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Effects of detector size and position on a test of Born’s rule using a three-slit experiment

Etienne Gagnon, Christopher D. Brown, and Amy L. Lytle*

Department of Physics and Astronomy, Franklin & Marshall College, P.O. Box 3003, Lancaster, Pennsylvania 17604, USA
(Received 17 March 2014; published 23 July 2014)

Recent high-precision measurements in a three-slit diffraction experiment [Sinha et al., Science 329, 418
(2010)] have been performed as an explicit test of the validity of Born’s rule for quantum probabilities. This
experiment aims to establish an upper limit to the possibility of higher-order interference, which, if observed,
could support generalization of quantum probability theory. We reproduce this three-slit experiment using
position-resolved detection, compare our results to a computational model, and find significant limitations to the
normalization scheme proposed by Sinha et al. that influence interpretation. We further show that the dependence
of the measurements on detector size and position must be taken into account for proper interpretation of results
and meaningful comparison with other experimental schemes.
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I. INTRODUCTION

Early in the development of quantum mechanics, Born pro-
posed [1] a physical interpretation of Schrödinger’s quantum
wave function as “a density of probability for the presence
of a particle” [2]. Using the well-understood mathematics of
classical wave theory, he showed that, given this interpretation,
Schrödinger’s wave mechanics was mathematically equivalent
to the more controversial matrix mechanics he was developing
with Heisenberg. The classic example demonstrating the
similarity in the behavior of classical wave and quantum
particles is the double-slit experiment [3]. According to
Born, the probability of detecting a photon is analogous to
optical intensity, so that the absolute square of the quantum
wave-function amplitude is analogous to the absolute square of
the electric field amplitude. When any quantum particles travel
through a pair of slits, the probability of detecting each particle
at a screen on the far side forms an interference pattern like that
formed by any classical wave encountering the same setup.
The presence of interference indicates a wavelike quantum
superposition, in contrast with a particlelike, classical sum of
probabilities.

Born’s rule has been incredibly successful in predicting
such outcomes in quantum mechanics, although, since its
proposal in 1926, it has neither been definitively derived from
first principles [4], nor explicitly experimentally tested, until
recently. In 1994, Sorkin [5] noted the following remarkable
result that follows from Born’s rule (see Ref. [6] for a
straightforward derivation). While the probability distribution
observed in a two-slit experiment is not a simple sum of those
observed when only one of the slits is open, the probability
distribution for three slits can be written as a sum (with
appropriate minus signs) of those for each of the cases when
only one or two of the three slits is open. In other words,
there is no interference unique to the presence of three (or
more) open slits (or, in general, any three or more mutually
exclusive quantum paths). Demonstration of the existence of
such higher-order interference would violate Born’s rule and
have extensive ramifications for quantum theory. This idea has
inspired a number of proposed and realized experimental tests
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[6–11] of Born’s rule, as well as a number of discussions of
the implications of a generalized probability theory [12–14].

Sinha et al. [6] have reported the first such experimental test
of Born’s rule using the three-slit scheme outlined by Sorkin.
The magnitude of a possible higher-order interference is given
by

ε(r) = pABC(r) − pAB(r) − pBC(r) − pCA(r) + pA(r)

+pB(r) + pC(r) − p0(r), (1)

where pX(r) is the optical intensity as a function of position
r in the plane of detection. The subscript indicates which of
the three slits (A, B, and/or C) is open, while p0(r) accounts
for background light scatter and dark counts in the detector.
Born’s rule predicts that, in the far-field approximation
[15], ε(r) = 0 at all positions r. Any nonzero value for ε

found from combining these eight measurements that is not
attributable to experimental error would indicate the existence
of higher-order interference. This null test has the advantage
of being independent of the exact experimental parameters
such as shape and size of the slits or wavelength of the light,
eliminating the need to know these parameters to a high
degree of precision. On the other hand, a null test requires
a thorough characterization and understanding of the possible
sources of experimental uncertainty, and how they will affect
interpretation of the results.

Sinha et al. further propose a normalized variant of ε,
κ(r) = ε(r)/δ(r), where

δ(r) = |pAB(r) − pA(r) − pB(r)| + |pBC(r) − pB(r)

−pC(r)| + |pCA(r) − pC(r) − pA(r)| (2)

is the sum of the three possible combinations of two-slit
interference terms, which are assumed to be nonzero. This
normalization quantifies the possible three-path interference
as a percentage of the expected two-path interference. Such
a measure is intended to facilitate comparison between
different experimental realizations of detecting higher-order
interference, including different geometries for photons [8,10]
as well as particles [9,11].

In this paper, we report an experimental and computational
reproduction of this three-slit experiment in the semiclas-
sical regime, in which we investigate the interpretation of
these parameters given position-resolved measurement of the
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interference patterns. We show that in order to interpret
experimental results using δ for normalization, one must take
into account the fact that, while generally nonzero for either
classical or quantum waves, the value of δ in the three-slit
experiment varies with position in the plane of detection.
Furthermore, the magnitude of δ varies with the size of the
detector, or, in other words, the width of the interference pattern
that is integrated. In fact, in the limit of a very small detector, δ
tends toward zero at any detector position, in a way that causes
the proposed normalization to obscure how reduced error
affects the value of ε. A simulation modeling likely sources of
random and systematic error in our experiment shows excellent
agreement with our experimental results, and underscores the
need to consider position-dependent sources of error in the
three-slit experiment. Finally, we discuss why, independent of
the normalization scheme used, position-resolved detection is
required for a definitive characterization of possible violations
to Born’s rule.

II. EXPERIMENT

The experimental setup, shown schematically in Fig. 1,
is based on the work of Sinha et al., with some variations.
Most significantly, we use a one-dimensional CCD array as a
detector. The CCD (Thorlabs LC1-USB) has 3000 elements,
with a 7-μm pitch and 7-μm pixel size. A sample three-slit
diffraction pattern is shown in Fig. 1. For comparison with
similar three-slit experiments, we define our position variable
in terms of the characteristic size of features in the diffraction
pattern, the principal fringe period (PFP). In our setup, the PFP
is ∼617 μm, so the 7-μm pitch of our CCD corresponds to
∼1.1% of the PFP. The raw data are then used to calculate the
values of ε, δ, and κ as a function of position and detector size.

The light source was a ∼5-mW HeNe laser (632.8 nm).
In order to produce each of the eight interference patterns
required for calculating ε, δ, and κ , a blocking mask actuated
by a microstepper motor was placed in front of the stationary
diffraction slits. Both sets of apertures were machined from
a 25-μm-thick stainless steel sheet, and were separated by a
propagation distance of approximately 2 mm. The dimensions
of the apertures were chosen so that at this separation distance,
each slit was illuminated by a narrow section of the near-
field diffraction produced by a single opening in the mask. A
cylindrical lens focused the diffracted light onto the detector
located ∼39 cm from the slits, well into the far field. Each set of
eight diffraction patterns was measured 200 times to minimize
statistical error. In each scan of eight measurements, the order
was changed randomly in order to mitigate systematic errors
from slow drifts in the system, such as those in optical intensity
or alignment.

An experiment testing a quantum-mechanical principle
such as Born’s rule requires the use of very low flux in
order to test the particle nature of light. Our measurements
are performed instead in the semiclassical regime due to the
low sensitivity of our detector. Nevertheless, our findings are
relevant in both regimes, as we are examining effects that will
be present in the experiment whether or not Born’s rule holds
perfectly. We do not presume to claim a limit on the validity of
Born’s rule in this work, but instead are concerned with how
the data are interpreted.

FIG. 1. Experimental setup. The different combinations of open
and closed slits are achieved by adjusting the position of the mask
with respect to the stationary three slits. Dimensions of the slits
and mask apertures are shown at right. (Bottom) Typical diffraction
pattern corresponding to all three slits open [pABC(r)].

III. DATA AND ANALYSIS

A. Influence of detector size

The size of the detector relative to the features of the
interference patterns has a direct influence on the value
determined as an upper limit to violations of Born’s rule.
The detection probability, or, classically, the phase shift
between different contributions to the total amplitude, varies
continuously with position in the detection plane. Using as
small a detector as possible makes sense experimentally, both
to reduce experimental error and to probe as narrow a range of
phase differences as possible. Practically, however, the detector
will have some finite size and will therefore integrate optical
intensity over a range of phase differences between waves
propagating from the different slits. In general, a smaller
detector size will yield a smaller upper limit to violations to
Born’s rule, hence the need for normalization. The proposed
normalization parameter δ, however, varies with detector size
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FIG. 2. Measured (a–c) and simulated (d–f) ε, δ, and κ as a
function of detector size. The gray-shaded region indicates one
standard deviation above the mean. Dashed lines indicate δ calculated
in the absence of any error.

by definition and in fact approaches zero for some detector
sizes, including those arbitrarily small. This leads to the fact
that δ obscures and distorts the behavior of ε, making κ an
ill-defined parameter for comparison with other experimental
schemes.

The CCD array allowed us to investigate the effects of both
detector size and experimental error on the measured values of
ε, δ, and κ . We “vary” the size of the detector by binning the
raw data from a varying number of pixels before calculating
each parameter. The data shown in Figs. 2(a)–2(c) represent a
detector centered on the central peak of the diffraction pattern,
with a width of (2n + 1)× 7 μm, where n is an integer, and
7 μm is the width of a single pixel.

The main structures of the data shown in Figs. 2(a)–2(c) can
be attributed to the presence of both random and systematic
errors that are proportional to the optical intensity. The
dominant sources suspected in our experiment originate with
the relative alignment between the blocking mask and the slits.
Mechanical vibration due the movement of the microstepper
motor will change their relative positions, leading to random
sampling by the slits of the near-field diffraction of the mask
apertures. Systematic variation in the transmission of different
slit combinations is evident when comparing the relative
intensities of the individual diffraction patterns. The motion
of the translation stage may introduce a systematic variation
due to the lateral alignment between the slits and mask, or
scattering from the mask mount. With these types of error, the
monotonic increase in the magnitudes of both ε and δ with
increased detector size can be attributed to accumulation of
error over increasingly larger regions of the CCD. As expected,
smaller detector sizes limit the accumulation of error and its
effect on the value of ε and hence κ , but the variations in δ

with detector size clearly alter the behavior of κ in comparison
to ε.

To better understand how different sources of error affect
the values of these parameters, we modeled our experiment

with a computer simulation that included various suspected
sources of random and systematic error. The model was based
on a Fourier-transform beam propagation method, in which
we assume a classical, monochromatic plane wave incident
on the blocking mask and ignore the vector nature of the
field. For direct comparison with our experimental data, we
used the physical parameters of the slits, blocking mask, and
beam path described in the experimental section above. The
position resolution of the simulated irradiance at the detector
was ∼0.005 PFP. Random error due to mechanical vibrations
were included as random variation in the lateral position of
the slits (by as much as ±10 μm) and in the distance between
the mask and slits (by as much as ±10 μm). Systematic error
due to misalignment was included as a systematic variation
in the distance between the mask and slits, which varied by a
distance of 50 μm between each position of the mask. We also
included a systematic variation in the effective transmission of
each of the seven mask aperture sets, based on the best fit to
the relative intensities of the individual interference patterns.
The data shown here included 100 samples.

The simulated results, shown in Figs. 2(d)–2(f), reproduce
many of the same features, which, in the case of ε, are due
purely to experimental error. The variance due to the random
error qualitatively behaves the same; a precise match would
require better knowledge of the noise spectrum. Some of the
structure of the variation of δ with detector size, however,
is present even in the absence of experimental error. The
dashed curve in Figs. 2(b) and 2(e) show the simulated δ

with no errors included. Here, the monotonic increase due
to the accumulation of error is absent. However, δ exhibits a
significant variation with detector size, which translates to κ ,
even when experimental errors are minimized. The choice of δ

as a normalization factor is problematic, not only because δ is
not constant, but also because it approaches zero for detector
sizes that are integer multiples of the principal fringe period,
including when the size of the detector approaches zero.

The interference term for two-slit diffraction in the far-field
approximation is sinusoidal:

IAB(x) = pAB(x) − pA(x) − pB(x) = CAB cos

(
2πx

LAB

)
,

(3)

where x is the position in the plane of detection, LAB is the
spatial period of the interference pattern, and CAB is a constant
dependent on the laser power and the size of the slits. When
δ is measured, this signal is integrated over a finite region of
the detection plane. An integration region that is equal to any
integer multiple of the principal fringe period will yield δ = 0
for any position x, since this is an integer multiple of the spatial
period for each pair of slits: LAB = LBC = 2LAC . When the
single-slit diffraction envelope is included in this analysis, the
value of δ will not be exactly zero but will nonetheless decrease
to a small value, the magnitude depending on the ratio of the slit
width to slit spacing. For the slit geometry of our experiment,
δ decreases by 2 orders of magnitude relative to its maximum
value at a detector size of 1 PFP.

When the detector size is close to the fringe spacing, then
the value of κ will be large at any position in the detection
plane. This effect is in fact more problematic as experimental
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FIG. 3. (Color online) Calculated δ as a function of both position
and detector size, given (a) our experimental parameters and (b) Sinha
et al.’s experimental parameters, with no simulated experimental
error.

error is reduced, since δ will approach its theoretically small
value. Even when enough error is present to prevent such small
values for δ, its behavior is nonetheless mapped onto κ , as can
be seen in Figs. 2(c) and 2(f).

This implies that, at the very least, detector sizes close
to an integer multiple of the principal fringe period should
be avoided. As discussed earlier, the smaller the detector
size, the smaller the error, so that normalization is required
for meaningful comparison between experiments. But δ as
defined also approaches zero as the detector size approaches
zero. Figure 3 shows how δ varies both with detector size
and position, with no modeled experimental error, for detector
sizes ranging from approximately 0.005 to 0.25 PFP.

Both our experimental and simulated data show that this
variation in δ as the detector size approaches zero introduces a
serious limitation to its usefulness as a normalization. We find
that, for detector sizes smaller than about 0.1 PFP, ε decreases
approximately linearly with detector size due to a reduction in
accumulated error, while δ decreases approximately linearly
with detector size by definition. This means that κ levels off
to a constant, nonzero value, obscuring the fact that ε, the
more direct measure of the error, continues to decrease [see
Figs. 2(c) and 2(f)]. This effect is consistent for any position
in the detection plane, and for any type or magnitude of error
we modeled we used our simulation to model.

As a specific example showing this effect even for highly
precise experimental conditions, we model Sinha et al.’s
experimental parameters, the results of which are shown in
Figs. 4(a)–4(c). We included the dominant systematic error
described in their report (a defect in the blocking mask,
in which one of the apertures was offset by 8 μm), and
random error due to mechanical vibration (a variation of up
to ±0.5 μm in the lateral position of the slits, as well as
the distance between the mask and slits). In the absence of
detailed information about the uncertainties in the experiment
of Ref. [6], we have chosen a conservative level of error that is
consistent with the precision of results reported. While it may
not model their results precisely, our model is representative
of how these types of errors affect interpretation of the results.

As expected, ε decreases to zero as the detector size
decreases. With such a small magnitude of error, δ varies from
its error-free shape (shown as a dashed line) by at most a few
percent. κ , however, tends toward a constant, nonzero value.
Thus, even though the experimental error is very small and has
been further reduced through the use of a smaller detector, the
normalization prevents κ from reflecting this.

The remaining plots of Fig. 4 illustrate how this effect
is consistent across all positions of the interference pattern.
Figures 4(d)–4(f) show the simulation’s results using the
detector size of Sinha et al., which was 0.04 PFP, and for
comparison, Figs. 4(g)–4(i) show the results for a detector
size of 0.005 PFP, around the size of a typical CCD pixel
or single-mode fiber. In reducing the size of the detector, the
values of ε and δ both drop by roughly an order of magnitude,
but κ remains the same. What this implies is that if Sinha et al.
were to replace their multimode fiber in the detection with a
single-mode fiber, they would predict exactly the same upper
limit for κ (our simulation predicts 0.01 ± 0.04 in both cases),
when in fact they had reduced their uncertainty by an order of
magnitude (ε decreases from 0.03 ± 0.10 to 0.003 ± 0.011).

B. Influence of detector position

In alternative experimental schemes for testing Born’s rule
using three-path interference [9–11], the phase differences
between the three different quantum paths are well defined for
a given measurement and thus avoid the problems introduced
by the detector size. In any experimental scheme, however, κ

will have variations that are dependent on the relative phase
shifts between quantum paths. In the three-slit scheme, this
corresponds to the position of the detector within the interfer-
ence patterns. Position-dependent variations come from two
main sources: first, the fact that δ varies with position as it
is defined, and second, that the experimental uncertainties of
both ε and δ also vary with position.

First, two-slit interference, and therefore δ, varies with
position by definition, as can be seen in Fig. 3. For all
detector widths, the variation in magnitude differs by, at most,
a factor of approximately 2 when comparing different detector
positions. If the upper limit on the existence of three-slit
interference is quoted as an order of magnitude, this variation
may not be significant, but as the experimental errors are
reduced, the variation in δ with detector position will become
more evident. Authors of previous work [7,8] have noted that δ
can take on a small value at specific detector positions, causing

013832-4



EFFECTS OF DETECTOR SIZE AND POSITION ON A . . . PHYSICAL REVIEW A 90, 013832 (2014)

FIG. 4. Simulated ε, δ, and κ as a function of detector size (a–c) and position (d–f), given the experimental parameters and systematic
error in the mask described in [6]. Plots (g–i) show how reducing the size of the detector from 62.5 to 7 μm changes these parameters. The
gray-shaded region indicates one standard deviation above the mean. Dashed lines indicate δ calculated in the absence of any error.

a large value for κ that might be dismissed as anomalous, but
δ’s systematic dependence on detector position can also affect
interpretation of results. Our simulations confirm that as exper-
imental error is reduced, κ becomes more and more reflective
of δ, as opposed to the uncertainty in ε. Without understanding
how the position dependence of δ affects κ , this structure could
be misinterpreted as a third-order interference pattern.

Another problematic aspect of δ as defined is that its
dependence on position varies with the particular experimental
geometry chosen. Figure 3 shows how the position dependence
of δ differs for the two geometries of the three-slit experiment
discussed in this paper, but its dependence may be different still
for experimental schemes other than three-slit interference.
Hence, it is impossible to provide a straightforward character-
ization of how δ will influence the results, even for variations
in the geometry of the three-slit experiment.

Second, experimental uncertainty will be position-
dependent for those errors proportional to the optical intensity.
In Fig. 5 we show our experimental data alongside our
simulation results, including suspected sources of error, as
a function of position. The fact that the nonzero values for ε

have the same spatial periodicity as the interference patterns
suggests that they can be attributed to errors proportional
to intensity. This systematic error also affects the shape
of δ, as can be seen when comparing the experimental
data (solid line) in Fig. 5(b) to the simulation results with
no error (dashed line). Importantly, however, the position
dependence of the systematic error will be different for ε and
δ, as they are each measuring different position-dependent
signals. These differences in position dependence will then be

juxtaposed in the uncertainty of κ , making interpretation more
difficult.

While defining the normalization as the ratio of three-slit to
two-slit interference is intuitively appealing for the purposes
of comparison between experiments using different quantum
systems, it is problematic, and in fact becomes more so as the
experimental design is improved and uncertainty reduced. A

FIG. 5. Measured (a–c) and simulated (d–f) ε, δ, and κ as a
function of position. The gray-shaded region indicates one standard
deviation above the mean.
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simpler choice for normalization may be the magnitude of the
intensity at the central peak of the three-slit interference pat-
tern. This would correspond, in other experimental schemes,
to zero phase shift among the three quantum paths. This value
would be constant, nonzero, and avoid the problems associated
with position and detector-size dependence.

C. The need for position-resolved detection

Regardless of the normalization scheme, calculations and
measurements over a wider phase space are needed for a
definitive characterization of an upper bound to violations
of Born’s rule. There are two major problems with prob-
ing a single detector position. First, the magnitude of the
experimental error in the three-slit experiment depends on
the position. This is evident for the types of error based
on alignment uncertainty we have simulated, simulations of
detector nonlinearity, as shown previously [7], or in our
experimental data [see Fig. 2(a)]. If the upper bound on the
presence of higher-order interference is determined by the ex-
perimental uncertainty, then this will be valid only for the
detector position chosen.

As a representative example of how different the results
can be depending on where in the pattern the measurements
are made, even when the error is small, we consider again
the predictions of the simulation using the experimental
parameters of Sinha et al. Figure 4(d) indicates that the
error varies by several orders of magnitude over 2 PFP, but
it seems reasonable that measurements would be easiest to
perform at an interference maximum, so we compare two
such locations. At the center of the interference pattern, the
value of ε predicted by our simulation was 0.03 ± 0.10, while
at the first secondary maximum (+0.5 PFP) it was 0.003 ±
0.038. The corresponding values for κ were 0.010 ± 0.042 and
0.001 0 ± 0.018. While it could be argued that measurements
at the center of the interference pattern give the largest, and
thus the most conservative estimate of the error, this is not
always the case, as the position dependence of the errors is
sensitive to the type and magnitude of errors present, as well
as the experimental geometry used. Compare, for example,
Fig. 4(d) to the results of our experiment shown in Figs. 5(a)
and 5(d), in which the largest values for ε and κ are not at the
center of the interference pattern.

Second, a hypothetical higher-order interference may also
be position dependent, just as two-slit interference is position
dependent. In the absence of any theoretical prediction about
where it is likely to detect a nonzero interference, the choice
of a single detector position may yield a zero value for ε,
simply because it coincides with a “minimum” of the three-slit
interference term. Either of these problems would inaccurately

support claims on the upper bound to violations of Born’s rule.
Precise measurements and propagation of error over a range
of phase differences is needed.

Finally, recent work has called into question the premises
of Refs. [5,6] that lead to the conclusion that ε is exactly
zero, and thus that a detected nonzero result would necessarily
show violation of Born’s rule. Precise numerical modeling
of Maxwell’s equations predicts a nonzero ε in the classical
regime [15], and numerical modeling of Feynman’s path
integral formalism predicts a nonzero result in the quantum
regime [16], while both are consistent with Born’s rule. In
either case, the nonzero result is several orders of magnitude
smaller than the measurement precision demonstrated to date.
However, in more precise experiments, these effects must be
taken into account. In both cases, the results are also position
dependent, and definitive testing of either theory would be
most strongly supported by position-resolved data.

IV. CONCLUSION

We have investigated the three-slit experiment for testing
Born’s rule using position-resolved detection of the inter-
ference patterns. Experimental data show that uncertainties
due to experimental error in the parameters ε, δ, and κ

show significant dependence on the position and detector
size. A numerical simulation to model these experimental
errors shows good agreement with our measured data. These
results reveal limitations to the use of the previously proposed
normalization factor based on two-slit interference δ and
indicate that these limitations are robust and persist even as
experimental uncertainty is reduced. Additionally, we con-
clude that a single number, while convenient for comparison
between experimental schemes, is an insufficient measure
for quantifying possible violations to Born’s rule. Indeed,
position-resolved measurement of ε is necessary to validate
Born’s rule, since a three-term interference signal may itself be
position dependent. If unrecognized, these position-dependent
effects could lead to false interpretation in the pursuit of a
more precise upper bound to violations of Born’s rule. A
complete test of Born’s rule using this experimental approach
will require measurement at the single-photon level, with
a more straightforward normalization scheme, and statistics
calculated over a full range of phase differences.
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