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Asymmetry properties of pure quantum states
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The asymmetry properties of a state relative to some symmetry group specify how and to what extent the given
symmetry is broken by the state. Characterizing these is found to be surprisingly useful for addressing a very
common problem: to determine what follows from a system’s dynamics (possibly open) having that symmetry.
We demonstrate and exploit the fact that the asymmetry properties of a state can be understood in terms of
information-theoretic concepts. We show that for a pure state ψ and a symmetry group G, they are completely
specified by the characteristic function of the state, defined as χψ (g) ≡ 〈ψ |U (g)|ψ〉, where g ∈ G and U is
the unitary representation of interest. Based on this observation, we study several important problems about
the interconversion of pure states under symmetric dynamics, such as determining the conditions for reversible
transformations, deterministic irreversible transformations, and asymptotic transformations.
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Suppose that the only thing one knows about a complicated
quantum dynamics, which is possibly open, is that it has a
particular symmetry. What does this imply about the evolution
of the system’s state? Alternatively, suppose one is given a
description of an initial quantum state and a possible final
state for a system. Can the first evolve to the second by
symmetric dynamics? These sorts of problems arise in many
physical contexts. For instance, they are clearly important
in any situation wherein one might apply Noether’s theorem
(which infers conservation laws from symmetries in the case
of closed dynamics). To answer them, it is useful to study the
asymmetry properties of a state, that is, those properties which
specify how and to what extent the given symmetry is broken
by the state. If the dynamical equations are invariant under a
symmetry group of transformations, then there are constraints
on how the asymmetry properties can change. For instance,
the final state can only break the symmetry in ways in which it
was broken by the initial state, and its measure of asymmetry
can be no greater than that of the initial state. In other words,
symmetric dynamics cannot generate asymmetry.

Furthermore, if one is in a scenario wherein implementing
symmetric dynamics is easy while implementing dynamics
that break the symmetry is hard or impossible, then asymmetric
states become a resource (for instance, in the case where
two parties lack a shared reference frame [1].). Indeed,
developing the theory of how the resource of asymmetry
can be quantified and manipulated provides another useful
angle on the problem of determining the consequences of
symmetric dynamics. Such a resource theory is analogous to
entanglement theory: the constraint of symmetric dynamics is
the analog of the constraint of local operations and classical
communication, and asymmetric states are the analogues of
entangled states. For almost any question that one might pose
about entanglement, one can ponder the analogous question for
asymmetry. The resource perspective has been an extremely
useful method for organizing results about entanglement, so
one may expect the same to be true of asymmetry as well.

In this Brief Report, we answer the most basic of such
resource theory questions: what are the conditions under which

two quantum states can be converted one to the other reversibly
under symmetric operations? What are the conditions if the
conversion is not required to be reversible? What are the
conditions under which many copies of one state can be
(approximately) reversibly interconverted to many copies of
another and what is the rate of interconversion? We consider
only interconversion of pure quantum states in this Brief
Report. Such questions have been considered previously, for
instance in Refs. [2–4]. However, whereas previous works
attacked the problem for one or two particular symmetry
groups, most of our results apply to arbitrary compact Lie
groups and finite groups. Our results are therefore of much
greater generality and this generality clarifies how they ought
to be interpreted.

Another important motivation comes from the field of
quantum metrology, wherein one explores the use of quantum
techniques to achieve greater precision for a variety of different
kinds of parameter estimation tasks [5]. High-precision clocks,
gyroscopes, and accelerometers are prominent examples for
which achieving a quantum improvement in precision would
have significant applications for the rest of physics. The
parameter to be estimated for such tasks is an unknown
element of a group. For instance, the task of aligning a pair
of Cartesian reference frames by transmitting a system that
breaks rotational symmetry and estimating its orientation is
clearly of this sort (see [1] for a review of this topic). The
degree of success one can achieve in any such task is clearly
a function of the asymmetry properties of the state that is
transmitted, so a systematic study of these properties can help
to develop optimal protocols and strategies for dealing with
practical constraints such as noise.

For more discussions of the ideas presented here, and
for both proofs and lengthier expositions of the results, see
Refs. [6,7].

We describe time evolutions by quantum channels, i.e.,
linear, trace preserving, completely positive superoperators
which map density operators in the input Hilbert space, Hin,
to density operators in the output Hilbert spaces, Hout, where
in general those can be different spaces. This way of describing
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a time evolution is general enough to include closed system
dynamics as well as all the open system dynamics in which
the environment is initially uncorrelated with the system.

Now consider a symmetry which is described by a group
G and its unitary representations on Hin and Hout, i.e.,
{Uin(g),g ∈ G} and {Uout(g),g ∈ G}, respectively. Then the
time evolution described by quantum channel E has the
symmetry G, or is G covariant iff

∀ g ∈ G : E(Uin(g)(·)U †
in(g)) = Uout(g)E(·)U †

out(g). (1)

Here we focus on the case of compact Lie groups and finite
groups. If there is a G-covariant time evolution under which

the state ρ evolves to the state σ , we denote it by ρ
G−cov−−−→ σ .

As we mentioned, ρ and σ can be density operators on
different Hilbert spaces, but without loss of generality we
can always assume these two Hilbert spaces are two different
sectors of a larger Hilbert space, H ≡ Hin ⊕ Hout, where the
representation of G is {U (g) ≡ Uin(g) ⊕ Uout(g) : g ∈ G} (see
Appendix A of [6]).

The G-covariant time evolutions define equivalence classes
of states, and the asymmetry properties of a state are precisely
those that are necessary and sufficient to determine its
equivalence class. We will say that two states ρ and σ have
exactly the same asymmetry properties (with respect to the
group G) or they are G-equivalent if they are reversibly

interconvertible by G-covariant operations, i.e., ρ
G−cov−−−→ σ

and σ
G−cov−−−→ ρ. Let ρ and σ be two G-equivalent states;

then ρ
G−cov−−−→ τ implies that σ

G−cov−−−→ τ . In other words, to
determine whether there exists a G-covariant time evolution
which transforms one state to another, the only thing we
need to know is the G-equivalence class of these two states.
Note that the G-equivalence class of a state also specifies all of
the symmetries of the state, i.e., if ρ and σ are G-equivalent,
then, if for some group element g ∈ G, U (g)ρU †(g) = ρ, then
U (g)σU †(g) = σ . We denote all of the group elements under
which ρ is invariant by SymG(ρ).1

We also introduce an equivalence relation over states that is
slightly stronger than G-equivalence: Two pure states, ψ and
φ, are called unitarily G-equivalent if there exists a unitary
VG-inv such that ∀ g ∈ G : [VG-inv,U (g)] = 0 and VG-inv|ψ〉 =
|φ〉. Such a unitary is called a G-invariant unitary. Note that if
two pure states are unitarily G-equivalent, then they are also
G-equivalent but the opposite implication does not hold.

The above definition of asymmetry properties is based on
the intuition that asymmetry is something which cannot be
generated by symmetric time evolutions. We call this the
constrained-dynamical perspective. However, one can also
take an information-theoretic perspective on how to define
the asymmetry properties of a state.

Consider a set of communication protocols in which one
chooses a message g ∈ G according to a measure over the
group and then sends the state U(g)[ρ] ≡ U (g)ρU †(g) where
ρ is some fixed state. The goal of the sender is to inform the
receiver about the specific chosen group element. We claim
that the asymmetry properties of a state ρ can be defined as

1This is the subgroup of G that stabilizes ρ.

those that determine the effectiveness of using the signal states
{U(g)[ρ] : g ∈ G} to communicate a message g ∈ G. To get
an intuition for this, note that if ρ is invariant under the effect of
some specific group element h, then the state used for encoding
h would be the same as the state used for encoding the identity
element e, U(h)[ρ] = U(e)[ρ] = ρ, such that the message h

cannot be distinguished from e. In the extreme case where ρ

is invariant under all group elements, this encoding does not
transfer any information.

So from this point of view, the asymmetry properties
of ρ can be inferred from the information-theoretic prop-
erties of the encoding {U(g)[ρ] : g ∈ G}. To compare the
asymmetry properties of two arbitrary states ρ and σ , we
have to compare the information content of two different
encodings: {U(g)[ρ] : g ∈ G} (encoding I) and {U(g)[σ ] : g ∈
G} (encoding II). If each state U(g)[ρ] can be converted
to U(g)[σ ] for all g ∈ G, then encoding I has as much or
more information about g than encoding II. If the opposite
conversion can also be made, then the two encodings have
precisely the same information about g. Consequently, in
an information-theoretic characterization of the asymmetry
properties, it is the reversible interconvertability of the orbits
of two states that defines the equivalence of their asymmetry
properties.

As it turns out, our two different approaches lead to the same
definition of asymmetry properties, as the following lemmas
imply.

Lemma 1. The following statements are equivalent:
(A) There exists a G-covariant quantum channel EG−cov

such that EG−cov(ρ) = σ .
(B) There exists a quantum channel E such that ∀ g ∈ G :

E(U(g)[ρ]) = U(g)[σ ].
Lemma 2. The following statements are equivalent:
(A) There exists a G-invariant unitary VG−inv such that

VG−inv|ψ〉 = |φ〉.
(B) There exists a unitary V such that ∀g ∈ G :

V U (g)|ψ〉 = U (g)|φ〉.
Note that in both of these lemmas, the condition A concerns

whether it is possible to transform a single state to another
under a limited type of dynamics. On the other hand, in the B
condition, there is no restriction on the dynamics, but now we
are asking whether one can transform a set of states to another
set.

In the following, we find the characterization of the
unitary G-equivalence classes for pure states via both of these
points of view, i.e., constrained dynamical and information
theoretic. We start with the constrained-dynamical point of
view. Suppose {U (g) : g ∈ G} is a representation of a finite
or compact Lie group G on the Hilbert space H. We can
always decompose this representation to a discrete set of
finite-dimensional irreducible representations (irreps). This
suggests the following decomposition of the Hilbert space:
H = ⊕

μ Mμ ⊗ Nμ, where μ labels the irreps and Nμ is the
subsystem associated to the multiplicities of representation μ

(the dimension of Nμ is equal to the number of multiplicities
of the irrep μ in this representation). Then the effect of U (g)
can be written as U (g) = ⊕

μ Uμ(g) ⊗ INμ
, where Uμ(g) acts

on Mμ irreducibly and where INμ
is the identity operator on

Nμ. Using this decomposition and Schur’s lemmas, one can
show that any arbitrary G-invariant unitary is of the following
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form [1]: VG−inv = ⊕
μ IMμ

⊗ VNμ
, where VNμ

acts unitarily
on Nμ. We can then easily prove the following theorem (Here,
�μ is the projection operator onto the subspace Mμ ⊗ Nμ,
which is the subspace associated to the irrep μ.): Two pure
states ψ and φ are unitarily G-equivalent iff

∀μ : trNμ
(�μ |ψ〉〈ψ | �μ) = trNμ

(�μ |φ〉〈φ|�μ). (2)

For an arbitrary pure state ψ , we call the set of operators
{ρ(μ) ≡ trNμ

(�μ |ψ〉〈ψ | �μ)} the reduction onto irreps of ψ .
So, in the above theorem, we have proven that the unitary
G-equivalence class of a pure state is totally specified by
its reduction onto irreps. Also, as is shown in [6], we can
generalize the result by showing that for any pair of pure states
ψ , φ, if the distance between the reductions is small, then there
exists a G-invariant unitary V such that the fidelity |〈φ|V |ψ〉|
is large, and if the distance between the reductions is large,
then for all unitaries V , |〈φ|V |ψ〉| is small.

Now we switch to finding the characterization of the
unitary G-equivalence classes using the information-theoretic
point of view. Lemma implies that ψ and φ are unitar-
ily G-equivalent iff there is a unitary V such that ∀ g ∈
G : V U (g)|ψ〉 = U (g)|φ〉. Now recall that there exists a
unitary operator W which transforms {ψi} to {φi}, that
is, ∀ i : W |ψi〉 = |φi〉, iff the Gram matrices of the two
sets of states are equal, i.e., 〈ψi |ψj 〉 = 〈φi |φj 〉 for all i,j

(see, e.g., Ref. [8]). So the necessary and sufficient condi-
tion for the existence of a unitary V such that ∀ g ∈ G :
V U (g)|ψ〉 = U (g)|φ〉 is the equality of the Gram matrices
of the set {U (g)|ψ〉 : g ∈ G} and the set {U (g)|φ〉 : g ∈ G}.
Given that these are, respectively, 〈ψ |U †(g1)U (g2)|ψ〉 =
〈ψ |U (g−1

1 g2)|ψ〉 and 〈φ|U †(g1)U (g2)|φ〉 = 〈φ|U (g−1
1 g2)|φ〉,

their equality is equivalent to

∀ g ∈ G : 〈ψ |U (g)|ψ〉 = 〈φ|U (g)|φ〉. (3)

Motivated by this, we define the “characteristic function” of
a pure state ψ relative to a unitary representation {U (g) : g ∈
G} of a group G as a function χψ : G → C of the formχψ (g) ≡
〈ψ |U (g)|ψ〉. To summarize, we have proven the following:
Two pure states ψ and φ are unitarily G-equivalent iff ∀ g ∈
G : χψ (g) = χφ(g).

So we have found two different characterizations of the
unitary G-equivalence classes: the reduction onto irreps and
the characteristic function. But how are these related? It
turns out that the connection is via the generalized Fourier
transform over the group. In particular, if χψ is the char-
acteristic function of ψ and {ρ(μ)} is its reduction onto
irreps, then we have χψ (g) = ∑

μ tr[ρ(μ)U (μ)(g)] and ρ(μ) =
dμ

∫
dgχψ (g−1)U (μ)(g), where dμ is the dimension of irrep μ

and dg is the uniform (Haar) measure on the group. (For finite
groups, we replace the integral with summation.)

Characteristic functions have some nice mathematical
properties which make them the preferred way for specifying
the unitary G-equivalence classes. In particular, we can easily
check the following: (1) Characteristic functions multiply
under tensor product, [χψ⊗φ(g) = χψ (g)χφ(g)]. (2) |χψ (g)| �
1 for all g ∈ G and χψ (e) = 1, where e is the identity of group.
(3) |χψ (gs)| = 1 for gs ∈ SymG(ψ). (4) |χψ (g)| = 1 for all
g ∈ G, iff |ψ〉〈ψ | is G invariant, i.e., U (g)|ψ〉 = eiθ(g)|ψ〉; in

this case, χψ (g) = eiθ(g) is a one-dimensional representation
of group.

We are now in a position to characterize the G-equivalence
classes of states. Using the above properties of the char-
acteristic function and the Stinespring dilation theorem for
G-covariant channels [9], one can prove the following:

For G, a compact Lie group, two pure states ψ and φ are
G-equivalent iff there exists a one-dimensional representation
of G, ei
(g), such that

∀ g ∈ G : χψ (g) = χφ(g)ei
(g). (4)

Comparing to the condition for unitary G-equivalence
classes, given by Eq. (3), here we have an extra phase freedom
(ei
(g)) for G-equivalence. This extra phase freedom is rooted
in the fact that unlike the case of unitary G-equivalence,
here the time evolution is not restricted to be unitary and
we can couple the system to an ancillary system which
is initially in a G-invariant state (and so its characteristic
function is a one-dimensional representation of the group).
Furthermore, based on the fact that the transformation should
be reversible, one can argue that the state of the ancillary

system after the time evolution ψ
G−cov−−−→ φ should still be

G invariant; otherwise one can build a (Carnot-type) cycle

formed by ψ
G−cov−−−→ φ and φ

G−cov−−−→ ψ , which generates
an infinite number of asymmetric states without using any
resource. Therefore, if the transformation from ψ to φ is
reversible, then the freedom we get by using an ancillary
system and open G-covariant dynamics is exactly described by
a one-dimensional representation of the group, as in Eq. (4).

The above theorem applies only to the compact Lie groups.
In the case of finite groups, we can prove that Eq. (4)
also describes the necessary and sufficient condition for
G-equivalence if we make the extra assumption that the
characteristic functions of ψ and φ are everywhere nonzero.

We have found the condition under which ψ
G−cov−−−→ φ

and φ
G−cov−−−→ ψ . The case of nonreversible transformation

is solved similarly. The result is ψ
G−cov−−−→ φ iff there exists

a positive definite function f (g) [10] such that χψ (g) =
χφ(g)f (g) for all g ∈ G.

Finally, it is interesting to consider the asymmetry prop-
erties of N copies of state ψ , for arbitrarily large N . Again,
we identify the asymmetry properties by considering intercon-
vertability of states. One difference with the single-copy case,
however, is that we allow the conversion to be approximate, as
long as the error goes to zero in the limit of arbitrarily many
copies. We say that there exists an asymptotic G-covariant
transformation from state ψ to φ at rate R(ψ → φ) iff

ψ⊗N G−cov−−−→ φM(N) such that limN→∞ Fid(φM(N),φ
⊗M(N)) =

1, where M(N ) = �NR(ψ → φ)� and Fid(ψ1,ψ2) is the
fidelity between ψ1 and ψ2 [11]. We say that there exists a
reversible asymptotic G-covariant transformation from ψ to
φ at rate R(ψ → φ) if there is an asymptotic G-covariant
transformation from ψ to φ at rate R = R(ψ → φ) and an
asymptotic transformation from φ to ψ at rate R−1.

As it turns out, to specify the asymmetry properties
in this case, one requires less information about the state
than is contained in χψ (g). Let {Lk} be a basis for the Lie
algebra g associated to the compact Lie group G. Then we
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define the covariance matrix of the state ψ as [Cg]kl(ψ) ≡
1/2〈ψ |LkLl + LlLk|ψ〉 − 〈ψ |Lk|ψ〉〈ψ |Ll|ψ〉. Now we can
state the result: For a compact Lie group G, if there exists a
reversible asymptotic G-covariant transformation between ψ

and φ at rate R(ψ → φ), then (i) SymG(ψ) = SymG(φ), (ii)
Cg(ψ) = R(ψ → φ)Cg(φ), and (iii) 〈L〉ψ = R(ψ → φ)〈L〉φ
for L any arbitrary element of the commutator subalgebra
[g,g] (see [12]). We conjecture that (i)–(iii) are also sufficient if
the group is connected. What is the interpretation of these three
conditions? Since the characteristic function of ψ⊗N is χN

ψ (g)
(by the multiplicative property of characteristic functions)
and χψ (g) � 1, then at the limit of large N , the characteristic
function of ψ⊗N is almost zero everywhere in G except at the
neighborhood around the points of SymG(ψ). So to specify
the asymmetry properties of ψ⊗N , we need to know SymG(ψ)
and the first and the second derivatives of χψ (g) at these
points. The covariance matrix specifies the second derivatives
and the expectation value of the generators specifies the first
derivatives.

It is worth mentioning that the covariance matrix Cg(ψ)
is proportional to the Fisher information matrix for the
set {U (g)|ψ〉} at point g = e and so condition (ii) can be
interpreted from the information-theoretic point of view as
conservation of information in reversible transformations. On
the other hand, condition (iii) can be understood in the
dynamical point of view as a generalization of conservation of
angular momentum.

In conclusion, in this Brief Report, we have introduced
a general framework for the study of asymmetry of states
with respect to an arbitrary finite or compact Lie group.
In particular, we have focused on the asymmetry properties
of a pure state and have shown that these can be specified
by the characteristic function of the state over the group.
We have found the necessary and sufficient conditions for
transforming one pure state to another by deterministic re-
versible and deterministic irreversible G-covariant operations
and necessary conditions for asymptotic interconversion to be
possible at a given rate. Also, we have introduced the idea of
the duality between the dynamical and information-theoretic
perspectives on the consequences of dynamical symmetries,
which we expect to have many significant applications.
Although characteristic function is an extremely useful tool
for the study of asymmetry of pure states, it cannot specify all
the asymmetry properties of a general mixed state. To study
asymmetry of mixed states one can use other tools such as
measures of asymmetry [2–4,7], or decomposition to modes of
asymmetry [13].
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