
PHYSICAL REVIEW A 90, 014502 (2014)

Angular and polarization analysis for two-photon decay of 2s hyperfine states
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The amplitude of two-photon transitions between hyperfine states in hydrogenlike ions is derived based on
the relativistic Dirac equation and second-order perturbation theory. We study angular and linear polarization
properties of the photon pair emitted in the decay of 2s states, where spin-flip and non-spin-flip transitions are
highlighted. We pay particular attention to hydrogenlike uranium, since it is an ideal candidate for investigating
relativistic and high-multipole effects, such as spin-flip transitions. Two types of emission patterns are identified:
(i) non-spin-flip transitions are found to be characterized by an angular distribution of the type W (θ ) ∼ 1 + cos2 θ

while the polarizations of the emitted photons are parallel; and (ii) spin-flip transitions have somewhat smaller
decay rates and are found to be characterized by an angular distribution of the type W (θ ) ∼ 1 − 1/3 cos2 θ

while the polarizations of the emitted photons are orthogonal, where θ is the angle between photons directions.
Deviations due to nondipole and relativistic contributions are evaluated for both types of transitions. This work is
the first step toward exploring the effect of the nucleus over the angular and polarization properties of the photon
pairs emitted by two-photon transitions.
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I. INTRODUCTION

Two-photon decay in atoms and ions was introduced by
Max Born’s Ph.D. student Goeppert-Mayer in 1931 [1].
Since then, many aspects of such a process, like the total
decay rate and the spectral distribution, have been extensively
investigated in the context of few-electron atoms and ions, both
in theory and experiments [2–12]. Recently, some interest has
been also devoted to the relativistic effects on angular and
polarization properties of the two emitted photons [13–19]
and to electron-electron interaction effects on the total decay
rate [20]. Apart from fundamental interest, two-photon tran-
sitions revealed themselves as a useful tool for investigation
of different physical areas and applied science. Already in
1940, for instance, Breit and Teller derived that the double
photon emission was the principal cause of the decay of
interstellar hydrogen atoms from their metastable 2s state [21],
while, more recently, polarization properties of the emitted
photons have been employed to successfully explore quantum
entanglement [22–24]. Furthermore, two-photon transitions
have been proposed as a tool to measure weak-interaction
properties [25,26].

In this Brief Report, the angular and polarization properties
of the photon pair emitted by the two-photon decay of 2s

hyperfine states in hydrogenlike ions are presented. Particular
attention is paid to hydrogenlike uranium (U91+). In fact,
due to its strong electromagnetic field, high multipoles
contributions that lead to spin-flip transitions are enhanced
in this system. This makes hydrogenlike uranium an ideal
candidate for our studies. The angular and polarization analysis
of the emitted light is carried out within the independent
particle approximation (IPA), i.e., by coupling the spin-angular
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momenta of electron and nucleus and by neglecting any
hyperfine interaction between electron and nucleus. We derive
the analytical expression for the transitions amplitude within
IPA. This work is a first step toward exploring the effect of
the nuclear angular momentum (spin) on the angular and
polarization properties of the emitted photons. Our analysis
may pave the way for a new route to get information on the
direction and the magnitude of the spin distribution inside the
nucleus (which is still quite an unraveled problem) by using
two-photon angular and polarization correlations.

II. THEORETICAL BACKGROUND

A. Construction of the overall set of states

The presence of the nuclear spin has a twofold effect on
the states of hydrogenlike systems. First, the energies of the
atomic metastable states are slightly shifted, mainly due to
the magnetic dipole interaction that the nucleus and electron
experience. This energy correction can be described by using
first-order perturbation theory with additional contributions,
such as the relativistic, Bohr-Weisskopf, Breit-Rosenthal,
and QED contributions [27,28]. Since this energy correction
does not influence the angular and polarization properties
of the emitted radiation, it will be totally neglected in the
following. Second, the atomic states acquire a new quantum
number, usually denoted by F , that represents the total angular
momentum of the overall–nucleus plus electron–system.

The overall atomic state can be described by coupling the
nucleus and electron angular momenta (referred to as IPA),
i.e., by

|n,β; F,I,κ,mF 〉
=

∑
mI , mj

〈j,mj ,I,mI |F,mF 〉 |n; κ,mj 〉 |β; I,mI 〉 , (1)
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where n, κ , and j are the (Bohr) principal, the Dirac, and
the angular momentum quantum numbers of the electron,
respectively, while I represents the nuclear spin. On the
other hand, mI , mj , and mF are the projections of the
nuclear, electronic, and total (nucleus plus electron) angular
momenta onto the quantization axis, respectively. Finally, β

is a collective label that denotes any other quantum number
needed to specify the nuclear state apart from I and mI . Using
standard notation, 〈j,mj ,I,mI |F,mF 〉 are Clebsch-Gordan
coefficients.

To further proceed, we suppose that the nucleus does not
interact with the radiation field. In the language of quantum
mechanics, this equates to considering that the interaction
Hamiltonian couples only electron fields through the photon
emission, while it does not act on the quantum space of
nuclear states. This hypothesis holds for decays which involve
bound states of neutral atoms, since the energy released in
such decays is far lower than the nuclear excitation energies
(there are few exceptions to this, like the nucleus of Th229,
where the first metastable excited state is �10 eV above
the ground state). For highly charged ions, on the other
hand, nuclear excitations are of the order of ∼MeV while
photon energies can take values up to hundreds of keV.
Equation (1) represents, therefore, only a rough approximation
for such systems [29]. As a result of this assumption, we
shall find in the next subsection that the radial part of

the decay amplitude is characterized by only electron state
components. On the other hand, we shall see that the angular
part of the decay amplitude is characterized by both electron
and nucleus states components, due to the coupling of their
angular momenta. We shall see that the value for the total
spin quantum number will directly determine the shape of the
angular and polarization distributions in the atomic transitions.

B. Second-order transition amplitude

The theory of two-photon decay is based on the second-
order transition amplitude and has been discussed in a number
of recent papers [17,18,26]. One of the characteristic features
of such amplitude is that it contains a summation over the
intermediate atomic states which runs through the whole
atomic spectrum, including a summation over the discrete
part as well as an integration over the (positive and negative)
continuum. For the problem under consideration, such a
summation splits up into summations over (i) the principal
quantum number nν , (ii) the Dirac quantum number κν ,
(iii) the total angular momentum Fν , and (iv) its projection
onto the quantization axis mFν

.
By using Eq. (1) and by taking into account the orthonor-

mality of the nuclear states, the amplitude for two-photon
transitions between hyperfine states takes the form

Mλ1λ2 (i → f ) = −(2π )
∑
T T ′

∑
κν

mI mjν

∑
L1 L2

M1 M2

∑
p1 p2

∑
�1 �2

(λ1)p1 (λ2)p2 [L1,L2]1/2i−L1−L2−p1−p2 ξ
p1
L1 �1

ξ
p2
L2 �2

P T P T ′

×D
L2 ∗
M2 λ2

(ϕ2,θ2,0)DL1 ∗
M1 λ1

(ϕ1,θ1,0)
[
UT T ′

�1 �2
χf T νT

mI mjν
χνT ′

iT
′

mI mjν
+ (1 ↔ 2)

]
, (2)

where λj and kj are the helicity and wave vector of the

j th photon. The term D
Lj

Mj λj
(θj ,ϕj ) stands for the Wigner

rotation matrices of order L with angle coordinates (θj ,ϕj ).
The notation [L] stands for 2L + 1 and �j runs from Lj − 1
to Lj + 1. T ,T ′ = L,S denote the large (L) and small (S)
components of the electron Dirac spinor, for which the factor
P T is defined as P L = 1 and P S = −1. Furthermore, p1,2 =
0,1 and the function ξ

p

L� is given by

ξ 0
L� = δL,�, ξ 1

L � =

⎧⎪⎪⎨
⎪⎪⎩

√
L+1

2L+1 for � = L − 1

−
√

L
2L+1 for � = L + 1

0 otherwise

. (3)

The radial part of the amplitude in Eq. (2) is represented by
the integral UT T ′

�1 �2
, which reads

UT T ′
�1 �2

=
∫

drdr ′r2r ′2j�1 (k1r
′)j�2 (k2r)gT̄ ∗

f gT T̄ ′
Ei+ω1

gT ′
i , (4)

where gT
f,i are the small and large radial components of the

final and initial electron state, while

gT T̄ ′
Ei+ω1

=
∑
nν

gT
ν gT̄ ′∗

ν

Eν − Ei − ω1
(5)

is the radial Green’s function of the process. Here Ei,ν are the
energies of the initial and intermediate atomic states, while T̄

refers to the reverse radial component of T , i.e., T̄ = L for
T = S and vice versa.

The integral in Eq. (4) involves only electron state compo-
nents. However, its evaluation is not an easy task due to the
(infinite) summation over the principal quantum number nν

contained in the radial Green’s function. In the present work,
such an integral has been computed by using the Green’s Func-
tion Library [30]. Other computational techniques could be
also used, such as the B spline finite basis set method [31,32].
The angular part of the amplitude in Eq. (2) is represented by

the elements χ
f T νT

mI mjν
and χνT ′

iT
′

mI mjν
therein contained and can be

computed analytically:

χf T νT

mI mjν
=

∑
mjf

〈
jf ,mjf

,I,mI

∣∣Ff ,mFf

〉

× 〈
κf ,lTf ,mjf

∣∣ σ · T ∗
L2 �2 M2

∣∣κν,l
T̄
ν ,mjν

〉
,

χνT ′
iT

′

mI mjν
=

∑
mji

〈
ji,mji

,I,mI

∣∣Fi,mFi

〉

× 〈
κν,l

T ′
ν ,mjν

∣∣ σ · T ∗
L1 �1 M1

∣∣κi,l
T̄ ′
i ,mji

〉
, (6)
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FIG. 1. (Color online) Geometry considered for the two-photon
emission. The propagation direction of the first photon is adopted as
the z direction. x is chosen such that xz is the reaction plane (plane
spanned by the photons directions). θ is the angle between the photons
directions, while angles χ1,2 define the linear polarizations of the
first and second photon, respectively, with respect to their respective
polarization planes. The polarization plane of the first (second) photon
is denoted by A (B) and represents the plane orthogonal to the photon
direction.

where σ are Pauli matrices. The elements 〈κf ,lTf ,mjf
|σ ·

T ∗
L2 �2 M2

|κν,l
T̄
ν ,mjν

〉 and 〈κν,l
T ′
ν ,mjν

|σ · T ∗
L1 �1 M1

|κi,l
T̄ ′
i ,mji

〉
have been already discussed elsewhere [14,33] and will not be
here recalled.

The initial and final states involved in the two-photon
transitions which we shall analyze below are unpolarized.
It has been shown that, for this case, we may arbitrarily
adopt the quantization axis (ẑ) along the momentum of the
“first” photon: ẑ ‖ k̂1 [14–18]. We furthermore adopt x̂ such
that the xz plane is the reaction plane (plane spanned by
the photons directions). Figure 1 sketches the geometry we
consider for the decay. Within this geometry, the Wigner
matrices in Eq. (2) simplify to D

L1 ∗
M1 λ1

(ϕ1,θ1,0) = δM1, λ1 and

D
L2 ∗
M2 λ2

(ϕ2,θ2,0) = d
L2
M2 λ2

(θ ), where dL
M λ(θ ) is the reduced

Wigner matrix and θ ≡ θ2 is the polar angle of the second
photon, which coincides, in the chosen geometry, with the
angle between the photons directions (opening angle). Hence,
the relative photons directions are uniquely determined by
assigning the opening angle θ , which will be the independent
variable for plotting the angular distributions.

Since part of this work is devoted to analyze photons
linear polarizations, further details concerning the detection
geometry must be provided before proceeding with the
analysis. In Fig. 1, we show how the photon polarizations
may be defined in a case experiment. The polarization of
each photon is measured in the “polarization plane,” which
is the plane orthogonal to the photon direction. In Fig. 1, the
polarization planes of the first and second photon are denoted
by A and B, respectively. Each detector is supposed to have
a transmission axis, along which the linear polarization of the
photon is measured. Such a transmission axis is rotated by
an angle χ with respect to the reaction plane shown in Fig. 1
by the red dashed lines. Finally, each detector is supposed to
work as a filter: Whenever a photon hits it, the detector either
gives or does not give off a “click,” which would, respectively,

indicate that the photon has been measured as having its linear
polarization along the direction χ or χ + 90◦.

C. Definition of angular and polarization correlations

Within IPA, Eq. (2) represents the relativistic transition
amplitude for the two-photon decay between hyperfine states
in hydrogenlike ions. It contains the complete information
on the emitted radiation. Assuming that the ion is initially
unpolarized and that the polarization of the final atomic state
remains unobserved, taking into account the axes geometry
chosen for the two-photon emission, and using the well-known
relations between linear and circular polarization bases [34],
we can write the polarization-dependent differential decay rate
as a function of the opening angle θ [3,35]:

Wχ1 χ2 (θ ) ≡ dwχ1χ2

d cos θ

= 8π2

2Fi + 1

∑
mFi

mFf

∑
λ1λ2

λ′
1λ

′
2

∫
dω1

ω1ω2

4(2π )3c2
ei(λ1−λ′

1)χ1

× ei(λ2−λ′
2)χ2Mλ1λ2Mλ′

1λ
′
2 ∗. (7)

In this Brief Report, the integration over the photon energies is
numerically carried out by using the trapezoidal rule method.
The number of points we used for the numerical integration
has been checked to provide a precision of 1%. Hereafter, the
function Wχ1 χ2 (θ ) shall be called “polarization correlation.”
It represents the probability density of detecting the emitted
photons at the opening angle θ with defined linear polarizations
χ1 and χ2.

Finally, by summing over the photons polarizations, we
define the “angular correlation” as

W (θ ) ≡ dw

d cos θ

= 8π2

2Fi + 1

∫
dω1

ω1ω2

(2π )3c2

∑
mFi

mFf

∑
λ1λ2

|Mλ1λ2 (i → f )|2,

(8)

which represents the probability density of detecting the
emitted photons at the opening angle θ , irrespective of their
polarizations.

III. RESULTS AND DISCUSSIONS

Here we analyze the angular and polarization correlations
defined in Eqs. (8) and (7), respectively, for decays of
hyperfine 2s states in hydrogenlike ions, with special attention
to the hydrogenlike 235

92 U ion, whose nuclear spin is I =
7/2 [36]. The function W (θ ) obtained for 2s1/2 (F = 4,3) →
1s1/2 (F = 4,3) transitions in the hydrogenlike 235

92 U ion is
displayed in Fig. 2. The full multipoles and the electric dipole
(E1E1) contributions are separately displayed. Within the
dipole approximation, the angular correlation for non-spin-
flip transitions can be well described by the familiar shape
WE1E1(θ ) ∼ 1 + cos2 θ [10]. However, the full multipole
calculation shows some asymmetric deviations from such a
shape. This effect is already known from the past literature,
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FIG. 2. (Color online) Angular correlations in the hydrogenlike
235
92 U ion. The function W (θ ) is shown for the transitions 2s1/2 (F =
4,3) → 1s1/2 (F = 4,3). The dashed-red curve refers to the electric
dipole approximation while the solid-black curve refers to the full
multipoles contribution.

where it has been shown that high multipoles contribute
with terms of the type ∼ cos θ to the angular correlation in
2s1/2 → 1s1/2 transitions in highly charged ions [13].

On the other hand, for spin-flip transitions, the angular
correlation within the dipole approximation is well described
by the function WE1E1(θ ) ∼ 1 − 1/3 cos2 θ . This emission
pattern is typical for two-photon transitions of the type
JTOT = 1 (0) → JTOT = 0 (1), where JTOT is the total angular
momentum of the system which undergoes the decay. The
two-photon decay (1s 2s)3SJ=1 → (1s 1s)1SJ=0 in heliumlike
ions, where J is the total angular momentum of the two-
electron system, shows approximately the same behavior [17].
As in the previous case, the full multipole calculation shows
remarkable asymmetric deviations from the symmetric shape.
Quantitatively, the ratio W (π )/W (0) is �1.09 for non-spin-flip
transitions and �1.35 for spin-flip transitions.

For low-charged ions, we find that the angular correla-
tion is fully described by the functions ∼1 + cos2 θ and
∼1 − 1/3 cos2 θ for non-spin-flip and spin-flip transitions,
respectively (i.e., the full multipole calculations coincide with
the calculations performed within the dipole approximation).

From the figures, we also notice that spin-flip transitions are
overall suppressed with respect to the non-spin-flip transition,
which is to be expected in view of the fact that the electric
dipole, which is the leading multipole here, conserves the
electron spin if evaluated nonrelativistically. This entails that
the curves we obtained for spin-flip transitions are fully
determined by relativistic and high multipole contributions.

We now turn to analyze the polarization correlations
for some of the hyperfine transitions considered in Fig. 2.
In Fig. 3, we plot the function Wχ1χ2 (θ ) as obtained for
the transitions 2s1/2(F = 3) → 1s1/2(F = 3) and 2s1/2(F =
3) → 1s1/2(F = 4). We see that, in general, photons com-
ing from spin-flip transitions and non-spin-flip transitions
have mainly orthogonal and parallel linear polarizations,
respectively. We find that this polarization scheme holds

×

×

×

χ1 = 0  

×

×

×

×
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×

×

×

θ

×

×

×

×

χ χ (θ χ χ (θ

χ 2 =
 0
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 9
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FIG. 3. (Color online) Polarization correlations in the hydrogen-
like 235

92 U ion. The function Wχ1 χ2 (θ ) is shown for the transitions
2s1/2 (F = 3) → 1s1/2 (F = 3) (solid-black curve) and 2s1/2 (F =
3) → 1s1/2 (F = 4) (dashed-green curve). The four polarization
configurations (χ1,χ2 = 0◦,90◦) are displayed.

perfectly (i.e., without deviations) for low-Z hydrogenlike
ions. However, for hydrogenlike uranium, as well as for any
highly charged ions, sizable deviations are evident, as can be
seen in Fig. 3.

Hydrogenlike heavy ions can be nowadays efficiently
produced in storage rings [37]. The energy of the emitted
radiation in hydrogenlike uranium is in the range of hard x
rays. An experimental polarization analysis of such energetic
photons would be nowadays possible through the use of
Compton polarimeters [38–42]. By analyzing the decay spec-
trum, a conventional photon-photon coincidence measurement
enables one to distinguish two-photon decay events from the
dominant single-photon M1 decay channel [10,43]. Therefore,
information on the polarization state of two photons can be
achieved by selecting events which have been recorded in
coincidence by two polarimeters and which have the desired
scattering angle [26,44–48].

IV. SUMMARY AND PERSPECTIVES

In summary, the amplitude for two-photon transitions be-
tween hyperfine states in hydrogenlike atoms has been calcu-
lated. By using such amplitude, the angular and linear polariza-
tion properties of the photon pair emitted in two-photon decays
of 2s hyperfine states have been investigated within second-
order perturbation theory and the Dirac relativistic framework.
Special attention has been paid to the hydrogenlike 235

92 U ion.
Results have been shown for the transitions 2s1/2 (F = 4,3) →
1s1/2 (F = 4,3). It has been possible to identify two emission
patterns: (i) two-photon non-spin-flip transitions are found
to be characterized by an angular distribution approximately
of the type W (θ ) ∼ 1 + cos2 θ and by photon polarizations
approximately parallel to one another; and (ii) two-photon
spin-flip transitions have somewhat smaller decay rates and
are found to be characterized by an angular distribution
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approximately of the type W (θ ) ∼ 1 − 1/3 cos2 θ as well as by
photon polarizations approximately orthogonal to one another.
Deviations to this pattern come from high multipoles and
relativistic contributions, are negligible for low-charged ions,
and are of size 1 to 25% in the hydrogenlike 235

92 U ion.
This Brief Report is the first step toward exploring the

nuclear-spin effect on the angular and polarization properties
of the photon pair emitted in two-photon decays. This study
might pave the way for a new route to get information on the
direction and the magnitude of the spin distribution inside the
nucleus, which is still quite an unraveled problem [49].
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