and for � = 2π × 3.3 kHz are on different sides of the
horizontal axis. We find that U2 = U3 = 0 for � = 2π ×
1.7 kHz, � = 2π × 1.38 kHz. At this point the four-body
interaction is repulsive and equals U4 = 2π × 0.18 kHz (see
Fig. 3). We have checked that U4 can be increased (keeping
U2 = U3 = 0) by decreasing the magnetic field detuning
from the ↓↓ Feshbach resonance (at −0.5 G detuning we
obtain U4 ≈ 0.33 kHz). However, close to the resonance a↓↓
becomes comparable to the oscillator length of the on-site
confinement and we can no longer rely on the single-mode ap-
proximation. We also expect Im U3 to increase. Nevertheless,
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FIG. 3. U2 (solid), U3 (dashed), U4 (dashed-dotted), U5 (dashed-
double dotted), and U6 (dotted) vs � for �/2π = 1.7 kHz. The
circles indicate the corresponding values at the simultaneous two-
and three-body zero crossing.

our findings indicate that the four-body interacting case,
which seems to be too exotic, is reachable in current
experiments.

In Fig. 3 we also show U5 and U6 for reference. That
UN changes sign and grows with N is a manifestation of the
nonperturbative nature of the problem and can be considered
as an artifact of expressing the observable E(N ) in terms of
Ui’s which enter Eq. (2) with numerically large coefficients.
The largest contribution to E(N ) does not necessarily come
from UN . In particular, at the crossing in the conditions of
Fig. 3, U5 is negative and equals −2π × 0.366 kHz, which is
twice as large as U4. Yet, the on-site interaction energy of five
atoms equals 5U4 + U5 > 0.

Finally, let us discuss possible experimental signatures of
the few-body interactions. The powerful method of Ref. [18]
is capable of accurately resolving even very weak multibody
interactions. However, our interactions are nonperturbative
and we expect much stronger effects and qualitative changes
of the many-body phase diagram. For example, a superfluid
with U2 < 0 and U3 > 0 (both weaker or comparable to
t) should be in the droplet state [35]. In the absence of
external trapping (the optical lattice is kept) it would exhibit
a solitonlike self-trapping with a flat density n = −3U2/2U3.
Then, increasing both U2 and U3 should eventually lead to the
paired state [22,41–43]. Another manifestation of multibody
interactions is the modification of the Mott-superfluid lobes
[38]. In particular, sufficiently deeply in the Mott-insulating
state with n = 2 atoms per site the excitation gap equals
E(3) + E(1) − 2E(2) = U3 + U2. From Fig. 1 we see that this
gap decreases and eventually vanishes as we go from large
negative � to the point � ≈ −2π × 5 kHz, which should
be detectable by standard methods [51,54]. Note that the
insulating state with n = 1 does not feel U3 and thus stays
incompressible.
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