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Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications
in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness
response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration
is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress
achieved in a program aiming at absolute calibration, conducted over the past 15 years, is briefly reviewed. Here
we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed
range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary
aberrations of the optical system, which are now included in the theory. All required experimental parameters are
readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused
laser spot, adapting frequently employed video microscopy techniques. Combined with interface spherical
aberration, it reveals a previously unknown window of instability for trapping. Comparison with experimental
data leads to an overall agreement within error bars, with no fitting, for a broad range of microsphere radii, from
the Rayleigh regime to the ray optics one, for different polarizations and trapping heights, including all commonly
employed parameter domains. Besides signaling full first-principles theoretical understanding of optical tweezers
operation, the results may lead to improved instrument design and control over experiments, as well as to an
extended domain of applicability, allowing reliable force measurements, in principle, from femtonewtons to
nanonewtons.
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I. INTRODUCTION

Optical tweezers (OTs), invented in 1986 [1], are laser
traps for neutral microscopic particles, with a vast range
of applications in physics and biology: a 2006 review [2]
lists ∼103 publications. Recent applications to fundamental
physics include an experimental realization of Szilard’s de-
mon [3] and an experimental proof of Landauer’s principle [4].
In cell biology, OTs have paved the way to pioneering
quantitative measurements of basic interactions in living cells,
“one molecule at a time” [5,6].

For biological applications, one employs near-infrared laser
light, within a transparency window for the water contained
in cells, to avoid heat damage. A transparent microsphere is
employed as a handle and force transducer. The microsphere
is pulled toward the diffraction-limited laser focus by the
gradient force, which must overcome the opposing radiation
pressure, thus requiring a strongly focused beam. The beam is
focused through the microscope objective. To maintain the live
biological sample, it is usually immersed in water solutions,
within a chamber with controlled temperature and carbon
dioxide pressure. For a schematic diagram of a typical setup
see [7].

The object of interest is attached to the trapped microsphere,
through which the force is applied, usually transverse to the
beam. For sufficiently small microsphere displacements from
equilibrium, the response is linear both in displacement and
in laser power, so that it suffices to calibrate the transverse
trap stiffness per unit power, measuring the displacement to
determine the force.

Stiffness calibration is usually based on comparisons with
fluid drag forces [8] or on detection of thermal fluctuations

[9] by assuming a known drag coefficient. Alternatively,
measuring the power spectra under a sinusoidal motion of
the microscope translational stage allows for an independent
calibration of the drag force on the trapped particle [10]. In cell
biology, forces may need to be measured under complicated
boundary conditions, at micrometer distances from the bottom
of the sample chamber. Results at different laboratories can
disagree even by an order of magnitude (e.g., [11]).

In the present work, we demonstrate an absolute calibration
of stiffness, based on a careful control of all relevant trap
parameters [12] and on an accurate realistic theory of the
trapping force, yielding the stiffness in terms of experimentally
accessible data. The basic ingredients of such a theory are
the description of the strongly focused laser beam and of its
interaction with the microsphere.

Early treatments [1] of the interaction were confined to
the Rayleigh regime (microsphere radius a below 0.1 μm),
in which the stiffness grows like a3, and to the geometrical
optics limit [13,14] a � λ, where λ ∼ 1 μm is the laser
wavelength. In usual experiments, a is �1 μm, in the Mie
regime. In the widely referenced “generalized Lorenz-Mie
theory” [15,16], however, the trapping beam was described in
terms of perturbative corrections to a paraxial Gaussian model,
which has been shown [17] to be an incorrect representation
of a strongly focused beam. A proper representation of such
a beam [14] is the electromagnetic generalization [18] of
Debye’s classic scalar model [19]. A more detailed overview
of other proposals is given in [12].

The generalized Debye representation, combined with Mie
theory, and taking due account of the Abbe sine condition, was
first applied to the axial stiffness [20]. This MD (Mie-Debye)
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theory predicts rapid oscillations in a/λ, arising from interfer-
ence between contributions from the sphere edges for spectral
angular components. Related oscillations have been detected
in optical trapping of water droplets [21]. As is expected
in semiclassical scattering [22], averaging over oscillations,
for a � λ, yields the geometrical optics result, which decays
asymptotically like 1/a, as follows from dimensional analysis.
Previous theories did not show oscillations and had incorrect
asymptotic behavior.

The extension of MD theory to the more relevant transverse
stiffness [23], with similar features, differed from available
experimental data by an apparent overall displacement. This
was traced back to its disregard of interface spherical aber-
ration, the defocusing of the laser beam by refraction at
the interface between the glass slide and the water in the
sample chamber [24]. Inclusion of this effect led to the MDSA
(Mie-Debye-interface spherical aberration) theory [12].

Extensive experimental tests of the MDSA theory for
different OT setups [12,25,26] showed good agreement with
its predictions in the range a > λ, for the trapping threshold,
location of the stiffness peak, stiffness degradation with height
in the sample chamber, and “hopping” between multiple
equilibrium points. Recent extensions include modeling coun-
terpropagating dual-beam [27] and aerosol optical traps [28].
However, under the usual conditions of an overfilled high
numerical aperture (NA) objective, MDSA leads to a huge
overestimation of the stiffness in the interval a � λ/2, where
the predicted stiffness is maximal. This is precisely the size
domain of greatest importance for practical applications, thus
compromising the validity of MDSA for absolute calibration.
It was conjectured in [12] that additional optical aberrations of
the microscope objective could be responsible for the stiffness
reduction, by degrading the focus.

In the present work, we investigate in detail the effects of
all primary aberrations on the optical trapping force. Building
on our previous theoretical work, we develop a model, denoted
as MDSA+, that takes into account the presence of primary
aberrations of the focused trapping beam in addition to the
interface spherical aberration.

We show that one additional optical aberration, astigma-
tism, is the main effect responsible for the transverse stiffness
degradation in the range a � λ/2. We independently char-
acterize the astigmatism of our OT setup and plug the results
into MDSA+ theory. We find agreement with the experimental
data within error bars, with no fitting procedure. The success
of such blind comparison is of particular importance, given
that astigmatism is always present to some degree in typical
OT setups (see for instance [29]). It also demonstrates that
absolute calibration of the trap stiffness can be achieved,
provided that all relevant experimental parameters, including
the astigmatism, are carefully characterized.

Preliminary results for the case of circular polarization were
briefly reported in Ref. [30]. Here we present a comprehensive
account of the effects of all primary aberrations on the optical
force field. We choose to present the most common case of
linear polarization so as to provide more useful guidelines for
typical optical tweezers setups.

The paper is organized as follows: in Sec. II we develop
MDSA+ and consider numerical examples, taking each
primary aberration separately (explicit formulas are given in

Appendix A). Section III is dedicated to the characterization of
astigmatism in our typical OT setup. We compare experimental
data with theoretical predictions for the trap stiffness in
Sec. IV. Concluding remarks are presented in Sec. V. The
main conclusion is that absolute calibration of optical tweezers
has finally been achieved and that it should lead to significant
practical consequences. Appendix B provides a short guide to
the implementation of absolute calibration.

II. MDSA+ THEORY OF THE OPTICAL FORCE IN THE
PRESENCE OF ABERRATIONS

A. General formalism

In this section, we derive formal results for the optical
force in the presence of aberrations. In the typical optical
tweezers setup, the trapping laser beam is focused by a
high numerical-aperture (NA) oil-immersion objective into a
sample region filled with water. The effect of the spherical
aberration introduced by the glass-water planar interface was
already analyzed in detail in Ref. [26]. Here we also take
into account additional optical aberrations introduced by the
objective itself and by optical elements along the optical path
before the objective.

We assume that the trapping laser beam at the entrance
port (aperture radius R0) of the infinity-corrected microscope
objective (focal length f ) has amplitude Ep, waist w0, and
is linearly polarized along the x axis. We employ the Seidel
formalism for the aberrations [31]. Among the Seidel primary
aberrations, we expect field curvature and distortion to keep
the three-dimensional intensity distribution around the focal
region approximately unchanged, except for a global spatial
translation (displacement theorem [31]). Thus, we focus on
the effects of spherical aberration, coma, and astigmatism.

To include these three primary aberrations into our theo-
retical model, we introduce the corresponding phase for each
plane-wave component associated to a given angle (θ,ϕ) (in
spherical coordinates) into the Debye-type angular spectrum
representation of the focused beam. We assume that the
objective satisfies the usual sine condition and we write the
focused electric field as (origin at the paraxial focus)

E(r) = E0

∫ 2π

0
dϕ

∫ θm

0
dθ sin θ

√
cos θe−γ 2 sin2 θ T (θ )

×ei[�g−w(θ)+�add(θ,ϕ)]eikw·rx̂′(θw,ϕw), (1)

with γ = f/w0 and E0 = −(ikf/2π )Ep exp (ikf ) . The wave
vector in the sample region has modulus kw = Nk where
N = nw/n is the relative refractive index for the glass-water
interface and k is the wave number in the glass medium of re-
fractive index n. The direction of kw is defined by the spherical
coordinates (θw,ϕw), where θw = sin−1(sin θ/N) (refraction
angle) and ϕw = ϕ. The Fresnel refraction amplitude

T (θ ) = 2 cos θ

cos θ + N cos θw
(2)

accounts for the amplitude transmission across the interface.
More importantly, Eq. (1) contains the phase

�g−w(θ ) = k

(
− L

N
cos θ + NL cos θw

)
, (3)
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proportional to the distance L between the paraxial focus and
the planar interface, accounting for the spherical aberration
introduced by refraction at the glass-water interface. The unit
vector x̂′(θw,ϕw) in (1) is obtained from x̂ by rotation with
Euler angles (ϕw,θw,−ϕw):

x̂′ = cos ϕw θ̂w − sin ϕwϕ̂w.

When the numerical aperture (NA) is larger than nw (for
instance for the popular NA = 1.4 objectives), part of the
angular spectrum exceeds the critical angle θcr = sin−1(N )
for total internal reflection, producing evanescent waves in the
sample region. Here we assume that the trapped microsphere
is several wavelengths away from the interface, allowing us
to neglect the contribution of the evanescent sector. Thus, we
limit the integration in (1) to

θm = min{θcr,θ0 ≡ sin−1(NA/n)}.

The main novelty in Eq. (1) is the phase

�add(θ,ϕ)

2π
= A′

sa

(
sin θ

sin θ0

)4

+ A′
c

(
sin θ

sin θ0

)3

cos(ϕ − φc)

+A′
a

(
sin θ

sin θ0

)2

cos2(ϕ − φa), (4)

containing the relevant primary aberrations in the optical
system (objective included). In (4), A′

sa, A′
c, and A′

a represent
the amplitudes of system spherical aberration (in addition to
the one introduced by the glass-water interface), coma, and
astigmatism, respectively. The index sa is meant to distinguish
optical system (objective and remaining optical elements,
e.g., telescopic system) spherical aberration from interface
spherical aberration, already included in MDSA. The coma
and astigmatism axes are defined by the angles φc and φa,

measured with respect to the x axis in the image space of the
objective.

The scattered fields for each plane-wave component in (1)
are written in terms of Wigner rotation matrix elements
d

j

m,m′ (θw) [32] and Mie coefficients aj and bj for electric
and magnetic multipoles, respectively [33]. The integer vari-
ables j � 1 and m = −j, . . . ,j represent the total angular
momentum J 2 [eigenvalues j (j + 1)] and its axial component
Jz, respectively. After expanding the focused field (1) into
multipoles, we evaluate the integral over the azimuth angle ϕ

and use Graf’s generalization of Neumann’s addition theorem
for cylindrical Bessel functions Jn(x) [34]. A partial-wave
(multipole) representation for the optical force is then derived
from the Maxwell stress tensor [35]. Since the optical force F
is proportional to the laser beam power P at the sample region,
it is convenient to define the dimensionless vector efficiency
factor [14]

Q = F
nwP/c

, (5)

where c is the speed of light in vacuum. The cylindrical
components of Q are given in Appendix A, in terms of the

incident field multipole coefficients

G
(σ )
jm(ρ,φ,z) =

∫ θm

0
dθ sin θ

√
cos θ e−γ 2 sin2 θ T (θ ) dj

m,σ (θw)

× g(σ )
m (ρ,φ,θ ) exp{i[�g−w(θ ) + �add(θ )

+ kw cos θwz]} (6)

where σ = ±1 denotes the photon helicity. The phase

�add(θ ) = 2πA′
sa

(
sin θ

sin θ0

)4

+ πA′
a

(
sin θ

sin θ0

)2

(7)

accounts for additional spherical aberration and a residual field
curvature arising from the Seidel astigmatism. The anisotropy
introduced by astigmatism and coma is contained in the
function

g(σ )
m (ρ,φ,θ ) = ei(m−σ )α

∞∑
s=−∞

(−i)sJs

(
πA′

a
sin2 θ

sin2 θ0

)

× J2s+m−σ (|Z|) e2is(α+φa−φ), (8)

where the coma parameters define the complex quantity

Z = kρ sin θ − 2πA′
c

sin3 θ

sin3 θ0
e−i(φc−φ) = |Z| eiα. (9)

Most numerical examples discussed in this paper involve
the trap stiffness rather than the force itself. Except in the case
of coma, we compute the stiffness by first taking the spatial
derivative (usually with respect to ρ) of the partial-wave
series for the relevant force component in order to obtain the
partial-wave series for the trap stiffness itself, which is then
numerically evaluated.

B. Numerical results

In all numerical examples discussed in this section, we
take a typical setup often used in quantitative applications.
We consider a polystyrene (refractive index 1.57) microsphere
of radius a = 0.26 μm immersed in water (index nw = 1.32)
trapped by a Nd:YAG laser beam (wavelength λ = 1.064 μm,

waist w0 = 4.2 mm). The beam is focused by an oil-immersion
(glass index n = 1.51) objective of NA = 1.4 and entrance
aperture radius R0 = 3.5 mm.

The formalism presented in Sec. II A allows one to consider
the joint effects of astigmatism, coma, and spherical aberration.
We begin by considering each primary aberration separately in
order to grasp their physical effects on the optical force field.
We start with the simplest one: spherical aberration.

1. Joint interface and system spherical aberration

In this subsection, we assume that the optical setup contains
only spherical aberration: A′

a = A′
c = 0. In order to control the

amount of interface spherical aberration, we need to evaluate
the distance L between the paraxial focus and the glass slide
[see Eq. (3)], which is not directly accessible in our calibration
experiments. Experimentally, we start from the configuration
in which the bead touches the glass slide at the bottom of
the sample chamber and then displace the inverted objective
upward by a known distance d. Hence the paraxial focus is
displaced vertically from its initial position by a distance Nd.
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FIG. 1. (Color online) Trap stiffness dependence on system
spherical aberration. (a) Axial stiffness per unit power as a function
of the objective upward displacement d, for different values of the
system spherical aberration amplitude A′

sa. (b) Transverse stiffnesses
per unit power as a function of A′

sa for a fixed objective displacement
d = 3 μm. The stiffness is larger along the direction perpendicular
(y direction) to the laser beam polarization at the objective entrance.

We mimic this experimental procedure in the following way.
We first compute the initial distance between the paraxial focus
and the glass slide L0 by using the condition that the bead is
initially at equilibrium just touching the glass slide. Then we
take L = L0 + Nd.

We consider the joint effect of the interface and system
spherical aberrations on the trap stiffness. We first compute
the equilibrium position zeq by solving the implicit equation
Qz(ρ = 0,zeq) = 0. The resulting position is slightly above the
diffraction focus because of radiation pressure, and below the
paraxial focus for A′

sa � 0 (the ratio between the displacement
of the equilibrium position and d is usually known as “effective
focal shift” [36]). We derive partial-wave series for the
dimensionless force derivatives from the results given in
Appendix A and then take ρ = 0, z = zeq to calculate the
axial stiffness per unit power; similarly for the transverse
stiffness kρ.

In Fig. 1(a), we plot the axial trap stiffness kz as a function
of the objective upward displacement d, for different values of
the system spherical aberration amplitude A′

sa. The solid line,
representing the case with only interface spherical aberration,
is very similar to the result found in Ref. [36]. As expected,
increasing the focal height with respect to the glass slide
degrades the focal region, leading to a severe axial stiffness
reduction. Since the interface spherical aberration is negative
(i.e., the real wave front is ahead of the ideal spherical reference
wave front), a positive A′

sa leads to a partial compensation of
the interface effect, as shown in Fig. 1(a), whereas a negative
A′

sa enhances the focal region degradation.
The transverse stiffness per unit power kρ is less sensitive

but also decreases with the trapping height. Here again a
positive system spherical aberration partially compensates
the effect of the interface one. In Fig. 1(b), we plot kρ as
a function of A′

sa taking d = 3 μm. The stiffness is larger
along the direction perpendicular to the incident polarization
(φ = π/2 corresponding to ky) because the electric energy
density gradient is larger along this direction [18].

2. Coma

When we add coma to our setup, the equilibrium position
is no longer along the z axis, because the point of maximum
energy density is displaced away from the axis along the

FIG. 2. Theoretical relative electric energy density E2/E2
max on

the plane z = zeq in the presence of coma (λw = λ/nw is the
wavelength in the sample medium). We take φc = π/3 and (a) A′

c =
−0.93, (b) A′

c = 0, and (c) A′
c = 0.93. Note that the nonparaxial

coma-free focused spot (b) is elongated along the polarization
direction x of the laser beam at the objective entrance port [18].

direction set by the coma axial direction φ = φc on the xy

plane. This is illustrated in Figs. 2(a) and 2(c), where we
plot the electric energy density divided by its maximum
value E2/E2

max at the plane z = zeq corresponding to the
axial equilibrium position (E2 = |E|2 is the electric-field
square modulus). We also show the spot with zero coma for
comparison [Fig. 2(b)]. For all numerical examples presented
in Figs. 2 and 3, we take the coma axial direction at φc = π/3
and fix the distance between the paraxial focus and the glass
slide to be L = 2.9 μm.

We find that the equilibrium position also lies along the
coma axis in general (and not only in the Rayleigh regime),
regardless of the polarization direction at the objective entrance
port. In order to determine the full equilibrium position, we
first find the coordinate z = z̄(ρ) yielding axial equilibrium
as we change the lateral position ρ by solving the implicit
equation

Qz(ρ,φ = φc,z̄(ρ)) = 0. (10)

We then plot Qρ(ρ,φ = φc,z̄(ρ)) as a function of ρ for
different values for the coma amplitude Ac in Fig. 3(a). The
distance ρeq between the equilibrium position and the z axis
is given by the intersection between the different curves and
the horizontal dashed line Qρ = 0. Figure 3(a) shows that
the equilibrium point is displaced away from the z axis as
we increase the coma amplitude, as expected. Moreover, the
figure shows that the equilibrium point is radially stable. By
analyzing the dimensionless force components Qz and Qφ,

(a) (b)

k x
 /P

 (p
N

 µ
m

-1
 m

W
-1

) 

(a)

ρ/a

Q
ρ

Ac

FIG. 3. (Color online) Optical trap with coma. (a) Dimensionless
radial force Qρ as a function of the cylindrical coordinate ρ along the
coma axis φ = φc. The point of equilibrium is off axis. (b) Transverse
trap stiffness per unit power kx/P along the direction parallel to the
incident polarization as a function of the coma amplitude.
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we find that the equilibrium point is also stable with respect to
axial and tangential displacements.

As in the coma-free simulations presented in Ref. [23],
Fig. 3(a) simulates experiments where a transverse Stokes drag
force FStokes is applied to the trapped microsphere, provided
that the Stokes force is parallel to the coma axis. In this case,
the new radial equilibrium position can be read from Fig. 3 by
taking the value of ρ corresponding to Qρ = −cFStokes/(nwP ).
Note that each value of ρ corresponds to a different axial
coordinate z̄(ρ) defined by (10), for the microsphere is also
displaced along the axial direction when applying the lateral
Stokes force [14] as demonstrated in Ref. [37].

The Stokes calibration provides perhaps the simplest
method for measuring the transverse trap stiffness. The radial
stiffness kρ corresponds to the slopes shown in Fig. 3(a) at
ρ = ρeq. It is already clear from this figure that kρ decreases
with increasing coma amplitude.

It is more common, however, to measure the transverse
stiffnesses parallel (kx) or perpendicular (ky) to the polarization
axis. We calculate kx for a focused beam with coma from the
numerical evaluation of the slope of Qx in the neighborhood of
the point of equilibrium. In Fig. 3(b), we plot kx per unit power
as a function of A′

c showing that the stiffness reduction does
not depend on its sign. This symmetry also follows from (4):
changing the sign of A′

c is equivalent to shifting φc → φc + π,

which amounts to rotating the energy density profile by π, as
illustrated by Figs. 2(a) and 2(c). The equilibrium position is
then displaced along the opposite direction but the stiffness
remains the same. These results are in qualitative agreement
with the experimental data presented in Ref. [29].

3. Astigmatism

The phase correction corresponding to astigmatism, on
the other hand, has a different symmetry property under the
change of sign of its amplitude, so that the stiffness is not an
even function of A′

a. According to (4), when φa → φa + π/2
the astigmatism phase correction changes sign and yields a
residual proportional to ρ2, which corresponds to curvature
of field. The latter produces essentially a displacement of the
energy density profile along the z axis [31], with a negligible
effect on stiffness. The transformation A′

a → −A′
a is therefore

approximately equivalent to rotating the astigmatism axis by
π/2 [38].

This is verified by the numerical calculations presented
in Fig. 4, where we plot the transverse stiffnesses per unit
power parallel (kx/P ) and perpendicular (ky/P ) to the incident
polarization as functions of A′

a. We take a fixed objective
displacement d = 3 μm and the astigmatism axis orientations
φa = 0 [Fig. 4(a)], φa = π/4 [Fig. 4(b)], and φa = π/2
[Fig. 4(c)]. The values for A′

a = 0, indicated by vertical dashed
lines, are of course the same for the three plots and show that
the stiffness is larger along the direction perpendicular to the
incident polarization as expected, since the energy density spot
at the focal plane in the nonparaxial regime is elongated along
the incident polarization direction x in the stigmatic case [18],
as shown by Fig. 5(a).

By changing the spot shape on the xy plane, astigmatism
produces a strong effect on the transverse stiffnesses and in
particular on their relatives values. The relative electric energy

(a)

k x
,y

 /P
 (p

N
 µ

m
-1

 m
W

-1
) 

(b) (c)

φa = 0 φa = π/4 φa = π/2

Aa Aa Aa

FIG. 4. (Color online) Transverse stiffnesses per unit power
kx/P and ky/P as functions of the astigmatism amplitude A′

a for
axis orientations (a) φa = 0, (b) φa = π/4, and (c) φa = π/2. The
vertical dashed lines indicate the values in the stigmatic case. The
x axis (φ = 0) corresponds to the trapping laser beam polarization at
the objective entrance.

density at the plane z = zeq is shown in Fig. 5, with the
astigmatism axis at φa = 0. In order to understand the results
shown in Figs. 4 and 5, we have to bear in mind that radiation
pressure pushes the equilibrium point to a plane above the
diffraction focus (circle of least confusion). For that reason,
when taking φa = 0 [Fig. 4(a)] the spot on the equilibrium
plane z = zeq gradually becomes more elongated along the
y axis as we increase A′

a, as illustrated by Fig. 5. As a
consequence, ky decreases very fast, whereas kx is initially
constant and then starts to decrease as well, since larger values
of astigmatism will ultimately degrade the energy density
gradient also along x. For A′

a = 0.44, astigmatism yields an
exact cancellation of the nonparaxial effect on the spot shape
and then we have kx = ky. Beyond that point, astigmatism
dominates and the spot becomes more elongated along the y

direction, yielding kx > ky.

On the other hand, the gradual introduction of a negative
astigmatism (A′

a < 0) makes the spot still more elongated
along the polarization direction x, reinforcing the gradient
along y for moderate values of A′

a. Thus, ky is slightly
increased by the introduction of a small negative astigmatism
as shown by Fig. 4(a). Larger values of A′

a will ultimately
degrade both kx and ky.

For φa = π/4 [Fig. 4(b)], kx and ky become approximately
even functions of A′

a as expected, since changing the sign of
the amplitude is equivalent to rotating the axis by π/2, apart
from a very small contribution from curvature of field. This
symmetry is also apparent when comparing the results for
φa = 0 [Fig. 4(a)] with those for φa = π/2 [Fig. 4(c)].

By comparing Figs. 1(b), 3(b), and 4, we conclude that
astigmatism is the primary aberration yielding the strongest
effect on the transverse stiffnesses kx and ky, which are
very sensitive to the amplitude A′

a, again in agreement with
the experimental results of Ref. [29]. Figure 4 shows that
the astigmatism axis orientation is also extremely important.
This overall message will be of great value in the next
two sections, where we undertake the task of performing an
absolute calibration of stiffness.

III. MEASURING THE ASTIGMATISM PARAMETERS

A. Experimental procedures

In this section, we present the diagnostic procedures em-
ployed for the characterization of optical aberrations present
in our typical OT setup. Images of the focused laser spot at
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FIG. 5. Theoretical relative electric energy density E2/E2
max on the plane z = zeq in the presence of astigmatism (same conventions as

Fig. 2). We take φa = 0 and (a) A′
a = 0, (b) A′

a = 0.22, (c) A′
a = 0.44, and (d) A′

a = 0.66. Note that spot (a) is identical to the spot shown in
Fig. 2(b).

different planes across the focal region, shown in Fig. 6, have
the elongated form typical of astigmatism (see Fig. 5 for the-
oretical astigmatic spots). They do not show the characteristic
shape of coma (see Fig. 2), which we disregard from now
on. As discussed in the previous section, the transverse trap
stiffness is extremely sensitive to the astigmatism parameters
A′

a and φa when trapping small spheres. Hence a careful
characterization of both astigmatism parameters is essential
for undertaking a blind theory-experiment comparison.

Our method is based on the quantitative analysis of the
images of the focused laser spot reflected by a plane mirror
placed near the focal region, as represented in Fig. 7(a).
The collimated TEM00 Nd:YAG laser beam (wavelength
λ = 1.064 μm, waist w0 = 4.2 mm) is transmitted through
a wave plate W (quarter or half wavelength) that allows us to
control its polarization at the back entrance of a Nikon Eclipse
TE300 oil-immersion inverted microscope (Nikon, Melville,
NY). After partial reflection by the dichroic mirror M (80%
reflectivity), the laser beam propagates in air (refractive index
n0) and reaches the objective lens Lob (Nikon PLAN APO,
NA 1.4, 60X, aperture radius R0 = 5.0 ± 0.1 mm, and focal
distance f = 0.5 cm) that focuses the laser beam into a spot
localized at the objective focal plane FP in the immersion oil
medium of refractive index n. The mirror M1 (99% reflectivity)
at position z0 reflects the laser beam back towards the objective.
On its way back a small fraction of the power is transmitted by

FIG. 6. From left to right, eight-bit laser spot images below, at,
and above the circle of least confusion. Two different objectives were
employed: (a) Plan Apo, NA 1.4, 60X, and (b) Plan Fluor, NA 0.3,
10X. Scale bars (a) 1 μm, (b) 10 μm.

the mirror M and the spot image is conjugated by the tube lens
Ltb (focal distance ftb = 20 cm) onto a CCD (charge-coupled
device) camera, which records the defocused spot image. We
employ the piezoelectric nanopositioning system PI (Digital
Piezo Controller E-710, Physik Instrumente, Germany) to
move the mirror M1 across the focal region with controlled
velocity V = 100 nm/s. Images of the entire process are
recorded using a LG7 frame grabber (Scion, USA) connected
to a computer.

Typical images are shown in Fig. 6 with (a) the high NA
objective used for trapping and (b) a low NA objective. We
use (b) to infer the astigmatism phase �s introduced by the set
of lenses and mirrors along the optical train between the laser
and the objective entrance port in the actual trapping setup,
since the optical aberration introduced by a carefully aligned
low NA objective is negligible.

On the other hand, the images collected with the high NA
objective used for trapping contain the information on the
astigmatism phase �ob introduced by the objective itself. Since
the image is formed after back and forth propagation through
the objective, the corresponding total phase is �t = 2�ob +
�s. In short, we measure �s with the help of the low NA
objective, and then measure �t with the high NA objective

CCD

M

FP

Ltb

Lob

W

M1
PI

CCD

M

L tb

Lob

W

Bead

Coverslip
Oil

Water

Air

(a) (b)

FP

FIG. 7. (Color online) Schematic representation of the ex-
perimental setup for (a) characterization of astigmatism; and
(b) measurement of the transverse trap stiffness. W = wave plate,
M = dichroic mirror; Lob = objective lens; M1 = laser spot reflecting
mirror; PI = piezoelectric controller; FP = objective focal plane;
Ltb = tube lens; CCD = recording camera.
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FIG. 8. (Color online) Characterization of astigmatism: experimental data (circles) and curve fit (solid) (a) for the relative axial electric
energy density E2/E2

max vs mirror position z0 (NA = 1.4 objective), for the ratio of spot radii R>/R< vs z0 with (b) NA = 1.4 objective, and
(c) NA = 0.3 objective. For the parameters employed in the fits see Tables I–III.

used for trapping. By combining the two results, we infer the
total OT astigmatism phase

�OT = �ob + �s (11)

for the trapping beam at the sample region, which is the
relevant one for the evaluation of the trapping force using
the MDSA+ theory presented in Sec. II.

It is simpler to add the different phases in terms of the
Zernike polynomials (origin at the diffraction focus) [31].
To do this, we write the astigmatism phase as �OT(ρ,ϕ) =
2π AOT (ρ/R0)2 cos[2(ϕ − φOT)] and likewise for �s, �t, and
�ob, in terms of the amplitudes As, At, and Aob and polar
angles φs, φt, and φob. The connection with the Seidel
formalism employed in Sec. II is straightforward: we take
A′

a = 2AOT and φa = φOT and plug the resulting values into the
general formalism developed in Sec. II.

In order to connect the astigmatism phases to the images
recorded by the CCD represented in Fig. 7(a), we extend the
nonparaxial formalism for field propagation developed in [39]
to astigmatic spots. This allows us to write the electric field
after propagation through the optical elements represented in
Fig. 7(a) in terms of the astigmatism parameters At and φt

(when using the high NA objective Lob) or in terms of As and
φs (when Lob is replaced by the low NA objective). As in [39],
we compute the propagated field to lowest order of f/ftb. In
addition, we also assume that mirror M1 is a perfect reflector
and find the electric field at the point (ρF ,φF ,zF ) in the image
space of the tube lens Ltb (see Sec. II A for the definitions of
the field amplitude Ep and the filling factor γ ):

ECCD = −i
Epk0f

2

ftb
eik0(ftb−zF )e2ikf

∫ θ0

0
dθ sin θ cos θe−γ 2 sin2 θ

× e2ikz0 cos θ ei(k0zF /2)(f 2/ftb)2 sin2 θ

(
g

(+)
1 + 1

2
e−2iφF g

(−)
1

)
x̂.

(12)

The astigmatism parameters are contained in the functions
g(±)

m (ρF ,φF ,θ ) defined in Eq. (8) (m = 1). Here we take the
coma amplitude to be zero (A′

c = 0, α = 0), in addition toZ =
k0ρF (f/ftb) sin θ and A′

a = 2At, φa = φt. When considering
the low NA setup, we take A′

a = 2As, φa = φs and replace
θ0 by the much smaller angular aperture corresponding to
NA = 0.3.

We measure the energy density variation with the mirror
position z0 using the CCD and fit the resulting curve with the

help of (12) in order to infer the astigmatism amplitudes, as
detailed in the next subsection.

B. Results

In Fig. 8(a), we plot a typical result for the axial (ρF = 0)
relative energy density, E2/E2

max, as a function of z0. We fit
the experimental data by taking the square modulus of (12). In
Table I, we show the results for the fitting parameters At, E2

max,

zF , representing the position of the CCD [see Fig. 7(a)], and the
mirror’s position offset z′ (z0 → z0 − z′). Each line in Table I
corresponds to a different measurement. Since the axial energy
density does not depend on the astigmatism orientation axis,
we are allowed to combine results for different polarization
directions here.

The quality of each fit is extremely sensitive to At:
changing At by only 5% leads to a tenfold increase of
χ2. The astigmatism amplitude, averaged out over the ten
measurements shown in Table I, is At = 0.96 ± 0.02.

In order to determine the axis directions φt and φs, we
take the elongated spots shown in Fig. 6 and fit the contour
line corresponding to a given value E2

ctr with an ellipse. The
resulting directions do not depend on E2

ctr. We find φt = 57◦ ±
3◦ and φs = 48 ± 3◦ for the high [Fig. 6(a)] and low [Fig. 6(b)]
NA objectives, respectively.

The ellipses also contain information on the values of the
astigmatism amplitudes. We consider the ellipse major and
minor semiaxes R> and R< and plot the ratio R>/R< versus z0

TABLE I. Parameters employed for the curve fit of the relative
axial electric energy density [see Fig. 8(a) for a typical example]: At

(astigmatism amplitude), E2
max (maximum energy density), zF (plane

of detection), and z′ (offset), for NA = 1.4.

Measurement At E2
max (arb. unit) zF (cm) z′ (μm)

1 0.95 2.8 4.9 −8.5
2 0.98 2.7 5.4 −8.8
3 0.99 2.7 5.5 −9.6
4 0.94 2.7 5.3 −9.7
5 0.99 2.5 5.6 −10.7
6 0.91 2.5 4.6 −8.6
7 0.9 2.9 4.9 −8.4
8 0.97 2.6 5.1 −10.0
9 0.97 2.7 4.8 −9.3
10 0.99 2.6 5.1 −9.9
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TABLE II. Parameters employed for the curve fit of the ratio
R>/R< between the major and minor semiaxes of the elliptical
contour line in the xy plane corresponding to a given electric energy
density E2

ctr, for the NA = 1.4 objective used for trapping [see
Fig. 8(b) for a typical example]. Same conventions as Table I.

Measurement At E2
ctr (arb. unit) zF (cm) z′ (μm)

1 0.85 7.0 5.6 −7.9
2 0.88 8.4 5.6 −8.0
3 0.84 9.1 5.6 −8.0
4 0.93 7.7 5.6 −8.0
5 0.82 8.4 5.4 −7.6
6 0.84 7.7 5.7 −8.2
7 0.83 6.9 5.6 −8.0

in Figs. 8(b) (high NA) and 8(c) (low NA). The ratio varies over
a much larger distance range in the second case, as expected in
the paraxial regime. We fit the resulting experimental data with
a theoretical curve calculated from Eq. (12). For the paraxial
low NA objective, we can simplify the angular function in the
integrand of (12) and isolate the entire dependence on z0 and
zF (apart from a trivial phase prefactor) in terms of the linear
combination −kz0 + (k0/2)(f/ftb)2zF . Rather than taking zF

and the offset z′ as independent fitting parameters, we set
zF = 0 since any finite value of zF is formally equivalent to a
given mirror position offset z′ in this case. The results for the
fitting parameters are shown in Tables II and III for the NA 1.4
and NA 0.3 objectives, respectively.

By averaging the values shown in Table II, we find
At = 0.86 ± 0.03, close to the value found from the axial
energy density distribution. Note that any spherical aberration
produced by the objective or by the optical components located
between the laser output and the objective entrance would
modify the axial energy density but not the ratio R>/R<.

Thus, the agreement we have found between the two methods
shows that system spherical aberration is negligible in the setup
shown in Fig. 7(a). This was checked by including spherical
aberration in Eq. (12) and fitting the spherical aberration
amplitude Asa using the axial energy density and the value
for At found from the ratio R>/R<. The results are distributed
around zero with |Asa| < 0.1. On the other hand, the interface
spherical aberration in the trapping setup [see Fig. 7(b)] is very
important [12] and it is essential to include it in the MDSA+
theoretical model.

We take At = 0.92 ± 0.04 as the overall average combin-
ing the two methods. From Table III, we find As = 0.23 ± 0.02

TABLE III. Parameters employed for the curve fit of the ratio
R>/R< for the NA = 0.3 objective used for measuring the system
astigmatism [see Fig. 8(c) for a typical example]. Same conventions
as Table II.

Measurement As E2
ctr (arb. unit) z′ (μm)

1 0.25 14.0 4.0
2 0.19 9.2 4.9
3 0.24 6.1 3.3
4 0.22 7.0 4.2

for the system astigmatism. It is not possible to check this value
from the axial energy density variation, which is approximately
constant in the range of distances covered by the PI, as expected
in the paraxial regime. We now combine all these values and
solve

At cos 2φt = As cos 2φs + 2Aob cos 2φob, (13)

At sin 2φt = As sin 2φs + 2Aob sin 2φob (14)

to find the objective parameters Aob = 0.35 ± 0.01 and φob =
(60 ± 3)◦. We then combine the objective parameters with As

and φs in a similar way [see Eq. (11)] and find AOT = 0.56 ±
0.03 and φOT = 55 ± 3◦ (a larger astigmatism amplitude was
estimated in a similar setup [29]). In the next section, we plug
these values into MDSA+ theory and compare the results with
the experimental data.

IV. TRANSVERSE STIFFNESS CALIBRATION

A. Experimental procedures

We validate our proposed absolute calibration by com-
parison with other known methods [7]. For testing MDSA
theory, both Brownian correlations and fluid drag forces were
employed as calibration techniques [12], with comparable
results. Here we compare MDSA+ with the results obtained
by the second approach, with the drag coefficient calculated
from Faxén’s law [40].

Our experimental procedures also include the measurement
of all input parameters relevant for MDSA+. Besides the
astigmatism parameters discussed in Sec. III, we also measure
the laser beam power and beam waist at the objective entrance
port, and the objective transmittance [41], as described in
Ref. [12]. Whenever possible, each input parameter was
measured by two different techniques, checking the results
against each other for consistency.

Our OT setup, illustrated by Fig. 7(b), is very similar to
the setup for characterization of astigmatism, except for the
replacement of mirror M1 by a glass coverslip at the bottom
of our sample chamber containing polystyrene microspheres
(Polysciences, Warrington, PA), diluted to 1 μl of stock
solution 10%v/v in 10 ml of water. In order to determine the
amount of spherical aberration introduced by the glass-water
planar interface (see Sec. II B 1 for details), we first move down
the inverted objective until the trapped bead just touches the
bottom of the sample chamber. Then we displace the objective
upwards through a controlled distance d.

Once the height of the equilibrium position is set, we
measure the trap stiffness using Faxén’s law [40] and videomi-
croscopy. We set the microscope stage to move laterally with
a measured velocity v [42] either along the x (polarization) or
y direction, producing a Stokes drag force βv that displaces the
bead off-axis through a distance δρ along the same direction.
We calculate β from Faxén’s law using the values for the
bead radius a and height h. Each run is recorded with a LG7
frame grabber (Scion, USA). From the digitized images of the
trapped bead we determine δρ as a function of v. We employ
values of v small enough to probe only the linear range of
the optical force: βv = kx,yδρ. We check that our data for
the lateral displacement are a linear function of v, δρ = αv,
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FIG. 9. (Color online) Transverse trap stiffness per unit power
ky/P vs bead radius a for an objective displacement d = 3.0 ±
0.5 μm. No adjustable parameters are employed. Solid line: MDSA+
with the measured astigmatism parameters AOT = 0.56 and φOT =
55◦; shaded theoretical uncertainty band bounded by the curves
calculated for AOT ∓ δAOT, φOT ± δφOT, and d = 3.0 ∓ 0.5 μm
(δAOT = 0.03 and δφOT = 3◦); circles: experimental results; dashed
line: MDSA.

determine the coefficient α and then the transverse stiffness
kx,y = β/α [43]. When comparing with theory, we take the
stiffness per unit power kx,y/P, where the power at the sample
region P is derived from the measured objective transmittance
and power at the objective entrance port.

B. Experimental results and comparison with MDSA+
In Fig. 9, we plot the transverse stiffness per unit power

ky/P as a function of bead radius a for an objective displace-
ment d = 3.0 ± 0.5 μm. All relevant input parameters are
determined independently of the stiffness calibration, and no
fitting is implemented in the comparison with the experimental
results for the trap stiffness discussed in this section. We calcu-
late with the following parameters: beam waist at the objective
entrance port w0 = 4.2 mm, laser wavelength λ = 1.064 μm,

objective focal length f = 0.5 cm, polystyrene, water, and
glass refractive indexes nPS = 1.576, nw = 1.332, and n =
1.51, and semi-aperture angle θm = sin−1(nw/n) = 61.9◦. For
MDSA+, we also take the measured astigmatism parameters
(see Sec. III). Figure 9 provides an overall assessment of the
stiffness behavior as one sweeps the sphere radius from the
Rayleigh a3 increase to the geometrical optics 1/a decrease.
The MDSA curve (dashed line), corresponding to a stigmatic
beam, develops a peak in the range from λ/4 to λ/2, at the
crossover between Rayleigh and geometrical optics regimes,
in which the stiffness is highly overestimated. Clearly, by
including the effect of astigmatism, MDSA+ provides a much
better description of the experimental data in this range. On
the other hand, the effect of astigmatism is reduced for larger
values of a, as expected, since the details of the energy density
distribution are averaged out when computing the optical force
on a large microsphere. These properties are in qualitative
agreement with Ref. [44], where the astigmatism correction
was found to be relevant for a microsphere of radius 0.4 μm
but not for large beads.

z/a

cV
/a

P

FIG. 10. (Color online) MDSA+ axial potential V (per unit
power divided by a/c) vs z/a for a = 0.376 μm. The optical potential
well becomes shallower as the objective is displaced upwards through
the distance d . For d around 3 μm, it displays a region of indifferent
equilibrium.

The width of the theoretical uncertainty band shown in
Fig. 9, bounded by the curves corresponding to parameters
AOT ∓ δAOT and φOT ± δφOT, indicates that the sensitivity
to astigmatism is larger for small and moderate bead sizes.
More generally, the trap becomes more susceptible to pertur-
bations at the crossover between Rayleigh and geometrical
optics regimes, as exemplified by the effect of astigmatism
discussed here. This is of considerable practical importance,
because this region corresponds to the radii most often used
in quantitative applications, for which a reliable transverse
stiffness calibration is needed.

Right at the center of the MDSA peak region shown in
Fig. 9, we observe experimentally that the trap becomes
less stable, particularly for larger trap heights. This is well
explained by MDSA+. Although the optical force is not
conservative [45], we can still define an effective axial potential
as the integral of the axial force component along the z axis,
in order to interpret the trap stability in a more intuitive
way. We find that there is a window of instability for bead
radii in the neighborhood of a = 0.376 μm as we displace
the objective upwards. In Fig. 10, we plot the dimensionless
axial potential cV/(aP ) versus z/a for a = 0.376 μm. The
potential well becomes shallower as d increases and no
equilibrium is found for d = 6 μm. Experimentally, we find a
range of approximately indifferent equilibria when d > 3 μm,

resulting in a large dispersion of the experimental values. This
translates into the larger experimental error bars shown in
Fig. 11(b), where we plot kx/P and ky/P versus objective
displacement d. The axial potential well is also very shallow
for a = 0.527 μm, and the large error bars in Fig. 11(c) are
again consistent with this property.

Among the three bead sizes presented in Fig. 11, the radius
a = 0.376 μm right at the instability window is also the one
for which we find the largest discrepancy between MDSA
and the experimental or MDSA+ values. In this case, MDSA
overestimates stiffness by a factor larger than 4 for kx at low
heights and predicts a steady decrease as a function of d

which is not observed experimentally. The effect of enhancing
the spherical aberration introduced by the glass slide as d

increases, which is clearly present in the MDSA curves for
the two smaller radii shown in Fig. 11, becomes less severe
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FIG. 11. (Color online) Transverse trap stiffnesses per unit power vs objective vertical displacement d for different microsphere radii:
(a) a = 0.268 μm, (b) 0.376 μm, and (c) 0.527 μm (same conventions as Fig. 9). Black line: kx/P ; red (light gray) line: ky/P . For clarity,
the values of d corresponding to the experimental points for kx have an offset of +0.3 μm, and the horizontal error bars (corresponding to
δd = 0.5 μm) are omitted in plot (b).

since the energy density gradient is already degraded by the
presence of astigmatism in MDSA+.

Some of the data points shown in Fig. 11(b) correspond
to bead heights below 1 μm. Traps very close to the glass
slide can be affected by additional perturbations, not taken
into account in MDSA+, including optical reverberation
(multiple light scattering between the glass slide and the
microsphere), surface interactions and the contribution of
evanescent waves beyond the critical angle. The first two
effects were carefully probed in Ref. [46]. For a polystyrene
bead of radius 0.264 μm, an intensity modulation was found
for distances below 1 μm, indicating the interference between
the trapping beam and the scattered field reflected by the glass
slide. This clearly affects the equilibrium position, but no
effect was found on the transverse stiffness calibration [46].
However, larger beads at distances below 3λ from the surface
might suffer from a stronger reverberation effect, particularly
when considering the axial stiffness.

Figure 11 shows that ky is larger than kx, specially for small
spheres, which act as local probes of the electric energy density
profile. In the stigmatic case, the focused spot is elongated
along the polarization direction [18], as shown in Fig. 5(a),
thus leading to a larger gradient along the y axis. This can be
reversed by a positive astigmatism when the axis orientation
is smaller than π/4 (see Figs. 4 and 5). However, in Fig. 11 we
take φOT = 55◦, and as consequence the relative difference
between ky and kx is actually enhanced by astigmatism,
specially for the radius a = 0.376 μm. In spite of the large
error bars, the experimental data shown in the figure are again
consistent with this theoretical prediction.

V. CONCLUSION

Our numerical examples show that even a small amount of
astigmatism leads to a measurable reduction of the transverse
trap stiffness for microsphere radii in the range between
λ/4 and λ/2. This is of considerable practical importance,
as most quantitative applications rely on transverse stiffness
calibrations for microspheres precisely in this range.

From a theoretical point of view, this interval of mi-
crosphere radii corresponds to the crossover between the
Rayleigh and ray optics regimes. Figure 9 provides an overall
picture as far as the transverse stiffness is concerned. Right
at the crossover, MDSA develops a peak (maximum close to
a = 0.4 μm for λ = 1.064 μm), which is severely reduced
(and slightly shifted towards larger radii) when astigmatism is
included. Therefore, correcting astigmatism, for instance with
the help of spatial light modulators [44,47,48], might lead in
principle to a fourfold increase in the transverse stiffness of
our typical OT setup.

Figures 9 and 11 represent a fair sample of the general good
agreement between experimental results and MDSA+ that we
have found for a variety of bead sizes and trap heights, for
circular as well as for linear polarizations, for the transverse
stiffness either along x or y directions (the case of circular
polarization was briefly reported in [30]). We have also found
qualitative agreement with previous measurements of primary
aberrations effects [29,44].

With our experimental setup, we have independently
measured all parameters needed for the explicit numerical
computation of the MDSA+ predictions. In particular, the
astigmatism parameters were determined using a simple
videomicroscopy method, based on the analysis of the reflected
focused spot, that can be easily adapted to any OT setup. The
success of such a blind theory-experiment comparison demon-
strates that MDSA+ can be used as a practical calibration
tool, covering the whole range of sizes from the Rayleigh
regime to the ray optics one, including the intermediate-
size interval (peak region) most often employed in
applications.

As stated in [12] for MDSA, it remains true that MDSA+
does not include the effects of reverberation (multiple light
reflections between the bead and the glass slide) or those
of evanescent waves beyond the critical angle. Thus, it is
advisable when employing it to stay away from the glass slide
by at least a couple of wavelengths. It would be of considerable
interest to extend the theory to evanescent wave excitation,
so as to provide a theoretical description of fluorescence
microscopy of single molecules [49].
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Another promising application is the measurement of
surface interactions between a microsphere and a plane
surface [46] or between two trapped microspheres [50].
Absolute OT calibration allows force measurements, currently
under way in our laboratory, down to femtonewtons, with the
investigation of Casimir forces as a prospect.

In summary, by taking the primary aberrations into account,
MDSA+ provides a complete description of the most often
employed OT setup when trapping far from the surface.
Astigmatism is the primary aberration that produces the largest
effect on the transverse stiffness. In our typical setup, it
reduces the stiffness by a large factor and, more importantly, it
degrades the trap stability for radii close to or slightly smaller
than λ/2. The instability effect could be even more striking
when trapping high-refractive index particles in water [27] or
airborne aerosol particles [51], because of the larger radiation
pressure contribution in these cases. The achievement of
absolute calibration signifies that we now have a satisfactory
basic understanding of the performance of OT, bringing
about the possibilities of improved design, fuller control,
and the extension of the usual domain of applicability of
these remarkable instruments, ranging from femtonewtons to
nanonewtons.
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APPENDIX A: PARTIAL-WAVE SERIES FOR THE
DIMENSIONLESS OPTICAL FORCE EFFICIENCY

In this appendix, we write the explicit partial-wave series
for the cylindrical components of the dimensionless optical
force efficiency Q defined by Eq. (5).

Q contains two separate contributions: Q = Qe + Qs .

The extinction contribution Qe represents the rate at which
momentum is removed from the focused incident beam.
Qs = Q(p)

s + Q(c)
s represents the negative of the rate at which

momentum is carried away by the field scattered by the
microsphere (Mie scattering). Hence Qs is quadratic in the
scattered field, with Q(p)

s containing pure electric (magnetic)
multipole contributions, quadratic in the Mie coefficients aj

(bj ) [33], and Q(c)
s accounting for the cross terms proportional

to ajb
∗
j . Their cylindrical components are given by partial-

wave (multipole) sums of the form
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(−σ )∗
j+1,m

]
,

(A3)

Q(c)
sz = −4γ 2

AN
Re

∑
jmσ

(2j + 1)

j (j + 1)
mσajb

∗
j

(∣∣G(σ )
j,m

∣∣2 − e2iσφG
(σ )
j,mG

(−σ )
j,m

∗). (A4)

G
(σ )
jm(ρ,φ,z) are the focused beam multipole coefficients in the case of a circularly polarized beam at the objective entrance

(helicity σ ), defined by Eq. (6). The cross terms of the form G
(σ )
j,mG

(−σ )∗
j ′,m′ in (A1)–(A4) arise from writing the the linearly polarized

field as a superposition of σ = ±1 circular polarizations and squaring the resulting scattered field when computing the stress
tensor. Thus, they are absent in the case of circular polarization discussed in Ref. [30]. The filling factor A appearing in (A1)–(A4)
represents the fraction of laser beam power transmitted through the objective aperture and the glass slide [52]:

A = 16γ 2
∫ θm

0
ds s exp(−2γ 2s2)

√
(1 − s2)(N2 − s2)

(
√

1 − s2 + √
N2 − s2)2

. (A5)
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The azimuthal component contributions Q
(p)
sφ and Q

(c)
sφ are given by expressions similar to (A1) and (A2), respectively. The

dimensionless extinction force cylindrical components are given by

Qeρ = γ 2

AN
Im

∑
jmσ

(2j + 1)G(σ )
j,m

[
(aj + bj )

(
G

−,(σ )
j,m+1 − G

+,(σ )
j,m−1

)∗ + (aj − bj )e2iσφ
(
G

−,(−σ )
j,m+1 − G

+,(−σ )
j,m−1

)∗]
, (A6)

Qez = 2γ 2

AN
Re

∑
jmσ

(2j + 1)G(σ )
j,m

[
(aj + bj )GC,(σ )

j,m
∗ + (aj − bj )e2iσφG

C,(−σ )
j,m

∗]. (A7)

The series representing Qeφ(ρ,φ,z) is similar to (A6).
In addition to the multipole coefficients G

(σ )
j,m defined by Eq. (6), we have also defined

G
C,(σ )
j,m (ρ,φ,z) =

∫ θm

0
dθ sin θ cos θw

√
cos θ e−γ 2 sin2 θT (θ )dj

m,σ (θw)g(σ )
m (ρ,φ,θ ) exp{i[�g−w(θ ) + �add(θ ) + kw cos θwz]},

(A8)

G
±,(σ )
j,m (ρ,φ,z) =

∫ θm

0
dθ sin θ sin θw

√
cos θ e−γ 2 sin2 θT (θ )dj

m±1,σ (θw)g(σ )
m (ρ,φ,θ ) exp{i[�g−w(θ ) + �add(θ ) + kw cos θwz]}.

(A9)

APPENDIX B: A SHORT GUIDE TO
ABSOLUTE CALIBRATION

An important application of absolute calibration is the
possibility of designing the optical trap to meet some specific
requirement. The parameters required for the determination
of the trap stiffness [43] include the microsphere radius a

and refractive index, the laser wavelength λ (in vacuum) and
power at the objective entrance port, the refractive indexes
of the glass slide n and of the liquid filling the sample nw

(water in many cases), and the objective numerical aperture
NA and transmittance. All these parameters are usually readily
available, except for the last one, which can be reliably
measured by the dual objective method [41], or by using a
mercury microdroplet as a microbolometer [53].

One can enlarge the beam waist w0 so as to increase the
trapping stability region by overfilling the objective entrance
port. In a given setup, w0 can be inferred by measuring the
laser power transmitted through a diaphragm as a function of
its radius, or alternatively by imaging the laser beam spot with
a CCD [12].

Once these basic input parameters are known, the path to
absolute calibration depends on the ratio a/λ as follows:

(i) a < λ. Astigmatism and interface spherical aberration
should be taken into account. The latter is controlled by starting
with the trapped bead at the very bottom of the sample. One
then displaces the objective by a given amount d. Our code [43]
calculates the resulting spherical aberration effect. Since we

neglect reverberation and the contribution of evanescent wave
components, reliable results are expected in the range d > 3λ.

When trapping the small microspheres typically employed
in quantitative applications, it is also essential to characterize
the astigmatism axis orientation and amplitude. For instance,
for a/λ ∼ 0.25, Fig. 4 shows that a small amount of astigma-
tism leads to a significant reduction of the transverse stiffness.

By imaging the reflected laser spot in a CCD, it is
straightforward to measure the axis orientation. The amplitude
can be derived by fitting the variation of the intensity at the
spot center with the position of the mirror (see Sec. III for
details).

(ii) λ < a < 2λ. For bead radii a > λ, the effect of
astigmatism on the trap stiffness is small (see Fig. 9). Thus,
depending on the required accuracy, the stiffness can be
calculated using our code as if the trapping beam were
stigmatic. Moreover, the dependence on d is also negligible
provided that the bead is trapped far from the glass surface.

(iii) a > 2λ. Our code is not optimized for very large radii,
so we do not recommend its use in this case. On the other hand,
geometrical optics provides an excellent approximation to the
transverse stiffness in this range. In this regime, the stiffness
is virtually independent of wavelength, polarization, and
trapping height (again as long as reverberation is negligible):
kx,y/P = C/a, with the coefficient C independent of a. For
overfilled oil-immersion high-NA objectives, we find [26]
C = 1.1 pN/(μm · mW) (with a measured in μm) in the most
common case of polystyrene beads in water.
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