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Ramsey spectroscopy, matter-wave interferometry, and the microwave-lensing frequency shift
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We derive the general frequency shift of a microwave atomic clock due to resonant dipole forces acting on
the atomic wave functions during the Ramsey interactions. We explicitly demonstrate that only dressed-state
populations in position space contribute significantly to the frequency shift and that the de Broglie phases of
the dressed-state wave functions do not contribute. In addition, we show that momentum changes in the second
Ramsey interaction normally produce negligible frequency shifts in comparison to those from the first Ramsey
interaction.
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Laser-cooled microwave atomic-fountain clocks currently
provide the most accurate contributions to International
Atomic Time (TAI) [1–5]. The accuracy of these standards
continues to improve [1], with several clocks reporting
accuracies of order 2×10−16 [2,4,5]. Significant recent ad-
vances have come from properly treating first-order Doppler
shifts [2–8], reducing the uncertainty of frequency shifts from
cold collisions [2,4,9,10], and theoretically evaluating the
microwave-lensing frequency shift [2–5,11,12].

The scale of the microwave-lensing frequency shift is
of order of the recoil shift [13] for a microwave photon,
fractionally 1.5×10−16 [11,14]. Several clocks have corrected
for this bias, using calculated shifts that range from 0.6×10−16

to 0.9×10−16 [2–4]. This shift is the largest bias applied
to clocks that has not yet been experimentally observed.
One group recently questioned the behavior and size of the
microwave-lensing shift and reported a significantly smaller
bias that they neglected [5,12]. To clarify the behavior of this
shift, here we explicitly expand our previous treatment [11]
and present a concise and intuitive calculation of this frequency
shift, which agrees with [2–4,11].

Viewing a clock as a matter-wave interferometer [15]
facilitates insight into the microwave lensing shift. In Fig. 1(a)
an atom, localized to less than a wavelength of the oscillatory
field, passes through the two separated interaction zones in
Ramsey spectroscopy at t1 and t2. The spatial variations of
the dipole energy in the resonant microwave (or optical)
standing waves deliver impulses to the dressed-state wave
functions [11–18]. In a clock the temporal phase of the
second Ramsey interaction at t2 is shifted by χ = ±π/2
for the detected transition probability in Fig. 1(b) to be most
sensitive to the phase of the coherent superposition of the two
clock states [1]. The second interaction for χ = + (−) π/2
transfers dressed state |2(1)〉 to the excited state [11], which
is subsequently detected. Thus, because more of dressed state
|2〉 passes through apertures in the clock, more excited-state
atoms are detected for χ = +π/2 than −π/2, producing a
positive frequency shift of the clock’s Ramsey fringe [11].

We begin with an interaction Hamiltonian Hint = �ωσ3/

2 + ��(�r,z)cos(ωt)σ1, which couples the ground and ex-
cited states of the clock transition, |g〉 and |e〉, in each
Ramsey interaction in Fig. 1(a). Here ω is the resonant
microwave frequency, � is the Rabi frequency, and σ

are the Pauli matrices. Diagonalizing this Hamiltonian in
the rotating-wave approximation leads to dressed states

|1(2)〉 = 2−1/2(|g〉 + (−)|e〉) and a Schrödinger equation
i∂tψ(�r,t)|ξ 〉 = (−�∇2/2m + �(�r,z)σ3/2)ψ(�r,t)|ξ 〉. The in-
teractions with the standing-wave field are in the Raman-Nath
regime [15], in which the kinetic energy during the interaction
can be neglected, giving a unitary evolution of ψ(�r,t)|ξ 〉 [11]:

U (t+,t−) = exp
[− 1

2 iφ(�r)σ3
]
. (1)

Here the Rabi tipping angle φ(�r) is v−1
z ��(�r,z)dz, the

transverse position of the atoms is �r , and φ(�r) = π/2 for
spatially homogeneous π/2 pulses in the Ramsey interactions.
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FIG. 1. (Color online) (a) The spatial gradients of the dipole
energy in Ramsey spectroscopy deliver impulses to the atomic
dressed-state wave functions, acting as positive lens for state |2〉
and negative lens for |1〉. The phase of the Ramsey field is shifted
in the second interaction, giving dressed states |1′〉 and |2′〉, and four
interferometer paths. The exaggerated deflections are of the order
of nanometers, compared to centimeter widths of the atomic cloud.
Apertures lead to a greater fraction of dressed state |2〉, ψ2(�r ,td ) or
equivalently ψ21(�r ,td ) and ψ22(�r ,td ), being detected than |1〉. (b) A
clock’s transition probability versus temporal phase χ of the second
Ramsey interaction. The transition probability is most sensitive to χ

at χ = ±π/2. For χ = +π/2 the second Ramsey interaction transfers
the incident dressed state |2〉 to the excited state and, for χ = −π/2,
|1〉 to the excited state. Because more of ψ2(�r ,td ) passes through an
aperture than of ψ1(�r ,td ), the microwave lensing of wave functions
produces a frequency shift of clocks.
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We omit the velocity spread in the z direction, since it is
typically small, but we treat arbitrary tipping angles so it can
be effortlessly reintroduced.

The spatial gradient of the magnetic dipole energy ��(�r ,t)
delivers impulses to the dressed-state wave functions, de-
flecting them with small velocity changes and acting as
a weak lens, slightly focusing |2〉 and defocusing |1〉 in
Fig. 1(a) [11,12,16–18]. After the first Ramsey interaction,
the dressed states propagate freely [�(�r,z) = 0] to the second
interaction. The temporal phase χ of the second microwave
field is changed to produce a Ramsey fringe. This gives
new eigenstates for the second Ramsey interaction, |1′〉 and
|2′〉, with a rotation cos(χ/2)

↔
1 − isin(χ/2)σ1 of |1〉 and |2〉.

The second interaction also produces a unitary evolution
(1), including deflections and further lensing, resulting in
four dressed states at the exit of the interferometer. After
both pulses, the excited-state population |ψ(�r,td )〈e | ξ 〉|2 is
detected, yielding a Ramsey fringe. Explicitly, the evolution
from the launch of the atoms at t = 0 in |g〉, through Ramsey
interactions at t1 and t2, to detection of |e〉, is

ψ(�r,td )|ξ 〉 = Ufree(td ,T + t1) exp

[
− i

2
φβ(�r)σ3

]

· [cos(χ/2)
↔
1 − isin(χ/2)σ1]

·Ufree(T + t1,t1)exp

[
− i

2
φα(�r)σ3

]

·Ufree(t1,0)ψ(�r,0)
1√
2

(
1
1

)
. (2)

Here we have allowed for different pulse areas φα,β(�r)
and different spatial dependences in the two Ramsey
interactions. If the Ramsey pulses φα,β (�r) are spatially
homogeneous over the wave function, the free propagators
are the same for all dressed states, and the same as for
no Ramsey pulses, φα,β (�r) = 0. Thus, ψ(�r,td )〈e|ξ 〉=
{−isin[φα(�r)/2+φβ(�r)/2]cos(χ/2)+ sin[φα(�r)/2 − φβ(�r)/2]
sin(χ/2)}ψ(�r,td ), which yields the expected Ramsey fringe
versus the temporal phase χ .

We now calculate the general frequency shift of a clock
due to the lensing of the atomic wave functions by the
microwave standing waves. An atomic clock adjusts the
oscillator’s frequency so that the normalized transition
probabilities on both sides of the central Ramsey fringe are
equal. From (2), we calculate ψ(�r,td )〈e | ξ 〉χ=±π/2, including
the lensing from the dipole impulses during the Ramsey
interactions:

ψ(�r,td )〈f |ξ 〉|χ=±π/2 =
√

2

4

{
ψ11′ (�r,td )exp

{
−i

[
11′ (�r,td ) + 1

2
φα(�r1) + 1

2
φβ(�r2)

]}

± (−1)jeg iψ12′ (�r,td )exp

{
−i

[
12′ (�r,td ) + 1

2
φα(�r1) − 1

2
φβ(�r2)

]}

∓ iψ21′ (�r,td )exp

{
−i

[
21′ (�r,td ) − 1

2
φα(�r1) + 1

2
φβ(�r2)

]}

− (−1)jegψ22′ (�r,td )exp

{
−i

[
22′ (�r,td ) − 1

2
φα(�r1) − 1

2
φβ(�r2)

]}}
. (3)

Here jeg = 0 if ψ(�r ,td )|ξ 〉 is projected onto the excited state
〈f | = 〈e|, and jeg = 1 for detecting 〈g|. Since |1′〉 and
|2′〉 in the second Ramsey interaction for χ = ±π/2 are
equal superpositions of |1〉 and |2〉, there are four equally
populated dressed states, with all combinations of focusing
and defocusing after the two Ramsey interactions in Fig. 1(a).
For example, ψ21(�r ,td )exp[−i21(�r ,td )] in (3) is focused in
the first interaction and defocused in the second, and similarly
for the other ψn,m(�r ,td )exp[−in,m(�r ,td )]. For the perturbation
expansion below, we have written the complex wave functions
as real spatially dependent amplitudes ψn,m(�r ,td ) with complex
phase factors exp[−in,m(�r ,td )]. Further, we write each
n,m(�r ,td ) as (�r ,td )+ δn,m(�r), where a trivial common
phase (�r ,td ) describes the propagation of the wave function
for no Ramsey interactions and δn,m(�r) is the change of
the spatial phase due to the small dipole forces from the
Ramsey interactions. In (3) we explicitly include the phase
shifts φα,β (�r) of the dressed-state wave functions from the
Ramsey interactions. Thus, the small dipole forces change
the transition probability by δP [19], which gives the clock’s

frequency shift:

δP = 1
2 |ψ(�r,td ) 〈f |ξ 〉|χ=π/2|2 − 1

2 |ψ(�r,td ) 〈f |ξ 〉|χ=−π/2|2

= 1
4 (−1)jeg {ψ21′ (�r,td )ψ22′ (�r,td ) sin[φβ(�r2) + δ21′ (�r)

− δ22′ (�r)] − ψ11′ (�r,td )ψ12′(�r,td ) sin[φβ(�r2)

+ δ11′ (�r) − δ12′ (�r)]} + 1
4 {ψ11′ (�r,td )ψ21′ (�r,td )

× sin[φα(�r1) + δ11′ (�r)−δ21′ (�r)]

−ψ12′ (�r,td )ψ22′ (�r,td ) sin[φα(�r1)

+ δ12′ (�r)−δ22′ (�r)]}. (4)

A key point that facilitates understanding the microwave-
lensing frequency shift is that the small and somewhat
complicated phase perturbations δn,m(�r) do not contribute
in lowest order. This leads to physical insight and dramatically
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simplified our treatment in [11] and here, in contrast to the
expressions in [12,14].

A quadratic spatial variation of the dipole energy and
φα,β(�r) over the wave function ψn,m(�r ,td ) gives a Schrödinger
propagation of a Gaussian wave function that reproduces
a semiclassical view of dipole forces acting on the wave
function [11]:

ψx21′ (x,td ) = e
− 1

2

(
x−xd +εαx (�r1)−εβx (�r2)−εαβx

wdx−δαx+δβx+···
)2

π1/4
√

wdx − δαx + δβx + · · · . (5)

Here ψ2,1(�r ,td ) equals ψx,2,1(x,td )ψy,2,1(y,td ) and simi-
larly for the three other ψn,m(�r ,td )’s. In (5) wx(t) =
(�2t2/2m2�2

x + 2�2
x)1/2 is the width and xd is the cen-

ter of the wave function at the detection time td , un-
perturbed by Ramsey interactions, wdx = wx(td ), εα(�r1) =
−�(T +�td )�φα(�r1)/2m, and εβ(�r2) = −� �td�φβ(�r2)/2m

are the classical deflections of a particle traversing
the Ramsey interactions at distances r1 and r2 off
axis, and δαx = −�(T + �td )wx(t1)∂2

xφα(x1)/2m and δβx =
−��tdwx(t2)∂2

xφβ(x2)/2m give the focusing of the wave
function. The deflection εα,β(�r1,2) and focusing δα,β for a
quadratic phase variation φα(x) = φα(0)(1 − k2

αxx
2/2) are

proportional to the usual photon-recoil frequency shift vR =
�k2

αx/4πm, which gives the scale of a clock’s microwave-
lensing frequency shift [11]. For cesium atoms at 1 μK,
the minimum wave function size �x,y must be at least
30 nm and should be less than the 852 nm wavelength
of the laser-cooling light [20,21], and εαx and δαx are of
order 4 and 2 nm [11], much less than wdx in a clock,
which is of order 1 cm. We can neglect the second-order
deflection in the second Ramsey interaction due to the
deflection εαx in the first, εαβx = εβx[εαx(x1)/(1+�td/T )].
The negligible ellipses in the denominators similarly rep-
resent changes in the wave function spreading due to
the lensing and are, as a fraction of δαx , of order
φβ(0)��tdk

2
βx/m, φα(0)k2

αx�
3/wx(t1), and smaller. We note

that the Raman-Nath approximation in (1) does not include
negligible displacements and phase shifts of short Ramsey
interactions [12].

During the T � 0.5 s interrogation time of the clock, the
atomic population enters and exits the clock’s microwave
cavity through its apertures. An atomic wave function that is of
order 30 μm wide spreads negligibly over this time. Because
φα,β(�r) varies slowly over 30 μm, we can semiclassically treat
the atom propagation, originating from a point source and hav-
ing classical trajectories with deflections of ±εα,β (�r1,2) from
the Ramsey interactions [2]. Note that (1)–(4) exactly treat the
propagation through two Ramsey interactions, followed by an
aperture, as in Fig. 1(a). In clocks, there are additional aper-
tures, particularly before the first Ramsey interaction, as well
as inhomogeneous detection of atoms [2–4,11]. This semiclas-
sical approximation, which neglects the atomic diffraction of
the apertures, simplifies the calculations and yields valuable
clarity [2,11].

The δP ’s from the x and y variations simply add, δP =
δPx + δPy [11], so we can treat each dimension separately.

Expanding (4) and substituting (5) gives, to first order in νR

δPx = 1

2
ψ2

0x(x,td )

(
(−1)jeg

{
δαx

wdx

[
1 − 2

(
x − xd

wdx

)2]

− 2εαx(�r1)
x − xd

w2
dx

}
sin[φβ(�r2)]

− (−1)lge

{
δβx

wdx

[
1 − 2

(
x − xd

wdx

)2]

− 2εβx(�r2)
x − xd

w2
dx

}
sin[φα(�r1)]

)
. (6)

Here we have added lge in the second term, which is 0 for enter-
ing the first Ramsey interaction in |g〉 and 1 for entering in |e〉,
and ψ0x(x,td ) is (5) with neither deflections εα,βx nor δα,βx .

The small phase variations δn,m(�r) do not contribute to
δP in (6), or to its associated frequency shift. To first order,
the δn,m’(�r)’s in (4) almost entirely cancel, with δP pro-
portional to [δ11’(�r) − δ12’(�r) − δ21’(�r) + δ22’(�r)]/4.
Corrections include φα(0)φβ(0)�kαx

2kβx
2x1x2t1�td/m

td , which is of order nanoradians (δv/v ≈ 10−19),
2φα(0)φβ(0)�kαx

2kβx
2�x

2t1�t2
d (T + �td )/mt3

d , and smaller.
This dramatically simplifies the calculation, which thus can be
straightforwardly verified by reproducing the spinor algebra
of (2)–(4). Further, ψx,21’(�r ,td )ψx,22’(�r ,td ) is ψx,2(�r ,td )2 to
first order in εβ and δβx,y and ψx,11(�r ,td )ψx,12(�r ,td ) becomes
ψx,1(�r ,td )2. Below we show that the second term in (6) is
almost always negligible, so (6) can be written as (2) in [11]:

δPx = 1
2 (−1)jeg

[
ψ2

2 (�r,td ) − ψ2
1 (�r,td )

]
sin[φβ(�r2)]

= (−1)jeg

2
ψ2

0x(x,td )

{
δαx

wdx

[
1 − 2

(
x − xd

wdx

)2]

− 2εαx(�r1)
x − xd

w2
dx

}
sin[φβ(�r2)]. (7)

Equation (7) has been evaluated for several fountain clocks
[2–4]. Figure 2 depicts the change in transition probability that
results from preferentially detecting dressed state |2〉 when an
aperture transmits the center of the atomic cloud. Note that δP

in (6) and (7) reverses sign if the ground state is detected instead
of the excited state, a “flop-in” versus a “flop-out,” which gives

b)

-2 -1 1 2

1

xd/wdx

( ) ( )2 2
,2 ,1, ,ψ ψ−x d d x d dx t x t

FIG. 2. (Color online) The spatial difference of dressed-state
populations |2〉 and |1〉 of a centered cloud in the detection region.
Apertures after the first Ramsey interaction transmit the center of
the wave functions, leading to a frequency shift. Normally, the
momentum changes in the second Ramsey interaction lead to small
separations and do not produce a frequency shift.
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the same frequency shift for both Ramsey fringes. However,
if the initial state is the excited state instead of the ground
state, the frequency shift reverses sign. Here, when detecting
the excited state, δP is the same for entering the clock in
either state but the Ramsey fringe has opposite signs for a
flop-out versus a flop-in, reversing the frequency shift [11].

We get the frequency shift by integrating (7) over the
spatial and velocity distributions, of widths w0x and u, which
are clipped by apertures of radii a1L and a at t1L and t2L � td ,
before and after the Ramsey interactions [2–4]. Expressed as
integrations over the circular apertures, δP is divided by the
Ramsey fringe amplitude, and by π (t2−t1):

δν

νR

= (−1)lgeφα(0) sin[φβ(0)]a(t2L − t1)

sin[φα(0)] sin[φβ(0)]k(t2 − t1)
∫
r2L0<a

∫
r1L<a1L

ψ2
0 (�r2L0,�r1L)d�r1Ld�r2L0

×
∫ 2π

0

∫
r1L<a1L

r2L0(t1 − t1L) + r1L(t2L − t1) cos(φ2L0)

|�r(t1)| (t2L − t1L)
J1(k |�r(t1)| )ψ2

0 (�r2L0,�r1L)

∣∣∣∣
r2L0=a

d�r1Ldφ2L0,

ψ2
0 (�r2L0,�r1L) = exp

[
− r2

2L0w
2
1L + r2

1Lw2
2L − 2r2L0r1L(w2

0 + u2t2Lt1L) cos(φ2L0)

w2
0u

2(t2L − t1L)2

]
, �r(t) = �r2L0(t − t1L) + �r1L(t2L − t)

t2L − t1L

.

(8)

Here we treat a cylindrical cavity, for which φα,β (�r) = φα,β(0)J0(kr) [2–4], cos(φ2L0) = �r2L0 · �r1L, u = (2kBT /m)1/2 is the
thermal velocity spread, w0 is the initial e−1 cloud radius, and w2

1L,2L = w2
0 + u2t2

1L,2L. In (8) we have neglected the transverse
variations of sin[φα(�r)] and detection inhomogeneities, which were treated in [2–4] and normally give small corrections.

Note that the frequency shift (8) goes to a generally nonzero constant in the limit of zero amplitude of the microwave field,
φα(0)→0. In this limit, the atoms have no dipole impulses so εα(�r1) → 0 and δP → 0. However, the Ramsey fringe amplitude,
the denominator in (8), is proportional to sin[φα(�r)]sin[φβ(�r)] and also goes to 0. This is in contrast to [5,12], which consider
that this frequency shift goes to 0 as φα(0) = φβ(0) → 0.

Returning to the second term of (6), it is doubly small for 1,3,5, . . . ,π/2 Ramsey pulse areas. First, the time between the
second interaction and detection �td = td − T − t1 (or an aperture at t2L) is normally short compared to T + �td . This gives little
time for εβx and δβx to grow, as compared to εαx and δα . If the detection is reasonably homogeneous, the effective aperture is the
lower aperture of the cavity at time t2L. This aperture typically produces a δP from the second term that is ≈10 times smaller
than the first term. If the detection is inhomogeneous and near, or below, the launch region, the scale of the second term can be
larger. However, second, this term gives the same δP when detecting the ground and excited states with the same homogeneity.
As a fraction of the number of atoms that make it through the apertures in the clock, the number of excited-state atoms
detected for χ = ±π/2 is N4 = {1 − cos[φα(�r)]cos[φβ(�r)]}/2 ± δPαsin[φβ(�r)] ∓ δPβsin[φα(�r)] and the ground-state fraction
(jeg = 1) is N3 = {1 + cos[φα(�r)]cos[φβ(�r)]}/2 ∓ δPαsin[φβ(�r)] ∓ δPβsin[φα(�r)]. Thus, the normalized transition probability
N4/N3 + N4 usually has small changes. With the same approximations as in (8), the frequency shift is

δν

νR

= − cos[φα(0)] cos[φβ(0)]
(−1)lgeφβ(0) sin[φα(0)]a(t2L − t2)

sin[φα(0)] sin[φβ(0)]k(t2 − t1)
∫
r2L0<a

∫
r1L<a1L

ψ2
0 (�r2L0,�r1L)d�r1Ld�r2L0

×
∫ 2π

0

∫
r1L<a1L

r2L0(t2 − t1L) + r1L(t2L − t2) cos(φ2L0)

|�r(t2)| (t2L − t1L)
J1(k |�r(t2)| )ψ2

0 (�r2L0,�r1L)

∣∣∣∣
r2L0=a

d�r1Ldφ2L0, (9)

where cos(φ2L0) = r̂2L0 · r̂1L. Increasing the second pulse
area φβ(�r) gives a larger frequency shift, until the average
over the cosines suppresses the shift. However, note that (9)
behaves differently from (8) since this frequency shift does
not change sign as the atoms entering the clock are switched
from |g〉 to |e〉. Thus, it will be difficult to experimentally
observe (9) unless the large power dependence of distributed
cavity phase shifts is highly suppressed [7,8].

In summary, the frequency shift due to the dipole forces
on localized atoms from the exciting field depends to lowest
order on only the populations of the four dressed-state wave
functions that emerge from two Ramsey interactions. The
phases from the small momentum changes that are imprinted

on dressed-state wave functions do not contribute, facilitating a
simple physical picture of the shift: dressed state |2〉 is focused
by the first Ramsey interaction and |1〉 is defocused. Therefore,
apertures in the clock lead to a preferential detection of dressed
state |2〉 and a frequency shift results [11]. We explicitly show
that the momentum changes from the second Ramsey inter-
action zone produce naturally smaller perturbations that are
further suppressed by reasonably similar or uniform state de-
tection. While the microwave-lensing frequency shift has to be
evaluated in the best clocks that currently contribute to atomic
time, it has not yet been experimentally observed. Precise fre-
quency measurements, while switching the initial state of the
atoms between the ground and excited states with an increased
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field strength during the first Ramsey interaction, φα(�r) ≈
5π/2, could reveal this frequency shift experimentally.

Note added in proof. Reference [22] also recently treated
the microwave-lensing shift as 0 in the limit of zero microwave
amplitude, in contrast to (8).
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