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We show that the propagation direction of the Dirac-cone modes of photonic-crystal slabs can be continuously
controlled by the polarization of the incident wave. This property is realized by their isotropic dispersion relation
and anisotropic mixture of two dipolar wave functions. To clarify these features, we formulate a Green-function
method to describe the excitation process of the Dirac-cone modes and analyze the coupling strength with the
incident wave by group theory. This angular dependence of the intensity distribution of the excited wave can be
used for experimentally detecting the Dirac cones and distinguishing their mode symmetry.
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I. INTRODUCTION

Since the discovery of topological photonic states and their
relevant novel optical phenomena, the search and materializa-
tion of photonic Dirac cones has become one of the most active
research fields of optics [1–9]. Haldane et al. [1,2] pointed out
the presence of the Dirac cone on the K point of the Brillouin
zone of a triangular-lattice photonic crystal and discussed
the unidirectional propagation of surface optical waves in
the system without the time-reversal symmetry. Ochiai et al.
extended the discussion to the honeycomb lattice [3]. The
Dirac-cone dispersion also materializes optical simulation of
Zitterbewegung, or trembling motion, in particle physics by
propagating an optical pulse of the Dirac point frequency [4,5]
and the pseudodiffusive transmission, which was found by
Sepkhanov et al. [6] and numerically demonstrated by Diem
et al. [7]. Wang et al. observed the unidirectional propagation
of surface waves in the microwave frequency range [8]
and Hafezi et al. materialized an analogous unidirectional
propagation by a two-dimensional microcavity array based
on the silicon photonics [9].

In addition to the deterministic formation of the Dirac
cone on the boundary of the Brillouin zone, it can also
be materialized on the � point (Brillouin-zone center) by
accidental degeneracy, as was shown by Huang et al. [10].
Then, Mei et al. discussed the formation of Dirac cones,
Berry phase, and mapping into the Dirac Hamiltonian for
phononic and photonic crystals by the k · p perturbation theory
[11]. Because the Dirac point in the Brillouin-zone center
is equivalent to a zero effective refractive index [10], it has
much potential for various applications such as scatter-free
waveguides [12] and lenses of arbitrary shapes [13].

On the other hand, we showed by tight-binding approxima-
tion and group theory that Dirac cones can also be created
by accidental degeneracy in the Brillouin-zone center of
metamaterials, which are characterized by well-defined elec-
tromagnetic resonant states localized in their unit structures
[14,15]. We proved the presence of isotropic Dirac cones with
auxiliary quadratic dispersion surfaces in square-, triangular-,
and simple-cubic-lattice metamaterials [Fig. 1(a)] and the
presence of the double Dirac cone, or a pair of identical Dirac
cones, in the triangular-lattice metamaterials [Fig. 1(b)]. We

also applied the k · p perturbation theory and group theory to
this problem and showed that the structure of the first-order
perturbation matrix is determined almost uniquely by the
mode symmetry, and completely clarified the conditions for
obtaining the Dirac cones [16].

In this paper, we analyze photonic crystal slabs, which are
the best candidate for materializing the photonic Dirac cones in
the optical frequencies. In particular, we analyze the coupling
strength between the incident wave and the Dirac-cone modes
by group theory and show that the propagation direction
of the slab mode can be controlled by the polarization of
the incident wave. This paper is organized as follows. In
Sec. II, we analyze the excitation process of the Dirac-cone
modes by an incident monochromatic plane wave and calculate
Poynting’s vector of the induced wave running parallel to
the slab surface. In Sec. III, we apply this method to the
square-lattice photonic-crystal slab and show the peculiar
polarization-angle dependence of the propagation direction.
The Dirac cone and double Dirac cone in the triangular lattice
are analyzed in Sec. IV. A summary of the present study is
given in Sec. V. A retarded Green function for the magnetic
field is derived in Appendix A. In Appendix B, plane-wave
radiation by oscillating magnetic polarization in free space is
formulated by the Green-function method.

II. COUPLING WITH AN INCIDENT PLANE WAVE

By using the retarded Green function for the magnetic field,
which is formulated in Appendix A, we examine the excitation
process of Dirac-cone modes by an incident plane wave, which
we denote by Hin:

Hin(r,t) = H0e
i(k0·r−ωt), (1)

where k0 and ω are the wave vector and angular frequency
of the incident wave. So, ω = c|k0|, where c is the velocity
of light in free space. To analyze this process by means of
Eq. (A15), we introduce a uniform planar distribution of virtual
oscillating magnetic dipoles that generate the plane wave Hin,
which are located sufficiently far from the photonic-crystal
slab and are denoted by Pm:

Pm = dmδ(z − z0)ei(κxx+κyy)+(−iω+δ)t , (2)
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FIG. 1. (Color online) (a) Dirac cone (gold) with an auxiliary
dispersion surface (dotted lines), and (b) double Dirac cone on the
� point (k = 0) of the two-dimensional Brillouin zone materialized
by accidental degeneracy of two modes with particular combinations
of mode symmetries. At the degenerate frequency denoted by ω� ,
which is called the Dirac point, the effective refractive index is equal
to zero.

where Cartesian coordinates are used as shown in Fig. 2. z0,
which we assume to be positive without loss of generality, is a
constant much larger than the wavelength of the incident wave,
2πc/ω. For simplicity, we assume that dm is perpendicular to
the z axis and denote its tilt angle against the x axis by θ

(Fig. 3). In Eq. (2), positive infinitesimal δ was introduced to
assure the adiabatic switching of the oscillation. κx and κy are
the x and y components of the wave vector of the incident
wave k0:

k0 = (
κx, κy, −

√
ω2/c2 − κ2

x − κ2
y

)
. (3)

The inhomogeneous equation with Pm as a source term is given
by

−
(

1

c2

∂2

∂t2
+ LH

)
H(r,t) = ε0

∂2Pm

∂t2
, (4)

where differential operator LH is defined by Eq. (A4). From
Eq. (A15), we obtain

H(r,t) =
∫

V

dr′
∫ ∞

−∞
dt ′ G(r,r′,t − t ′)ε0

∂2

∂t ′2
Pm(r′,t ′)

= −Pm(r,t)
μ0

+
∑
kn

ωknH(T )
kn (r)

μ0V

∫
V

dr′
∫ t

−∞
dt ′

× H(T )∗
kn (r′) · Pm(r′,t ′) sin ωkn(t − t ′), (5)

where μ0 is the permeability of free space, V is the volume on
which the periodic boundary condition is imposed, and ωkn and
H(T )

kn (r) are the eigenangular frequency and the magnetic field
eigenfunction of the transverse mode with wave vector k and
band index n. So, the propagating part of the induced wave is
given only by the transverse waves and the longitudinal waves
were used to reconstruct the original oscillating polarization.
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FIG. 2. Illustration of the square-lattice photonic-crystal slab of
the C4v symmetry, which is composed of a regular array of circular
air cylinders fabricated in a uniform dielectric slab. Because the two-
dimensional C4v symmetry is sufficient for the Dirac cone, we do not
assume a mirror symmetry about the horizontal middle plane.

For free space,

H(T )
kn (r) = hke

ik·r (hk · k = 0), (6)

ωkn = c|k|, (7)

where hk is a unit vector perpendicular to k. In this equation,
k is a general wave vector in the three-dimensional reciprocal
space that is not restricted to the two-dimensional first Bril-
louin zone of the photonic-crystal slab, so we omitted subscript
n. Then, from Eq. (5), we can derive the formula for the
plane wave emitted by the oscillating magnetic polarization,
the details of which are given in Appendix B. The emitted
wave is given by Eq. (1), where H0 is a vector perpendicular to
k and parallel to the plane spanned by dm and k. For emission
in the normal direction in particular, that is, for κx = κy = 0,
its amplitude is

|H0| = ω|dm|
2μ0c

. (8)

Now, we go back to the problem of the excitation process
of the Dirac-cone modes. First, from the Bloch theorem,
each eigenfunction of the magnetic field is a product of an
exponential function and a periodic vectorial function:

H(T )
kn (r) = eik·rukn(r), (9)

ukn(r + ai) = ukn(r) (i = 1, 2), (10)

where ai (i = 1, 2) is an elementary lattice vector parallel to
the surface of the photonic-crystal slab. Second, the summation
over n in Eq. (5) includes two types of eigenmodes. One is the
waveguide modes localized on the photonic-crystal slab, and

x

y

θ

dm

FIG. 3. Distribution of the oscillating magnetic polarization with
amplitude dm and tilt angle θ . It has a phase factor ei(κxx+κyy) to
produce a plane wave propagating in the direction designated by

k0 = (κx,κy, −
√

ω2/c2 − κ2
x − κ2

y ).
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the other is reflected, transmitted, and diffracted waves that
propagate like plane waves when they are sufficiently away
from the slab and do not have a large amplitude in the vicinity
of the slab. The former have discrete eigenfrequencies for
each (κx,κy) and compose the Dirac cone. On the other hand,
the latter have quasicontinuous eigenfrequencies that may be
designated by the z component of the wave vector. Because we
are interested only in the former, we ignore the contribution
from the latter.

Then we replace the summation over n by a summation
over waveguide modes in the relevant frequency range, which
we distinguish by j . When we substitute Eq. (9) and omit the
source term (the first term on the right-hand side), Eq. (5) gives
the propagating part of the magnetic field as follows:

H(r,t) ≈
ns∑

j=1

ωκj H(T )
κj (r)〈u∗

κj (z0) · dm〉0e
−iωt

2μ0

×
(

1

ω + ωκj + iδ
− 1

ω − ωκj + iδ

)
, (11)

where

κ = (κx, κy, 0), (12)

ns is the number of the slab modes that contribute to the Dirac
cone, and 〈u∗

κj (z0) · dm〉0 is defined by

〈u∗
κj (z0) · dm〉0 = 1

V

∫
V

dr u∗
κj (r) · dmδ(z − z0). (13)

To excite the waveguide mode by an incident plane wave,
the wave vector parallel to the slab surface and the frequency
have to be tuned exactly. But this exact tuning is practically
impossible, so instead we have to assume a finite width of the
eigenfrequency, which is brought about by the finite lifetime
of the eigenmode due to dielectric loss, diffraction, etc. Thus
we replace the positive infinitesimal δ by a nonzero relaxation
rate γ in Eq. (5) and ignore the counter resonant term (the first
term) in the parentheses.

To calculate the electromagnetic energy flux, we evaluate
the divergence of the time average of Poynting’s vector S:

∇ · S(r,t) = 1

4
∇ · [E(r,t) × H∗(r,t) + E∗(r,t) × H(r,t)]

= iωδ(z − z0)

4

ns∑
j

[
ακj uκj (r) · d∗

m

ω − ωκj + iγκj

− α∗
κj u∗

κj (r) · dm

ω − ωκj − iγκj

]
, (14)

where ακj is defined as

ακj = ωκj

2μ0
〈u∗

κj (z0) · dm〉0. (15)

So, the electromagnetic energy radiated in a unit time and a
unit volume, which we denote by U̇ , is

U̇ = 1

V

∫
V

dr∇ · S(r,t) ≈ μ0

ns∑
j=1

|ακj |2γκj

(ω − ωκj )2 + γ 2
κj

. (16)

Now, we assume that the quality factor of the Dirac-cone
modes is sufficiently large, so its energy flux is nearly parallel

to the slab surface. Then, its energy velocity, which is equal
to the group velocity vκj in the case of lossless media [18], is
given by the slope of the Dirac cone. As a result, the energy
flux in the slab plane, S‖, is

S‖ = μ0Lz

ns∑
j=1

|ακj |2γκj vκj{
(ω − ωκj )2 + γ 2

κj

}|vκj |
, (17)

where Lz is the size of volume V in the z direction. In the
following sections, we calculate S‖ for the square-lattice and
triangular-lattice photonic-crystal slabs.

III. SQUARE LATTICE OF C4v SYMMETRY

We start with a photonic-crystal slab of the C4v symmetry,
i.e., the symmetry of the regular square (see Fig. 2 ). The
condition to materialize Dirac cones for this symmetry was
analyzed by the tight-binding approximation [14] and by the
vector k · p perturbation theory [16]. We can create a Dirac
cone with an auxiliary quadratic dispersion surface by the
combination of an E mode and an A1, A2, B1, or B2 mode.
First, we examine the combination of an E (dipolar) mode and
an A1 (monopolar) mode as an example.

From the analysis by the vector k · p perturbation theory
[16], the wave function and the eigenfrequency of the eigen-
modes in the degenerate condition are given by solving the
following eigenequation:⎛

⎝ 0, 0, bkx

0, 0, bky

b∗kx, b∗ky, 0

⎞
⎠

⎛
⎝A

B

C

⎞
⎠ = �λ

⎛
⎝A

B

C

⎞
⎠ , (18)

where λ = ω2/c2 and �λ denote the difference between the
modes for k 	= 0 and for k = 0. The eigenwave function is
then given by

uk = Au(1)
E + Bu(2)

E + CuA1 , (19)

where u(1)
E and u(2)

E are two wave functions of the doubly
degenerate E mode on the � point (k = 0), the former of which
transforms like the x coordinate and the latter transforms like
the y coordinate when symmetry operations of the C4v point
group are conducted [19]. uA1 is the wave function of the A1

mode on the � point, which is invariant by any of the symmetry
operations of the C4v point group [19]. Parameter b is given
by

b = iex · [−〈
u(1)

E

∣∣�L
∣∣uA1

〉
0 + 〈

uA1

∣∣�L
∣∣u(1)

E

〉∗
0

]
, (20)

where

�L = ×
[

1

ε(r)
∇ ×

]
, (21)

and ex is a unit vector in the positive x direction.
The eigenvalues of Eq. (18) are

�λ = 0, ±|b|k, (22)

where k =
√

k2
x + k2

y . The solutions for λ = ±|b|k form the

Dirac cone and that for λ = 0 gives the quadratic dispersion
surface. The three solutions are given as follows:
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(i) �λ = 0 ⎛
⎝A(0)

B(0)

C(0)

⎞
⎠ =

⎛
⎝ sin φ

− cos φ

0

⎞
⎠ , (23)

(ii) �λ = |b|k⎛
⎝A(+)

B(+)

C(+)

⎞
⎠ = 1√

2

⎛
⎝eiβ cos φ

eiβ sin φ

1

⎞
⎠ , (24)

(iii) �λ = −|b|k⎛
⎝A(−)

B(−)

C(−)

⎞
⎠ = 1√

2

⎛
⎝−eiβ cos φ

−eiβ sin φ

1

⎞
⎠ , (25)

where β = arg b and φ is the angle between vector k and the
x axis.

When we denote the angle between dm and the x axis by
θ (see Fig. 3), we can easily show from the transformation
properties by symmetry operations that〈

u(1)
E (z0) · dm

〉
0 = |dm|〈uE,x(z0)〉0 cos θ, (26)

〈
u(2)

E (z0) · dm

〉
0 = |dm|〈uE,x(z0)〉0 sin θ, (27)

〈
uA1 (z0) · dm

〉
0 = 0, (28)

where

〈uE,x(z0)〉0 = 1

V

∫
V

dr u
(1)
E,x(r)δ(z − z0)

= 1

V

∫
V

dr u
(2)
E,y(r)δ(z − z0). (29)

Finally, for three solutions of �λ = 0 and ±|b|k, we obtain

S(0)
‖ = γκ0ω

2
κ0|dm|2Lz|〈uE(z0)〉0|2vκ0

4μ0
{
(ω − ωκ0)2 + γ 2

κ0

}|vκ0|
sin2(φ − θ ), (30)

S(±)
‖ = γκ±ω2

κ±|dm|2Lz|〈uE(z0)〉0|2vκ±
8μ0

{
(ω − ωκ±)2 + γ 2

κ±
}|vκ±| cos2(φ − θ ). (31)

In Eqs. (30) and (31),

|vκ0| ≈ 0 and vκ± = ±vκ

|κ| , (32)

where v is the slope of the Dirac cone.
Therefore, the quadratic mode with �λ = 0 has a vanishing

velocity in the vicinity of the Dirac point, which is a conse-
quence of the quadratic k dependence of the eigenfrequency
of the auxiliary dispersion surface, so its energy flow along
the slab surface is small. On the other hand, Dirac-cone modes
with �λ = ±|b|k have a finite group velocity ±v, so they
propagate along the slab surface. Their propagation direction is
parallel to the wave vector κ: The upper cone mode propagates
in the κ direction and the lower cone mode propagates in
the −κ direction. An interesting feature is the presence of
the cos2(φ − θ ) term in S(±)

‖ , which was brought about by the
anisotropic mixture of two dipolar wave functions, as shown
in Eqs. (24) and (25). Due to this term, the induced energy
flow along the slab surface is largest when the magnetic field

k
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)b()a(
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FIG. 4. (Color online) (a) The Dirac-cone modes (black dot)
excited by an incident wave with frequency ω. Those modes have
a wave vector in the range of �k = 2/w0. (b) The wave vector of the
excited Dirac-cone mode resides on a circle in the k space, which is
denoted by ω. Its radius is |ω − ω�|/v. (c) Angular distribution of
the energy flow of the excited Dirac-cone modes as a function of the
(magnetic field) polarization angle of the incident wave.

of the incident plane wave is polarized in the same direction
as κ .

Let us examine a realistic experimental situation here. In the
experiments of the optical frequency range, we may use a laser
as a monochromatic light source because of its good directivity.
When we focus the laser beam on the slab specimen, it has a
distribution of the lateral wave vector. When we approximate
the focused beam by a Gaussian beam with a beam waist of
diameter w0, it has a distribution width of the lateral wave
vector �k:

�k = 2/w0. (33)

So, we can excite all Dirac-cone modes whose wave vector is in
this range. For simplicity, let us consider the normal incidence
hereafter [Fig. 4(a)]. Then, the wave vector of the excited
Dirac-cone modes resides on a circle in the k space [Fig. 4(b)].
When we use a linearly polarized light for excitation as we
have described in this paper, those Dirac-cone modes whose
wave vector is parallel to the direction of the polarization is
excited most strongly according to Eq. (31). Therefore, we
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TABLE I. The dependence of the energy flux S‖ on the polariza-
tion angle θ of the incident magnetic field and the propagation angle
φ. The mode combinations listed in this table result in the formation
of Dirac and double Dirac cones by accidental degeneracy for the
C4v and C6v lattice structures [16]. “Silent” means that the coupling
between the incident plane wave from the normal direction and the
Dirac-cone mode is vanishing in the first-order approximation due to
the symmetry of the relevant wave functions, so the Dirac-cone mode
is not excited.

Lattice symmetry Mode1 Mode2 Angular dependence

C4v E A1 cos2(φ − θ )
E A2 sin2(φ − θ )
E B1 cos2(φ + θ )
E B2 sin2(φ + θ )

C6v E1 E2 1
E1 A1 cos2(φ − θ )
E1 A2 sin2(φ − θ )
E2 B1 silent
E2 B2 silent

can control the propagation direction of the Dirac-cone modes
by changing the polarization of the incident wave as shown
in Fig. 4(c) because the group velocity is parallel to the wave
vector. This property can be used for identifying the Dirac-cone
dispersion.

Other cases of the mode combinations that result in the
formation of the Dirac cones by accidental degeneracy can
be analyzed in a similar manner. In Ref. [16], we derived
the matrix that defines the eigenequation in the first-order
k · p perturbation for each mode combination that yields the
Dirac cone. So, we can obtain the wave functions of the
Dirac-cone mode as we did for the E and A1 modes, and
we can derive the angular dependence of the excited wave.
The results are listed in Table I. As can be seen, each mode
combination has its own angular dependence. Thus, we can
distinguish the mode symmetry by measuring the angular
distribution of the energy flux excited by the incident plane
wave.

IV. TRIANGULAR LATTICE OF C6v SYMMETRY

In this section, we examine the case of the triangular lattice
of the C6v symmetry, i.e., the symmetry of the regular hexagon

x

yz

a1

a2

FIG. 5. Illustration of the triangular-lattice photonic-crystal slab
of the C6v symmetry, which is composed of a regular array of circular
air cylinders fabricated in a uniform dielectric slab. Because the two-
dimensional C6v symmetry is sufficient for the Dirac cone, we do not
assume a mirror symmetry about the horizontal middle plane.

(Fig. 5). The condition to materialize Dirac cones for this
symmetry was analyzed by the tight-binding approximation
[15] and by the vector k · P perturbation theory [16]. The most
peculiar feature of this symmetry is the formation of the double
Dirac cone without auxiliary quadratic dispersion surfaces,
which is brought about by the degeneracy of eigenmodes
of the E1 and E2 symmetries. Let us examine this case
first.

The wave function and the eigenfrequency of the eigen-
modes in the degenerate condition are given by solving the
following eigenequation:⎛
⎜⎝

0, 0, −bky, −bkx

0, 0, −bkx, bky

−b∗ky, −b∗kx, 0, 0
−b∗kx, b∗ky, 0, 0

⎞
⎟⎠

⎛
⎜⎝

A

B

C

D

⎞
⎟⎠ =�λ

⎛
⎜⎝

A

B

C

D

⎞
⎟⎠,

(34)

where parameter b is given by

b = −iey · [ − 〈
u(1)

E1

∣∣�L
∣∣u(1)

E2

〉
0

+ 〈
u(1)

E2

∣∣�L
∣∣u(1)

E1

〉∗
0

]
. (35)

The eigenwave function is given by

uk = Au(1)
E1

+ Bu(2)
E1

+ Cu(1)
E2

+ Du(2)
E2

. (36)

Without the loss of generality, we can assume that the two
eigenfunctions of the E1 mode (u(1)

E1
and u(2)

E1
) are transformed

like the x and y coordinates by the symmetry operation of
the C6v point group, respectively, whereas those of the E2

mode (u(1)
E2

and u(2)
E2

) are transformed like 2xy and x2 − y2,
respectively [19]. The eigenvalues of Eq. (34) are

�λ = ±|b|k (double root). (37)

The four solutions are
(i) �λ = |b|k⎛

⎜⎜⎝
A(+,1)

B(+,1)

C(+,1)

D(+,1)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1/
√

2
0

−e−iβ sin φ/
√

2
−e−iβ cos φ/

√
2

⎞
⎟⎟⎠ , (38)

(ii) �λ = |b|k⎛
⎜⎜⎝

A(+,2)

B(+,2)

C(+,2)

D(+,2)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
1/

√
2

−e−iβ cos φ/
√

2
e−iβ sin φ/

√
2

⎞
⎟⎟⎠ , (39)

(iii) �λ = −|b|k⎛
⎜⎜⎝

A(−,1)

B(−,1)

C(−,1)

D(−,1)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1/
√

2
0

e−iβ sin φ/
√

2
e−iβ cos φ/

√
2

⎞
⎟⎟⎠ , (40)

(iv) �λ = −|b|k⎛
⎜⎜⎝

A(−,2)

B(−,2)

C(−,2)

D(−,2)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
1/

√
2

e−iβ cos φ/
√

2
−e−iβ sin φ/

√
2

⎞
⎟⎟⎠ . (41)
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From Eq. (17), we finally obtain the following based on a
discussion similar to the previous section:

S(±,1)
‖ = γκ±ω2

κ±|dm|2Lz

∣∣〈uE1 (z0)
〉
0

∣∣2
vκ±

8μ0
{
(ω − ωκ±)2 + γ 2

κ±
}|vκ±| cos2 θ, (42)

S(±,2)
‖ = γκ±ω2

κ±|dm|2Lz

∣∣〈uE1 (z0)
〉
0

∣∣2
vκ±

8μ0
{
(ω − ωκ±)2 + γ 2

κ±
}|vκ±| sin2 θ. (43)

In the derivation of these two equations, we used〈
uE2 (z0) · dm

〉
0 = 0, (44)

which can be proved by considering the spatial symmetry of
the wave functions of the E2 mode.

When we assume the same situation as shown in Fig. 4(a)
that the specimen is irradiated by a Gaussian beam from
the normal direction, all Dirac-cone modes at the incidence
frequency whose wave vector resides on a circle in the
reciprocal space are excited simultaneously. For the upper
cone modes, for example, we have two modes for each κ ,
which are excited with an intensity proportional to cos2 θ and
sin2 θ , respectively. So their total intensity does not depend on
the polarization angle θ or the propagation angle φ. Therefore,
we should observe an isotropic propagation of excited waves
along the slab surface, irrespective of the polarization of the
incident wave for this case.

In addition to the double Dirac cone, a Dirac cone with
an auxiliary quadratic dispersion surface can be formed by
accidental degeneracy in the triangular lattice of the C6v

symmetry. The form of the eigenequation for each mode
combination is given in Ref. [16]. So, we can obtain the
wave functions of the Dirac-cone mode as before and can
derive the angular dependence. The results are listed in Table
I, where the Dirac cone formed by the accidental degeneracy of
the E2 mode is “silent” for the incident wave from the normal
direction because the coupling between them is exactly equal
to zero for the � point due to the symmetry mismatching and
the coupling is also vanishing for small k in the first-order
approximation. So, the Dirac-cone mode is not excited by the
incident plane wave.

The eigenmode of photonic crystals is often observed as a
dip in the angle-resolved reflection spectra. When this method
is applied to the detection of Dirac cones, it may be difficult
to accurately determine the dispersion relation in the vicinity
of the Dirac point because there are two modes, i.e., upper
and lower cone modes, whose frequencies are close to each
other, so the two dips overlap. The propagation characteristics
clarified in this paper can be used as another evidence for
the Dirac cone and can be used to distinguish the mode
symmetry. The isotropic and frequency-independent velocity
is also evidence for the photonic Dirac cone.

V. CONCLUSION

We formulated a Green-function method to analyze the
excitation process of Dirac-cone modes in photonic-crystal
slabs by an incident plane wave. We obtained an analytic
expression of Poynting’s vector of the induced wave running
parallel to the slab surface. By analyzing both the elements
of the k · p perturbation matrix and the coupling strength

between the incident wave and Dirac-cone modes by group
theory, we clarified the dependence of the propagation intensity
distribution on the polarization angle of the incident wave. We
found that each mode combination shows its own angular
dependence. We further analyzed the excitation process by a
Gaussian beam in particular and showed that the propagation
direction can be controlled by the polarization of the incident
wave for the Dirac cone, whereas the intensity does not
depend on the polarization for the double Dirac cone and its
propagation intensity distribution is isotropic. These properties
can be used for experimentally detecting Dirac cones and
distinguishing their mode symmetry.
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APPENDIX A: RETARDED GREEN FUNCTION

In this section, we derive the retarded Green function for the
magnetic field. We start with two of four Maxwell’s equations:

∇ × E = −μ0
∂H
∂t

, (A1)

∇ × H = ε0ε(r)
∂E
∂t

, (A2)

where E and H denote the electric and magnetic fields,
respectively, μ0 and ε0 are the permeability and permittivity
of free space, and ε(r) is the periodic dielectric constant of the
photonic-crystal slab,

ε(r + ai) = ε(r), (A3)

where ai (i = 1, 2) is an elementary lattice vector parallel
to the surface of the photonic-crystal slab. The geometry for
the square-lattice photonic-crystal slab, for example, is shown
in Fig. 2. We assumed that the permeability of the photonic-
crystal slab is the same as free space, since we do not deal with
magnetic materials in this paper. By eliminating the electric
field from Eqs. (A1) and (A2), we obtain

LH H ≡ ∇ ×
(

1

ε
∇ × H

)
= − 1

c2

∂2H
∂t2

, (A4)

where operator LH is defined by the first equality in Eq. (A4)
and c is the speed of light in free space. To make our problem
well defined, we assume that ε is real and independent of
frequency and we impose the periodic boundary condition on
H. Then, we can prove by following similar discussions on the
electric field in Ref. [17] and in Chap. 2 of Ref. [18] that LH is
Hermitian. The eigenfunctions of LH , which are composed of
the transverse modes H(T ) and longitudinal modes H(L), form
a complete set. Their completeness is expressed by∑

k,n

H(T )
kn (r) ⊗ H(T )∗

kn (r′) +
∑
k,n

H(L)
kn (r) ⊗ H(L)∗

kn (r′)

= V Iδ(r − r′), (A5)

where I is the 3 × 3 unit matrix, V is the volume on which
the periodic boundary condition is imposed, δ is Dirac’s
delta function, and k and n are the wave vector in the
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two-dimensional first Brillouin zone and the band index,
respectively. ⊗ denotes a tensor whose elements are given
by the direct product of two vectors, i.e., (A ⊗ B)ij = AiBj .
H(T )

kn and H(L)
kn satisfy

∇ · H(T )
kn = 0, (A6)

∇ × H(L)
kn = 0, (A7)

respectively. We normalize them as〈
H(α)

kn

∣∣H(β)
k′n′

〉 ≡
∫

V

dr H(α)∗
kn (r) · H(β)

k′n′ (r) = V δkk′δnn′δαβ,

(A8)

where α, β = T or L and δ is Kronecker’s delta. The inner
product 〈· · · | · · · 〉 is defined by the first equality of Eq. (A8).
See Sec. 2.7 of Ref. [18] for the derivation of Eqs. (A5)–(A8).
Note that we assumed the periodicity of the specimen structure
only in the direction parallel to the slab surface, which we
denote by the x and y coordinates, so the wave vector in the
Brillouin zone is two dimensional and we generally denote it
by

k = (kx, ky, 0). (A9)

The retarded Green function in the frequency domain is
given by

G(r,r′,ω) = c2

V

∑
kn

[
H(T )

kn (r) ⊗ H(T )∗
kn (r′)

(ω − ωkn + iδ)(ω + ωkn + iδ)
+ H(L)

kn (r) ⊗ H(L)∗
kn (r′)

(ω + iδ)2

]
, (A10)

where δ is a positive infinitesimal to assure the causality and ωkn is the eigenangular frequency of H(T )
kn . Note that the

eigenfrequency of H(L)
kn is equal to zero from Eq. (A7). G(r,r′,ω) satisfies(

ω2

c2
− LH

)
G(r,r′,ω) = Iδ(r − r′), (A11)

which can be proved by using Eq. (A5). The retarded Green function in the time domain, which is defined by the inverse Fourier
transform of G(r,r′,ω), is given by

G(r,r′,t) = 1

2π

∫ ∞

−∞
dω G(r,r′,ω)e−iωt

=
{

− c2

V

∑
k,n

[ sin ωknt

ωkn
H(T )

kn (r) ⊗ H(T )∗
kn (r′) + tH(L)

kn (r) ⊗ H(L)∗
kn (r′)

]
(t � 0),

0 (t < 0).
(A12)

It satisfies

−
(

1

c2

∂2

∂t2
+ LH

)
G(r,r′,t − t ′) = Iδ(r − r′)δ(t − t ′),

(A13)

which can be confirmed by using Eq. (A11). The solution of
the general inhomogeneous equation with a source term F,

−
(

1

c2

∂2

∂t2
+ LH

)
H(r,t) = F(r,t), (A14)

is given by the convolution

H(r,t) =
∫

V

dr′
∫ ∞

−∞
dt ′G(r,r′,t − t ′)F(r′,t ′), (A15)

which can be proved by substituting Eq. (A15) into Eq. (A14)
and using Eq. (A13).

APPENDIX B: RADIATION OF PLANE WAVES
IN FREE SPACE

We derive the formula for the magnetic field emitted by the
oscillating magnetic polarization in free space. By substituting

Eq. (6) into Eq. (5), we obtain

H(r,t) = −Pm(r,t)
μ0

+ e−iωt

4πμ0

∫ ∞

−∞
dkz hκ (hκ · dm)ωκ

×ei(κ·r−kzz0)

(
1

ω + ωκ + iδ
− 1

ω − ωκ + iδ

)
, (B1)

where

κ = (κx, κy, kz) (B2)

O

kz

kω-kω

FIG. 6. The contour of the integral of Eq. (B1). The two poles are
denoted by the black dots.
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and hκ is a unit vector perpendicular to κ and parallel to the
plane spanned by dm and κ . Since there is a factor eikz(z−z0)

and we consider the region z < z0, we can close the path of
the integral in Eq. (B1) in the lower half of the complex kz

plane, as shown in Fig. 6. The first term in the parentheses on
the right-hand side of Eq. (B1) does not yield a pole for the kz

integral, whereas the second term yields two poles at

kz = ±kω ≡ ±
√

ω2

c2
− κ2

x − κ2
y . (B3)

The pole at −kω is included in the contour and its residue is
ω/c2kω. Then, from the residue theorem, we obtain

H(r,t) = −Pm(r,t)
μ0

+ i ek0

(
ek0 · dm

)
ω

√
ω2 − c2κ2

x

2μ0c2kω

× ei(k0·r−ωt)+ikωz0 . (B4)

For κx = κy = 0 in particular,

H(r,t) = −Pm(r,t)
μ0

+ iω dm

2μ0c
e−i(ω/c)(z−z0+ct). (B5)
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