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Effect of the atomic electric quadrupole moment on positron binding
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The effect of an electric quadrupole moment Q is studied for positron-atom bound systems. It is demonstrated
that for Q > 50 a.u. the electric quadrupole potential is sufficiently strong to bind a positron (or an electron)
even in the absence of the dipole polarization potential. Such large values of Q are not known for atomic
ground states; however, they exist in molecules and excited atoms. In the 2s2p3P o

2 state of beryllium, the
quadrupole contribution makes the difference between a stable bound state and an unstable state, which decays
to a Be+ ion and positronium. In the majority of atoms the quadrupole contribution is small and can be
neglected.
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I. INTRODUCTION

The unperturbed central potential of an atom is positive
at all distances and cannot bind a positron. Only when
correlations between the positron and atomic electrons are
taken into account can a positron be bound to a majority
of atoms [1] (see also [2–10] and references therein). A
simple explanation of the positron binding is provided by the
polarization of the atom by the positron field. Electron-positron
attraction shifts the electron cloud towards the positron,
producing an electric dipole moment of the atom. This induced
electric dipole moment creates a polarization potential, which
at large distances behaves like −α/2r4, where α is the static
dipole polarizability of the atom. However, many atoms also
have a static quadrupole moment which produces a long-range
potential which decays slower (∼1/r3) than the polarization
potential (∼1/r4). Therefore, it looks interesting to inves-
tigate the role of the quadrupole potential in the positron
binding.

There are many different techniques used to calculate
the positron binding energy of atoms. The variational and
configuration interaction calculations usually include the
quadrupole contribution. In some other calculations, e.g., those
based on the correlation potential [8–10] and coupled-cluster
single-double [1,3] approaches, the positron is assumed to
be in the s wave, and therefore the quadrupole contribution
is not included. Note that assuming the positron to be in
the s state does not mean that the contributions of higher
angular momenta are totally neglected. For example, in
the case of the correlation potential method [8–10] binding
energy is related to the expectation value of the correlation
potential �̂: ε ∼ 〈s|�̂|s〉, where s is the positron wave function
and higher values of both electron and positron angular
momenta are included in the calculation of �̂. Therefore,
the effect of virtual positron formation is taken into account
(see, e.g., [8,10,11]).

In spite of the fact that many calculations do include
the quadrupole contribution, it has never been presented
separately. However, it is useful to know it to judge whether
it could be at least partly responsible for the difference in the
results in different calculations. It is also important to know
whether that contribution could be large enough to provide
the difference between binding and not binding. In this Brief

Report we study the quadrupole contribution using a simple
variational approach.

II. VARIATIONAL ENERGY OF A POSITRON IN AN ATOM

The positron trial wave function in the presence of electric
dipole and quadrupole potentials takes the form

�(r,θ ) = A(r − a)e−κr (
√

1 − β2Y00 + βY20), (1)

where A is the normalization constant, Ylm(θ,φ) are spherical
harmonics, κ and β are variational parameters, and a is a
cutoff distance from the nucleus. It is assumed that the wave
function is zero at r < a. The potential energy of the positron
for r > a is

V (r,θ ) = −e2α

2r4
+ eQ

2

P2(cos θ )

r3
, (2)

where α is the polarizability of the atom, Q is its quadrupole
moment, and P2(cos θ ) = (3 cos2 θ − 1)/2 is the Legendre
polynomial. There is also an additional infinite potential
barrier at r = a which simulates the effect of positron
repulsion from the positive electrostatic potential inside the
atom. The mixing of s and d waves provides localization
of the positron wave function in equatorial or polar areas
depending on the sign of Q.

Using Schrödinger’s equation the positron energy can be
written as

E(κ,β) =
∫

d3r
(

�
2

2m
∇�∗ · ∇� + �∗V �

)∫
d3r�∗�

. (3)

Substituting (1) into (3) leads to the explicit form of E(κ,β):

4ma2

�2
E(κ,β) = E (x,β) = x2f (x,β)

x2 + 6x + 12
, (4)

where x = 2aκ is a dimensionless variational parameter and
E (x,β) is the dimensionless variational energy. The function
f (x,β) can be written in the form

f (x,β) = −
x3 + (1/2 − 
 − �ξ )x2

+ (�ξ + 1)x + 12β2 + 2

+ [
x3 + (2
 + �ξ )x2]xexE1(x), (5)
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where


 = me2α

�2a2
, (6)

� = 2
meQ

�2a
, (7)

ξ = β

√
1 − β2

5
+ β2

3
, (8)

and

E1(x) =
∫ ∞

x

dt
e−t

t
(9)

is the exponential integral [12].
Varying the energy (3) with respect to parameters x and β

requires that

∂E (x,β)

∂x
= 0,

∂E (x,β)

∂β
= 0.

Solving these equations for x and β would lead to the ground-
state energy E (x0,β0) of the positron in an atom specified by

three parameters, the cutoff parameter a, the polarizability α,
and the quadrupole moment Q.

The partial derivative of the energy (4) with respect to β

leads to

∂E

∂β
= �

∂ξ

∂β
{[xexE1(x) − 1]x2 + x} + 24β = 0. (10)

This equation can be used to express β in terms of the other
parameter x,

β = ±
√

[1 ± λ(x)]/2, (11)

where λ(x) is a simple function of x:

λ(x) =
√√√√1 − 1

1 + 5
(

�2

me
a
Q

6
g(x) + 1

3

)2 . (12)

The function g(x) = [xexE1(x) − 1]x2 + x is the same as the
x-dependent part of Eq. (10). It is positive for all x > 0, and
g(x) ∼ 2 asymptotically at x → ∞.

We substitute expression (11) for β into a second variational
equation ∂E

∂x
(x,β(x)) = 0. For each root x0 of this equation

there are four different values of β found from Eq. (11).
The final equation to solve for the extrema of the energy,

which depend only on x after substituting β(x), has the form

−(
 + 1/2)x4 + (1 − 4
 − 5�ξ )x3 + (1 − 12β2 + 3�ξ )x2 + 4(1 + 3β2)x + [6
x4 + 5(2
 + �ξ )x3]xexE1(x)

−
x5 + (1/2 − 
 − �ξ )x4 + (1 + �ξ )x3 + 2(1 + 6β2)x2 + [
x5 + (2
 + �ξ )x4]xexE1(x)

= − x2 + 4x + 6

x2 + 6x + 12
. (13)

This equation is to be solved numerically for the roots x = x0

if they exist.

III. RESULTS AND DISCUSSION

To use Eq. (13) to calculate the positron binding energy
we need to know the atomic polarizability α, the atomic
quadrupole moment Q, and the value of the cutoff parameter
a. For polarizabilities and quadrupole moments we use values
which can be found in the literature (either experimental
or theoretical), and we treat the cutoff parameter a as a
fitting parameter. We choose its value to fit the most accurate
calculations of the positron binding energy. The value of the
quadrupole contribution is found as the difference between the
binding energy at a given value of the quadrupole moment and
the value found at Q = 0.

In cases when the atomic polarizability or quadrupole
moment cannot be found in the literature we calculate them
using the configuration interaction (CI) technique [19–22]. The
static scalar polarizability of an atom in state γ is given by

αγ = 2

3(2Jγ + 1)

∑
n

〈γ ||D||n〉2

Eγ − En

, (14)

while the electric quadrupole moment is given by

Qγ = −2

√
Jγ (2Jγ − 1)

(2Jγ + 3)(2Jγ + 1)(Jγ + 1)
〈γ ‖er2‖γ 〉. (15)

Here |γ 〉 and |n〉 are many-electron states found in the CI
calculations.

About half of all atoms do not have quadrupole moments
in the ground state due to the small value of the total angular
momentum J (one needs J � 1). Atoms with open d or f

shells have large angular momenta. In Table I we present three
such examples, Dy, Er, and Ir atoms. Polarizabilities α are
taken from Ref. [14], quadrupole moments Q are calculated
using the CI technique, and the cutoff parameter a is chosen
to fit calculated binding energies presented in Ref. [1]. Since
the calculations in [1] are done under the assumption that the
positron is in the s wave and therefore cannot interact with
the atomic quadrupole moment, the fitting is done for Q = 0.
After the cutoff parameter a is found, Eq. (13) with values of
Q from Table I is used to calculate new bound energies. The
resulting energy shift �E is the quadrupole contribution to
the binding energy. We see that it is small in all three cases.
This justifies neglecting the quadrupole contribution in the
calculations of Ref. [1].

The small value of the quadrupole contribution means
that it can be treated by means of the perturbation theory.
The first-order contribution for a positron in the s wave
is zero; therefore, expansion starts from second order, and
the quadrupole contribution is proportional to the square of
the quadrupole moment. Using the Ir atom as a reference
point, we can estimate the quadrupole contribution to the
positron energy level for any atom with a small quadrupole
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TABLE I. Energy shift �E of a bound positron in an atom due to the electric quadrupole moment (EQM) Q of the atom. I is the ionization
energy, and α is the static dipole polarizability of the atomic state. The parameter a included in the positron trial function shows the minimal
distance between the positron and the nucleus. E is the binding energy of the positron to the atom without the quadrupole contribution, except
in the case of the Be atom, where the quadrupole effect has already been included in the binding energy [13].

Z Atom State I c (eV) αa (a.u.) a (a.u.) Q (a.u.) Eb (meV) �E (meV)

Ground states
66 Dy 4f 106s2 5I8 5.939 162.02 2.5878 0.0234 −1438 −5.36×10−4

68 Er 4f 126s2 3H6 6.107 150.12 2.530 0.0139 −1346 −1.98×10−4

77 Ir 5d76s2 4F9/2 8.967 50.26 1.8606 0.75 −101 −0.6549

Excited states
4 Be 2s2p 3P o

2 6.597 38.33 1.60774 4.28f,4.53g −236h −41.98
13 Al 3s23p 2P o

3/2 5.972 44.97 1.81304 5.6, 5.06d 0 −28.67
49 In 5s25p 2P o

3/2 5.512 67.45 2.13042 5.88e −114 −23.15

aGround-state atomic static dipole polarizabilities from Ref. [14].
bRecommended positron energies in Ref. [1].
cIonization potential from the NIST atomic database [15].
dExperimental value from Ref. [16].
eExperimental value from Ref. [17].
fEQM of a Be atom from Ref. [18].
gEQM of a Be atom from Ref. [17].
hPositron binding energy to the excited state of Be from Ref. [13].

moment:

�E = −0.6549

(
Q

0.75

)2

meV, (16)

where Q is in atomic units (ea2
0). The values given by this

formula differ from those presented in Table I by 13% for Er
and 19% for Dy. We expect similar accuracy for other atoms
with small quadrupole moments.

In Table I we also present three other results for the
quadrupole contribution to the positron binding energy. We
consider the excited state of the Be atom, for which accurate
calculations of the positron binding energy is available [13],
and we consider the upper components of the fine-structure
doublets of the ground state of Al and In. In all these cases
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FIG. 1. The distance of the boundary of the wave function of
the positron from the nucleus a (in a.u.) vs the required minimum
electric quadrupole moment Q to get a bound state with the energy
E = −100 meV when the dipole polarizability is supposed to be
zero, α = 0.

the value of the quadrupole moment is relatively large. So is
the quadrupole shift. The case of the Be atom is interesting
because the quadrupole contribution makes an important
difference for the positron binding. The calculated binding
energy (−236 meV) does include the quadrupole contribution.
However, if this contribution is neglected, the system becomes
unstable against the emission of positronium (Be + e+ →
Be+ + Ps).

In some excited atomic states the polarizability may be
very small or even negative [23]. Therefore, it is interesting
to check if the quadrupole alone (for α = 0) could provide
the positron binding. We use Eq. (13) to estimate what value
of the quadrupole moment is needed to provide the positron
binding. Figure 1 shows a plot of the quadrupole moment
corresponding to the 100-meV binding energy as a function of
the cutoff parameter a. We use the estimation a ∼ e2/I to find
a reasonable range of values for a. Here I is the ionization
potential. In this estimation we assume that the boundary
of the atom beyond which the positron cannot penetrate is
defined as a classical turning point for the outermost electron
where its kinetic energy is zero and the electron energy E

is equal to the potential energy U = −e2/a, i.e., I = |E| =
|U | = e2/a.

We see that required values of the quadrupole moments
are large. No atom in the ground state has so large a
quadrupole moment. However, the quadrupole moment can
be large in the excited state, Q ∼ ν4, where ν is the effective
principle quantum number [E = −1/(2ν2)]. Large values
of Q proportional to their squared size may also exist in
molecules.

IV. CONCLUSION

A simple quantum-mechanical variational method was used
to estimate the contribution of the positron interaction with
atomic quadrupole moment to the positron energy in an atom.
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It was found that the contribution is small for the binding
in the ground state. This validates the calculations in which
this contribution is neglected. The quadrupole contribution
can be significant in excited states. For example, in the
excited state of beryllium it makes a difference between a
bound state and the decay into a beryllium positive ion and
positronium.

The quadrupole contribution probably plays an important
role in positron binding to molecules which have large
quadrupole moments.
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