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The properties of a dual-frequency vertical-external-cavity surface-emitting laser (VECSEL), in which two
linear orthogonal polarization modes are oscillating simultaneously, are theoretically investigated. We derive
a model based on the ideas introduced by San Miguel et al. [San Miguel, Feng, and Moloney, Phys. Rev. A
52, 1728 (1995)], taking into account the spin dynamics of the carriers inside the quantum well based gain
medium of the dual-frequency VECSEL. This model is shown to succeed in describing quite a few properties
of the dual-frequency VECSEL, such as the behavior of nonlinear coupling strength between the modes, the
spectral behavior of intensity noises of the modes, and also the correlation between these intensity noises. A good
agreement is found with experimental data. The variables associated with the spin-dependent carrier dynamics
can be adiabatically eliminated due to the class-A dynamical behavior of the considered laser which is based on
a cm-long external cavity. This leads to a simple analytical description of the dynamics of the dual-frequency
VECSEL, providing a better understanding of the physics involved.
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I. INTRODUCTION

The spin-flip model (SFM) [1] has been very successful in
explaining different polarization properties of quantum well
(QW) based vertical cavity surface-emitting lasers (VCSELs),
such as selection of polarization state, polarization dynamics,
and switching of polarization state. This model considers
two different electronic transitions associated to different
magnetic sublevels of the conduction and heavy-hole valence
bands and thus gives rise to gain for the two circularly
polarized components of laser light of opposite helicities.
The SFM model has also been extended to incorporate the
effects of material birefringence (linear phase anisotropy), gain
dichroism (gain anisotropy), saturable dispersion (linewidth
enhancement factor or Henry factor), etc., which dictate
different stability criteria of the linearly polarized modes
of a VCSEL [2–8]. Moreover, many other properties such
as the effect of nonlinear phase anisotropy [9], influence
of polarization dynamics on the noise properties [10,11],
existence of elliptical or higher-order transverse modes, and
possibilities of having chaotic behavior even in free running
lasers [12] have been quite successfully explained based on
the fundamental ideas of spin-dependent carrier dynamics as
described in the SFM model.

Recently, the possibility for vertical-external-cavity
surface-emitting lasers (VECSELs) to sustain simultaneous
oscillation of two orthogonal linearly polarized modes of
slightly different frequencies has been evidenced [13]. These
dual-frequency lasers are very useful for microwave photonics
applications [14] such as the generation of high-purity opti-
cally carried tunable radio-frequency (rf) signals, which are
essential for metrology, remote sensing, and analog communi-
cation applications [15–18]. Such dual-frequency oscillation
has also been achieved in different kinds of solid-state
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lasers [19–21], but the inherent class-B dynamical behavior
of such solid-state lasers, as the population inversion lifetime
is much longer than the intracavity photon lifetimes, gives rise
to strong intensity noises resonant at the relaxation oscillation
frequencies [22,23]. This low-frequency intensity noise limits
the spectral purity of the beatnote generated by dual-frequency
solid-state lasers. In contrast, the dual-frequency VECSEL
overcomes this limitation since the cm-long external cavity
ensures class-A dynamical behavior of the laser by making
intracavity photon lifetime much longer than the carrier
lifetime inside the semiconductor active medium [13,24].
Moreover, to obtain stable simultaneous oscillation of the two
modes, the nonlinear coupling constant between the modes
is reduced below unity by spatially separating the two modes
inside the gain medium with an intracavity birefringent crystal
(BC). The dependence of this nonlinear coupling constant on
the spatial separation between the modes has already been
experimentally investigated [25]. Furthermore, the spectral
behavior of the correlation between the intensity noises of
the two modes has also been investigated experimentally and
theoretically [24]. These correlations play an important role to
determine the purity of the rf beatnote since the intensity noise
is coupled to the phase noise due to the large Henry factor
of the quantum well gain medium [26–28]. As described in
Refs. [24,25,28], we developed a fully heuristic rate equation
model for the laser, which completely overlooked the spin-
dependent dynamics of the carriers as mentioned in the SFM
model. This model was a standard two-mode rate equation
model in which nonlinear cross-saturation coupling terms were
added to mimic the nonlinear coupling between modes [24].
Although this model was surprisingly successful to explain
the behavior of nonlinear coupling and noise properties of the
two linear polarized modes in the dual-frequency VECSEL, it
seems important to be able to justify it on more solid grounds,
taking into account in particular the spin-dependent dynamics
in the quantum wells.
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The purpose of the present paper is thus to analyze the
properties of the two orthogonally polarized modes of a dual-
frequency VECSEL from the perspective of the SFM model.
We start by writing the rate equations for our laser based on
the ideas of the SFM model and taking into account the partial
spatial overlap between the modes. We also aim at adiabatically
eliminating the carrier dynamics as our laser is class-A type,
hoping to be able then to derive the heuristic equations that we
have used until now [24,28].

The paper is organized as follows. In Sec. II, we present the
rate equation model relevant for our dual-frequency VECSEL
and based on the ideas of the SFM model. Section III describes
how these rate equations can be simplified thanks to adiabatic
elimination of the fast variables and averaging over rapidly
varying phases. In Sec. IV we use this model to describe the
nonlinear coupling between the two linear eigenpolarizations.
The intensity noise properties are investigated in Sec. V.
Finally, Sec. VI summarizes the main conclusions of this paper.

II. MODELING THE DUAL-FREQUENCY VECSEL

Before developing the model for the dual-frequency
VECSEL, we first recall the standard SFM model in the first
subsection of this section. This model will be generalized to
the dual-frequency VECSEL in the next subsection.

A. SFM VCSEL model in linear polarization basis

The standard SFM model, which has been primarily
developed to explain the polarization properties of VCSELs,
considers the coexistence of two different electronic transitions
providing gain to the two circularly polarized components of
light of opposite helicities [1,2].

In the basis of linear eigenpolarizations the dynamics of
the standard VCSEL can be described by the following rate
equations [3–5]:

dEx

dt
= −γx

2
Ex − i(κα + γp)Ex

+ κ

2
(1 + iα)(NEx + inEy), (1)

dEy

dt
= −γy

2
Ey − i(κα − γp)Ey

+ κ

2
(1 + iα)(NEy − inEx), (2)

dN

dt
= −�(N − N0) − κN (|Ex |2 + |Ey |2)

− iκn(E∗
xEy − ExE

∗
y ), (3)

dn

dt
= −γSn − κn(|Ex |2 + |Ey |2)

− iκN (E∗
xEy − ExE

∗
y ). (4)

In these equations, Ex and Ey are the dimensionless slowly
varying complex amplitudes of the two orthogonal linearly
polarized fields. N = N+ + N− is the total population in-
version, where N+ (N−) is the population inversion for the
transition amplifying σ+ (σ−) polarized light (see Fig. 1).
n = N+ − N− is the population inversion difference between
the transitions between the magnetic sublevels, i.e., the

FIG. 1. Level scheme involved in the SFM model [1]. N+ and
N− are the population inversions for the σ+ and σ− transitions,
respectively. The decay rate of these population inversions is �. The
spin-flip rate is γS .

difference between the population inversions for the σ+
and σ− transitions; N0 defines the unsaturated population
inversion, which is proportional to the pumping rate. N , n,
and N0 are dimensionless quantities, i.e., numbers of atoms
or differences between numbers of atoms in the different
levels. γx and γy are the intensity decay rates for the two
polarization states inside the cavity. γx �= γy takes into account
the possible linear dichroism of the cavity. γp holds for the
linear phase anisotropy of the cavity. � represents the decay
rate of total population inversion, whereas γS represents the
decay rate of the population inversion difference (spin-flip
rate). The stimulated emission coefficient κ is proportional
to the stimulated emission cross section and α holds for the
Henry phase-amplitude coupling factor [26,27].

B. Extension to the dual-frequency VECSEL with partial
spatial separation

Our aim here is to model the dual-frequency VECSEL,
sustaining the oscillation of two orthogonal linearly polarized
modes, which are partially spatially separated by an intracavity
birefringent crystal (BC) as schematized in Fig. 2. This dual-
frequency VECSEL has two main differences compared to the
standard VCSEL. The first difference is the cm-long external
cavity, which ensures class-A dynamical behavior by increas-
ing the intracavity photon lifetime (∼5–10 ns) compared
to the population inversion lifetime (∼3 ns) [13,24,25,29],
whereas in standard VCSELs the photon lifetime (∼1 ps)
inside the cavity is usually much shorter than the population
inversion lifetime (∼1 ns), leading to class-B dynamical
behavior [30,31]. The second difference comes from the
intracavity BC, which spatially separates the two modes
inside the gain structure. This ensures simultaneous oscillation
of the two orthogonally polarized modes by reducing their

e
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BC Output 

Mirror
Gain 

Medium

FIG. 2. (Color online) Schematic representation of the dual-
frequency VECSEL. The intracavity birefringent crystal (BC) spa-
tially separates the ordinary (o) and extraordinary (e) polarized modes
inside the gain medium.
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nonlinear coupling. This nonlinear coupling is lowered as
the partial overlap between the modes reduces the cross-
saturation effect. Moreover, varying spatial overlap between
the modes permits us to vary the strength of the nonlinear
coupling [25]. Additionally, the intracavity BC introduces
a strong linear phase anisotropy inside the cavity, which
creates a large frequency difference (few GHz) between
the two modes which are polarized along the ordinary and
extraordinary eigenpolarizations of the BC [13]. Therefore,
the main difficulty to describe our dual-frequency VECSEL in
the spirit of the SFM model is to introduce the effect of the
partial spatial overlap between the modes. This is taken care
of by introducing the dimensionless parameter η (0 � η � 1),
which we define as

η =
∫

I (x,y)I (x − d,y)dxdy√∫
I 2(x,y)dxdy

∫
I 2(x − d,y)dxdy

= exp

(
− d2

w2

)
,

(5)

where I (x,y) denotes the Gaussian intensity profiles of radius
w of the laser mode in the active medium and d is the spatial
separation between the axes of the ordinary and extraordinary
modes inside the gain structure (see Fig. 3). Of course this
parameter η could also be used to model other effects which
tend to increase the effective overlap between the two modes,
such as carrier diffusion, etc.

The basic hypotheses of our model are schematized in
Fig. 3. For the sake of simplicity, we model the two modes
as two top-hat cylindrical beams with circular sections, with
an overlap η. We then choose to consider three population
reservoirs associated with the three different regions schema-
tized in Fig. 3: Region 1 (3) is the region where only the
x-polarized (y-polarized) mode is present with a complex field
amplitude Ex (Ey) while region 2 is the place where both
modes overlap. We then model the dual-frequency VECSEL

FIG. 3. (Color online) Schematic representation of the two
modes in the gain medium of the dual-frequency VECSEL. We model
the two beams as two top-hat cylindrical beams with circular sections.
Ex (Ey) is the complex amplitude of the x-polarized (y-polarized)
field. N1 (N3) is the total population inversion in the region where
only the x-polarized (y-polarized) mode has a nonzero intensity. N2

is the total population inversion and n2 is the population inversion
difference in the region where both modes are superimposed. The
parameters d and η, respectively, represent the spatial separation and
the relative overlap between the two modes.

using the following rate equations:

dEx

dt
= −γx

2
Ex − i(κα + γp)Ex

+ κ

2
(1 + iα)[(N1 + N2)Ex + in2Ey], (6)

dEy

dt
= −γy

2
Ey − i(κα − γp)Ey

+ κ

2
(1 + iα)[(N2 + N3)Ey − in2Ex], (7)

dN1

dt
= −�(N1 − N01) − κN1|Ex |2, (8)

dN2

dt
= −�(N2 − N02) − κN2(|Ex |2 + |Ey |2)

− iκn2(E∗
xEy − ExE

∗
y ), (9)

dN3

dt
= −�(N3 − N03) − κN3|Ey |2, (10)

dn2

dt
= −γSn2 − κn2(|Ex |2 + |Ey |2)

− iκN2(E∗
xEy − ExE

∗
y ), (11)

where the notations Ex , Ey , γx , γy , �, γS , γp, κ , and α have
the same meaning as in Eqs. (1)–(4). It is worth noticing
that all populations entering these equations, namely, N1, N2,
N3, and n2, and their pumping terms N01, N02, and N03, are
dimensionless numbers of atoms. Since only the x-polarized
(y-polarized) mode is present in region 1 (2) of Fig. 3, we
need to introduce only a total population inversion N1 (N3)
in this region, and no population inversion difference n1 (n3)
is created in this region. On the contrary, in region 2 where
the two modes overlap, we introduce both the total population
inversion N2 and the population inversion difference n2.

Since the quantities N1, N2, and N3 that we use in Eqs. (6)–
(11) are dimensionless numbers of atoms, they are already
the results of the integration of the density of atoms over the
transverse mode field distributions. They consequently already
take into account the confinement factors of the two modes
that appear explicitly when the equations are written in terms
of atomic densities [32–34]. Here, the overlapping factor η

between the two modes enters the model through the pumping
rates N01, N02, and N03. More precisely, the amount of overlap
determines the strength of the pumping N02 that goes to the
region of the active medium where the two modes overlap
with respect to the pumping rates N01 and N03 in the regions
where only one of the modes has a nonvanishing intensity.
Quantitatively, if we introduce the total pumping rates N0x

and N0y for the x- and y-polarized modes, respectively, then
N01, N02, and N03 are defined by

N01 = N0x − η
N0x + N0y

2
, (12)

N02 = η
N0x + N0y

2
, (13)

N03 = N0y − η
N0x + N0y

2
. (14)

One can notice that, if we suppose that one of the modes
vanishes (for example, Ey = 0 or N02 = N03 = 0), we then
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retrieve the two usual rate equations for Ex and Nx = N1 + N2.
Moreover, in the case where the modes totally overlap (η = 1
and N0x = N0y , or similarly N01 = N03 = 0 and N02 �= 0),
Eqs. (6)–(11) reduce to Eqs. (1)–(4) with N = N2, n = n2,
and N1 = N3 = 0.

III. SIMPLIFICATION OF THE RATE EQUATIONS

A. Adiabatic elimination of the spin dynamics

The parameter γS takes into account various microscopic
spin-flip relaxation processes, which tend to equilibrate the
populations of the magnetic sublevels inside the quantum well
based active medium. Measurements have shown that γ −1

S

is of the order of a few tens of picoseconds inside quantum
wells [35,36], whereas �−1 ≈ 3 ns and γ −1

x ,γ −1
y ≈ 5–10 ns

in the structures used to build the present dual-frequency
VECSEL, as shown by previous experiments performed
with the same half VCSEL [13,24,25]. Therefore, we can
adiabatically eliminate the dynamics of n2 from the rate
equations by taking dn2/dt = 0 in Eq. (11). This leads to

n2 = −iκN2(E∗
xEy − ExE

∗
y )

γS + κ(|Ex |2 + |Ey |2)
. (15)

To obtain Eq. (15), we have also taken into account the fact
that the relative phase between the two fields evolves slower
than the spin-relaxation rate, namely, γp � γS .

We can now suppose that the field amplitudes Ex and Ey

in Eqs. (6)–(11) are normalized in such a way that the squares
of their moduli correspond to the numbers of photons Fx and
Fy inside the cavity for the two polarization states, leading to

Ex =
√

Fxe
iφx , Ey = √

Fye
iφy , (16)

where we have introduced the phases φx and φy of the two
modes. We define their difference as

φ = φx − φy. (17)

With these notations, Eq. (15) reads

n2 = −2ε
κ

�
N2

√
FxFy sin φ, (18)

where we have supposed that the large value of γS leads to
κ
γS

Fx,y � 1 and where we have introduced

ε = �/γS, (19)

which is also supposed to be much smaller than 1. Introducing
these steady-state values of n into Eqs. (6)–(10) and using the
notations defined in Eqs. (16) and (17), we obtain

dFx

dt
= −γxFx + κ(N1 + N2)Fx

− 2κ2 ε

�
N2FxFy sin φ(sin φ − α cos φ), (20)

dFy

dt
= −γyFy + κ(N3 + N2)Fy

− 2κ2 ε

�
N2FxFy sin φ(sin φ + α cos φ), (21)

dN1

dt
= −�(N1 − N01) − κN1Fx, (22)

dN2

dt
= −�(N2 − N02) − κN2(Fx + Fy) + 2κ2 ε

�
N2FxFy,

(23)

dN3

dt
= −�(N3 − N03) − κN3Fy, (24)

dφ

dt
= −2γp + κ

2
α(N1 − N3)

−κ2ε

2�
N2[Fy(sin 2φ + 2α sin2 φ)

−Fx(sin 2φ − 2α sin2 φ)]. (25)

B. Averaging the relative phase

Previous experiments have shown that the frequency
difference between the two orthogonally polarized modes,
which is ruled mainly by the term 2γp coming from the
intracavity phase anisotropy in Eq. (25), is of the order of
a few gigahertz [13]. This is the range of frequencies which is
also interesting for microwave photonics applications. Such
frequencies are much larger than the population inversion
decay rate (� ≈ 3 × 108 s−1) in the semiconductor structures
we consider here [29]. In these conditions, this permits us to
further simplify the rate equations (20)–(24) by averaging over
all values φ from 0 to 2π . This leads to

dFx

dt
= −γxFx + κ(N1 + N2)Fx − κ2 ε

�
N2FxFy, (26)

dFy

dt
= −γyFy + κ(N2 + N3)Fy − κ2 ε

�
N2FxFy, (27)

dN1

dt
= −�(N1 − N01) − κN1Fx, (28)

dN2

dt
= −�(N2 − N02) − κN2(Fx + Fy)

+ 2κ2 ε

�
N2FxFy, (29)

dN3

dt
= −�(N3 − N03) − κN3Fy. (30)

C. Class-A approximation

The cm-long external cavity of our dual-frequency VEC-
SEL ensures a longer lifetime for the intracavity photons
than for the population inversion (γx,γy � �). Indeed, the
results of previous experiments have proven that the photon
lifetimes (γ −1

x ,γ −1
y ) are about 10 ns, whereas the popula-

tion inversion lifetime (�−1) is about 3 ns [13,24,25]. The
dual-frequency VECSEL is thus a class-A laser. Therefore, we
can adiabatically eliminate N1, N2, and N3 from Eqs. (26)–(30)
by writing dN1/dt = 0, dN2/dt = 0, and dN3/dt = 0 in
Eqs. (28)–(30). This leads to

N1 = N01

1 + κ
�
Fx

, (31)

N2 = N02

1 + κ
�

(Fx + Fy) − 2 κ2ε
�2 FxFy

, (32)

N3 = N03

1 + κ
�
Fy

. (33)
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By injecting Eqs. (31)–(33) into Eqs. (26) and (27), we are left
with the following differential equations:

dFx

dt
= −γxFx + κ

[
N01

1 + κ
�
Fx

+ N02

1 + κ
�

(Fx + Fy) − 2 κ2ε
�2 FxFy

(
1 − κε

�
Fy

)]
Fx,

(34)

dFy

dt
= −γyFy + κ

[
N03

1 + κ
�
Fy

+ N02

1 + κ
�

(Fx + Fy) − 2 κ2ε
�2 FxFy

(
1 − κε

�
Fx

)]
Fy.

(35)

D. Weak saturation limit

In the case where the laser is just above threshold
and the saturation of the active medium is weak, i.e.,
κFx/�,κFy/� � 1, one can keep only terms up to first order
in κFx/� and κFy/� in Eqs. (34) and (35), leading to the
following “third order in field” version for Eqs. (34) and (35):

dFx

dt
= −γxFx + κ

[
(N01 + N02)

(
1 − κ

�
Fx

)

− κ

�
N02(1 + ε)Fy

]
Fx, (36)

dFy

dt
= −γyFy + κ

[
(N03 + N02)

(
1 − κ

�
Fy

)

− κ

�
N02(1 + ε)Fx

]
Fy. (37)

Equations (36) and (37) end up in the same form as the
classical equations of Lamb’s theory [32]. In particular, the
coefficients ξxy , ξyx which define the ratios between the cross-
to self-saturation coefficients and which describe the nonlinear
coupling of the two laser modes are given by

ξxy = N02(1 + ε)

N01 + N02
= η

2
(1 + ε)

(
1 + N0y

N0x

)
, (38)

ξyx = N02(1 + ε)

N03 + N02
= η

2
(1 + ε)

(
1 + N0x

N0y

)
. (39)

Equations (36) and (37) allow us to retrieve the heuristic model
that was used in Refs. [24,25], but the model of Refs. [24,25]
did not allow us to derive any expressions for ξxy and ξyx ,
whereas the present model provides analytical expressions for
these coupling coefficients [see Eqs. (38) and (39)], showing
their dependence on the amount η of spatial overlap between
the modes and the value of the spin-relaxation decay rate (γS)
relative to the population inversion decay rate (�).

E. Laser switch-on

We now use Eqs. (26)–(30) to simulate the switching on
of the laser. The temporal evolutions of the intracavity photon
numbers (Fx , Fy) of the two modes for different values of
the spatial separation d are displayed in Fig. 4. These values
of d correspond to those used in the experiments [24,25]. To
perform the numerical integration of Eqs. (26)–(30), we chose
values of the parameters w, κ , �, γx , γy representative of
the experiment described in Ref. [24]. Only the value of ε is
estimated from the orders of magnitude of γS that one can
find in the literature [35,36]. We suppose that the laser is 1.3
times above threshold, that the two polarization eigenstates are
equally pumped, i.e., N0x = N0y , but that the x-polarized mode
experiences slightly more losses than the y-polarized one. The
results of Fig. 4 show that the two polarization eigenstates
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FIG. 4. (Color online) Time evolution of (a) the intracavity photon numbers Fx and Fy and (b) the population inversions N1, N2, and N3

for d = 100 μm, w = 62 μm, 1/γx = 6 ns, 1/γy = 6.05 ns, 1/� = 3 ns, ε = 0.02, κ = 6.3 × 10−2 s−1, N0x = N0y = 1.3 × γx/κ . In this case
η = 0.074. (c), (d) Same as (a), (b) for d = 50 μm, corresponding to η = 0.52. (e), (f) Same as (a), (b) for d = 20 μm, corresponding to
η = 0.90.
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FIG. 5. (Color online) Same as Figs. 4(c) and 4(d) in the case
of a class-B lasers. The values of the parameters are d = 50 μm,
w = 62 μm, 1/γx = 6 ns, 1/γy = 6.05 ns, 1/� = 100 ns, ε = 0.02,
κ = 6.3 × 10−2 s−1, N0x = N0y = 1.3 × γx/κ .

can oscillate simultaneously for all three values of d but that
when d decreases the increase of the competition makes the
final unbalance between their intensities more important. This
is consistent with the picture expected from an increase of
nonlinear coupling due to an increase of η. The comparison of
the evolutions of the populations N1, N2, and N3 in the three
cases of Figs. 4(b), 4(d), and 4(f) is also interesting. One can
notice that, when d decreases, the increase of the overlap of
the two modes leads to an increase of the relative weight of
N2 with respect to N1 and N3. Moreover, this decrease of d

also leads to a decrease of the total number N1 + N2 + N3 of
atoms providing gain to the laser. This is consistent with an
increase of the competition between the two modes.

Before going further into the exploration of the behavior of
steady-state solutions in our model, we check its consistency
by verifying that it can also describe the well-known damped
relaxation behavior of a class-B laser. We thus strongly
increase the value of 1/� and simulate the switching on of
the laser using Eqs. (26)–(29). The result is reproduced in
Fig. 5. The laser clearly exhibits the in-phase and antiphase
relaxation oscillations, showing that our model consistently
describes the behavior of class-B lasers also.

F. Steady-state solutions

The steady-state solutions for the laser intensities can be
obtained by finding the steady-state solutions of Eqs. (34)
and (35). In particular, we can plot the intracavity photon
numbers for the two modes versus pumping rates N0x and
N0y , as shown in Fig. 6 with the same parameters as in Fig. 4.
In this case we took three different values of d, just like in
Fig. 4. The two modes have slightly different losses (γx > γy),

(a)

(b)

(c)

FIG. 6. (Color online) Evolution of the steady-state photon num-
bers Fx and Fy vs pumping rate N0x = N0y . The values of the
parameters are w = 62 μm, 1/γx = 6 ns, 1/γy = 6.05 ns, 1/� =
3 ns, ε = 0.02, κ = 6.3 × 10−2 s−1. (a) d = 100 μm. (b) d = 50 μm.
(c) d = 20 μm.

but equal pumping rates (N0x = N0y). One can again see the
influence of the mode competition on the resulting unbalance
in photon numbers.

IV. NONLINEAR COUPLING CONSTANT

Let us consider the situation in which the laser obeys
the class-A dynamical regime, as in Figs. 4 and 6, which
corresponds to the experimental results we wish to reproduce.
The key phenomenon when we consider the simultaneous
oscillation of the two modes is the nonlinear coupling, which
has been experimentally investigated [25]. In the case of weak
saturation, Eqs. (38) and (39) show that the coupling does not
only depend on the overlap η, as expected and as shown by the
simulations of Fig. 4. It also depends on the ratio ε between
the spin and the population relaxation rates. Figure 7 shows
the results obtained when one simulates the laser switch-on
for different values of ε when the two modes experience
slightly different losses. This simulation is performed using
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FIG. 7. (Color online) Time evolution of (a), (c), and (e) the intracavity photon numbers Fx and Fy and (b), (d), and (f) the population
inversions N1, N2, and N3 for d = 20 μm, w = 62 μm, 1/γx = 6 ns, 1/γy = 6.05 ns, 1/� = 3 ns, κ = 6.3 × 10−2 s−1, N0x = N0y = 1.3 ×
γx/κ . (a), (b) ε = 0.01. (c), (d) ε = 0.05. (e), (f) ε = 0.1.

Eqs. (26)–(29). It is clear from this figure that the larger ε the
stronger the coupling between the two modes. By increasing ε

from 0.01 to 0.1, one can see that a small difference between
the losses γx and γy experienced by the two modes (which
have the same gain) can lead either to a small difference in
intensities [see Figs. 7(a) and 7(b)] when ε is small or to the
fact that the stronger mode forbids oscillation of the other one
[see Figs. 7(e) and 7(f)] when ε is larger.

Equations (38) and (39) also predict that if N0x �= N0y , i.e.,
if the pumping or equivalently the gain to loss ratios for the
two modes are not identical, then the two coupling coefficients
ξxy and ξyx are not identical as soon as ε is different from zero.
To check whether this prediction remains valid beyond the
third-order approximation, we generalize Eqs. (38) and (39)
using the following definitions [25]:

ξxy = −∂Fx/∂γy

∂Fy/∂γy

, (40)

ξyx = −∂Fy/∂γx

∂Fx/∂γx

. (41)

Figure 8 represents the evolutions of ξxy and ξyx versus δN0

when one varies the pumping rates of the two modes in two
opposite ways, namely,

N0x = N0(1 + δN0), (42)

N0y = N0(1 − δN0). (43)

Figure 8 compares the results obtained from Eqs. (40)
and (41) using the steady-state photon numbers Fx and Fy

obtained from Eqs. (34) and (35) with the result obtained using
the weak saturation approximation [Eqs. (38) and (39)]. One
can see that both calculations indicate that the coefficients
ξxy and ξyx become asymmetric when the pumping rates
for the two modes become different (N0x �= N0y). However,
although the values of ξxy and ξyx given by the weak saturation
approximation [Eqs. (38) and (39)] are close to the ones

obtained from the complete model [Eqs. (34) and (35)], their
evolutions with the asymmetry of the pumping rates are
opposite. Additionally, the difference between ξxy and ξyx

leaves C = ξxyξyx unchanged, at least for small values of the
pumping asymmetry δN0. This can also be seen in the weak
saturation limit using Eqs. (38) and (39):

C = ξxyξyx � η2

4
(1 + 2ε)

(N0x + N0y)2

N0xN0y

, (44)

which, at first order, does not depend on δN0 when N0x and
N0y obey Eqs. (42) and (43).

Therefore, the observation of unequal values of the two
coefficients ξxy and ξyx that was found by previous exper-
iments [25] can be explained in our model. Moreover, the
model explains why these variations leave C constant, as
experimentally observed.

FIG. 8. (Color online) Evolution of ξxy (dashed blue line) and ξyx

(full red line) vs δN0 with N0x = N0(1 + δN0) and N0y = N0(1 −
δN0). Thick lines: calculation from Eqs. (40) and (41) using the
steady-state photon numbers Fx and Fy obtained from Eqs. (34)
and (35). Thin lines: calculation from Eqs. (38) and (39). The values
of the parameters are d = 50 μm, w = 62 μm, 1/γx = 6 ns, 1/γy =
6 ns, 1/� = 3 ns, ε = 0.02, κ = 6.3 × 10−2 s−1, N0 = 1.3γx/κ .
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FIG. 9. Evolution of C = ξxyξyx (full line) vs d obtained from
Eqs. (40) and (41) using the steady-state photon numbers Fx and
Fy obtained from Eqs. (34) and (35). Dashed line: calculation from
Eq. (44). The values of the parameters are w = 62 μm, 1/γx =
6 ns, 1/γy = 6 ns, 1/� = 3 ns, ε = 0.02, κ = 6.3 × 10−2 s−1, N0x =
N0y = 1.3γx/κ .

Figure 9 reproduces the evolution of C with d. The results
obtained either from the full calculation based on Eqs. (40)
and (41) using the steady-state photon numbers Fx and Fy

obtained from Eqs. (34) and (35) or from the simplified
expressions of Eq. (44) lead to almost the same result,
explaining the success of the simplified heuristic model [24].
The maximum value of C, obtained for d = 0, depends on ε.
The fact that it is larger than unity explains why a partial spatial
separation is necessary to obtain simultaneous oscillation of
the two polarizations. Moreover, this predicts the existence of
polarization bistability for d close to zero. These calculations
are in good agreement with experimental results [13,25].

V. INTENSITY NOISE PROPERTIES

Since dual-frequency VECSELs are developed for mi-
crowave photonics applications [13], their noise properties
are of particular interest. The simple heuristic model that has
been used until now [24] has led to a very good agreement
with the measurements of intensity noise spectra and of
intensity noise correlations between the two modes. Preceding
work [24] has also shown that, in the frequency range from
10 kHz to 100 MHz, the predominant source of intensity noise
for the dual-frequency VECSEL originates from the pump
intensity noise. This is an important issue for microwave
photonics applications because this intensity noise is then
transferred to the phase noise through the phase intensity
coupling mechanism [28]. The aim of the present section is
thus to apply the present model, and more precisely Eqs. (26)
to (30), to the description of the intensity noises of the two
modes of the laser, including their correlations.

Since between 10 kHz and 100 MHz the dominant source
of noise originates from the intensity fluctuations of the pump
laser [24], we model this pump noise as follows:

N0x(t) = N0x + δN0x(t), (45)

N0y(t) = N0y + δN0y(t), (46)

where N0x and N0y are the average values of the unsaturated
population inversions, which are proportional to the average
pumping rates for the two modes, and δN0x(t) and δN0y(t) are
their fluctuations. The fluctuations of the photon numbers of

the two modes are defined as

Fx(t) = Fx0 + δFx(t), (47)

Fy(t) = Fy0 + δFy(t), (48)

where Fx0 and Fy0 are the steady-state solutions for the laser
photon numbers and δFx(t) and δFy(t) are their fluctuations.
The pump fluctuations entering into the two partially spatially
separated laser modes obey the following relations for fre-
quencies f between 10 kHz and 100 MHz:

〈|δ̃N0x(f )|2〉 = 〈|δ̃N0y(f )|2〉
≡ 〈|δ̃N0(f )|2〉, (49)

〈δ̃N0x(f )δ̃N
∗
0y(f )〉 = 〈δ̃N0y(f )δ̃N

∗
0x(f )〉

≡ ηp〈|δ̃N0(f )|2〉eiψp , (50)

where the tilde holds for the the Fourier transformed variable,
and 〈.〉 holds for averaging. In our experiment, the pump
relative intensity noise (RIN) level has been measured to be
flat and equal to −135 dB/Hz between 10 kHz and 100 MHz.
The pump noise correlation factor ηp has been measured to
be constant and equal to 0.85 over the same frequency range
and the relative phase of the pump fluctuations ψp has been
found to be equal to zero [24]. Therefore, the pump fluctuations
entering into the laser modes are identical white noises, which
are partially correlated (ηp < 1) but are in phase (ψp = 0).

By linearizing Eqs. (26)–(30) around their steady-state
solutions with Mathematica, we are able to extract linear
relations between the fluctuations of the photon numbers, of the
population inversions, and of the pumping rate. After taking
the Fourier transforms of these equations, we can eliminate
the fluctuations of the population inversions and end up with a
numerical expression relating the fluctuations of the photon
numbers δ̃F x(f ) and δ̃F y(f ) in the frequency domain to
δ̃N0x(f ) and δ̃N0y(f ). From these quantities we can obtain the
relative intensity noise spectra (RINs) of the two laser modes:

RINx(f ) = 〈|δ̃F x(f )|2〉
F 2

x0

, (51)

RINy(f ) = 〈|δ̃F y(f )|2〉
F 2

y0

. (52)

The relative intensity noise of the pump is related to δ̃N0(f )
by

RINp(f ) = 〈|δ̃N0(f )|2〉
N2

0

, (53)

where we have assumed N0x = N0y ≡ N0, i.e., identical
pumping for the two modes.

The normalized spectrum of the correlation between the
intensity noises of the two modes is defined as

�(f ) = 〈δ̃F x(f )δ̃F
∗
y(f )〉√

〈|δ̃F x(f )|2〉〈|δ̃F y(f )|2〉
. (54)

�(f ) is a complex function having an amplitude and a phase.
The correlation amplitude and phase spectra are, respectively,
defined by |�(f )|2 and arg[�(f )]. One has |�(f )| � 1, where
equality describes perfect correlation.
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(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

FIG. 10. (Color online) (a) Relative intensity noise, (b) correlation amplitude, and (c) correlation phase spectra calculated from the present
model. The values of the parameters are w = 62 μm, 1/γx = 6 ns, 1/γy = 6.05 ns, 1/� = 3 ns, ε = 0.02, κ = 6.3 × 10−2 s−1, N 0x = N0y =
1.3 × γx/κ , RINp = −135 dB/Hz, and d = 100 μm, corresponding to an overlap η = 0.074. (d), (e), and (f) Same as (a)–(c) for d = 50 μm,
corresponding to η = 0.52. (g), (h), and (i) Same as (a)–(c) for d = 20 μm, corresponding to η = 0.90.

Figure 10 reproduces the results obtained for three values
of the spatial separation d, namely, 100, 50, and 20 μm. These
results are in excellent agreement with the corresponding
experiments and with the spectra obtained from the simple
heuristic model that we had previously developed [24]. In
particular, these results reproduce the fact that for the weak
coupling (C � 0, see Fig. 9) corresponding to d = 100 μm
[see Figs. 10(a)–10(c)] the relative intensity noise (RIN)
spectra look like the transfer function of first-order filters and
hence illustrate the class-A dynamical behavior of our laser.
The RIN spectra for the two modes are not identical as we take
slightly different losses for the two modes. The intensity noises
for the two modes are partially correlated [see Fig. 10(b)] and
their correlated parts are in phase [see Fig. 10(c)] all over the
considered frequency range (10 kHz–100 MHz).

The simulation results for spatial separation d = 50 μm
between the modes are shown in Figs. 10(d)–10(f). The two
modes are moderately coupled (C � 0.3) in this situation as
shown by Fig. 9. The RIN spectra again look like the transfer
function of first-order filters, thus confirming again the class-A
dynamical behavior of the laser [see Fig. 10(d)]. As shown by
Figs. 10(e) and 10(f), the correlation amplitude is very low
for frequencies lower than ∼1 MHz, whereas the correlation
amplitude is strong and the correlation phase is zero for higher
frequencies, as observed experimentally in this situation [24].

Finally, Figs. 10(g)–10(i) reproduce the simulation results
for a spatial separation d = 20 μm between the modes, which
corresponds to a quite strong nonlinear coupling (C � 0.8) as
reported in Fig. 9. The RIN spectra as shown in Fig. 10(g)
now exhibit a change of slope at about 1 MHz. The correlation
amplitude is strong except for a dip around 1 MHz, as shown in
Fig. 10(h). The correlation phase jumps from π at frequencies
lower than 1 MHz to zero for higher frequencies, as reported
in Fig. 10(i).

This behavior, and more particularly the fact that the
correlation phase exhibits only two values, namely, zero and π ,
has already been physically explained [24]. It originates from
the fact that the two linear orthogonal polarizations are coupled
and hence there are two eigenrelaxation mechanisms for the
out-of-equilibrium fluctuations of the whole system [37]: an
in-phase relaxation mechanism and an antiphase relaxation
mechanism. The in-phase response is independent of the
coupling, whereas the antiphase response strongly depends
on the coupling and has a cutoff frequency (∼1 MHz for our
VECSEL) that is much lower than the in-phase one. For d =
100 μm, the two laser modes are almost uncoupled (C � 0).
As a result, the in-phase response dominates over the antiphase
response for all frequencies within 10 kHz to 100 MHz and thus
gives rise to partially correlated [see Fig. 10(b)] and in-phase
[see Fig. 10(c)] intensity noises induced by partially correlated
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(ηp < 1), in-phase (ψp = 0) pump fluctuations. For C � 0.3
in the case where d = 50 μm, the amplitude of the antiphase
response becomes comparable to the amplitude of the in-phase
response for frequencies lower than the cutoff frequency of the
antiphase response (∼1 MHz), whereas for higher frequencies
the in-phase response dominates. This explains the low values
of the correlation amplitude for frequencies lower than 1 MHz
and the high values of the correlation amplitude and zero
correlation phase for frequencies higher than 1 MHz [see
Figs. 10(e) and 10(f)]. For d = 20 μm, which corresponds to a
stronger coupling situation (C = 0.8), the antiphase response
strongly dominates over the in-phase response for frequencies
lower than the antiphase cutoff frequency (1 MHz), but the
in-phase response always dominates for higher frequencies.
As a result, the correlation phase is π for frequencies lower
than 1 MHz but zero for higher frequencies [see Fig. 10(i)].
Moreover, the phase jump at about 1 MHz [see Fig. 10(i)]
due to the transition of the laser dynamics from dominant
antiphase to in-phase behavior gives rise to the dip in the
correlation amplitude [see Fig. 10(h)] as the fluctuations
of nearly identical amplitudes of the two modes interfere
destructively.

VI. CONCLUSION

In this paper, we have developed a rate equation model
taking the spin dynamics of the carriers into account, in order
to predict the different properties of dual-frequency VECSELs

sustaining oscillation of two linear orthogonal polarization
modes. Specifically, we discussed how the relative value of the
spin-relaxation rate of the carriers with respect to the carrier
decay rate inside the QW based gain medium determines the
dynamics of the dual-frequency VECSEL. This model has
proven to be successful in describing the steady-state and
transient intensities of the laser, the behavior of the nonlinear
coupling between the two modes, and also the properties of
the intensity noises and their correlations. This theoretical
approach to the dual-frequency VECSEL, based on the ideas
of the SFM model, on the one hand generalizes the previous
simple heuristic model reported in Refs. [24,28] and on
the other hand predicts a few properties of dual-frequency
VECSELs such as the possible existence of bistability of
the two modes and unequal values of the ratios of cross-
to self-saturation coefficients, which could not be explained
by the simple model [25]. Moreover, it opens interesting
perspective concerning the dynamics of the laser when the
beat frequency between the two modes becomes too slow to
be averaged out, leading to possible self-pulsing and other
dynamical phenomena [38,39].
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