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Transformation of subradiant states to superradiant states in a thick resonant medium
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The propagation of a step pulse through a thick resonant absorber with a homogeneously broadened absorption
line is considered. It is shown that a specific subradiant state is naturally developed in the absorber due to the
formation of the spatial domains of the atomic coherence with opposite phases. It is proposed to divide the
absorber into slices in accordance with these domains and place the phase shifters in front of the first slice and
between the other slices. If the phase shifters are switched on simultaneously at a particular moment of time,
elapsed from the beginning of the step pulse, a strong sharp pulse is generated at the output of the last slice of the
absorber. The effect is explained by the phasing of the atomic coherence along all slices of the absorber, which
transforms the subradiant state of the atom-field system to a superradiant state.
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I. INTRODUCTION

The resonant interaction of a weak coherent pulse with
extended dielectric absorbers in a linear regime is well de-
scribed by the exact integral representation of the propagating
plane-wave field if the spectrum of the input pulse and the
complex dielectric permittivity of the medium are known (see,
for example, Refs. [1,2]). This integral is quite simple and can
be easily calculated numerically. Meanwhile, sometimes it is
not obvious how to calculate the output field if we modify
the field or the induced polarization inside the medium during
the pulse propagation. In this case, knowledge of the Green’s
function of the dispersive dielectric medium (its response to
a δ-function input pulse) helps to find the shape of the output
pulse (see, for example, Ref. [3]).

Change of the field phase or change of the induced
polarization in the medium along the pulse propagation are
quite effective methods of creating subradiant and superradiant
states. Transferring the radiation field between these states was
proposed in a sequence of papers (see Refs. [4–8]) to create
a quantum memory for single photons. In these papers such a
transformation was intended to implement, by coherent pulses,
exciting atoms on auxiliary transitions (adjacent to a resonant
one), by a particular variant of the CRIB technique (controlled
reversible inhomogeneous broadening) or by controllable
phase modulators of the field (phase shifters), inserted into
the atomic ensemble in a regular way along the direction of
the signal pulse propagation. All these methods imply an
artificial creation of periodic spatial domains from atomic
dipoles, induced by the input signal field, such that dipoles
in neighboring domains have opposite phases. This operation
produces a locked atom-field subradiant state. It is a storage
stage in a quantum memory protocol. In a reading stage all
domains of polarization are brought in phase, which results in
the superradiance, i.e., fast release of the radiation field.

In this paper it is found that a step (or rectangular) pulse
propagating in an optically thick resonant medium creates such
domains of polarization with opposite phases naturally. Their
lengths are not equal and evolve in time. Thus we may take
for granted a naturally built-up atom-field subradiant state.
It is proposed to cut the sample into unequal slices in a

particular way and place phase shifters between them. Then
at a given moment of time their fast switch on results in the
superradiance, seen as a short and strong pulse.

II. SPATIAL OSCILLATIONS OF THE ATOMIC
POLARIZATION ALONG THE LIGHT BEAM IN A THICK

RESONANT MEDIUM

For simplicity, we consider the propagation of a weak
pulse in a thick resonant medium with a homogeneously
broadened absorption line. A generalization to the case of
inhomogeneously broadened absorption line with Lorentzian
shape is trivial (see, for example, Ref. [1]).

In the slowly varying amplitude (SVA) approximation,
the unidirectional propagation of a weak pulse E(z,t) as a
plane wave along axis z is described by a couple of the
atom-field equations appropriate for the linear response (LR)
approximation. These equations are

σ̇eg = −γ σeg + i�(z,t), (1)

L̂�(z,t) = iαγ σeg(z,t)/2, (2)

where ρeg = σeg exp(−iωt + ikz) is the nondiagonal element
of the atomic density matrix and σeg its slowly varying
part; ω and k are the frequency and wave number of the
pulse propagating along axis z (here z is a coordinate along
z); γ is the decay rate of the atomic coherence; �(z,t) =
degE0(z,t)/2�, where deg is a matrix element of the dipole
transition between ground g and excited e states of an atom;
E0(z,t) = E(z,t) exp(iωt − ikz) is a slowly varying field
amplitude; L̂ = ∂z + c−1dt ; and α is the resonant absorption
coefficient. We limit our consideration to the case of exact
resonance.

These equations are easily solved by means of the Fourier
transform,

F (ν) =
∫ +∞

−∞
f (t)eiνtdt, (3)
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which reduces them to a couple of algebraic equations,

σeg(z,ν) = −�(z,ν)

ν + iγ
, (4)

[
∂

∂z
− iν

c
+ A(ν)

]
�(z,ν) = 0, (5)

where

A(ν) = iαγ /2

ν + iγ
. (6)

The solution is

�(z,ν) = �(0,ν) exp [(iνz/c) − A(ν)z] , (7)

where �(0,ν) is the Fourier transform of the input field
envelope at the front face of the absorber with coordinate
z = 0. The inverse Fourier transform of Eq. (7) gives the
familiar expression for the development of the radiation field
in the resonant absorber with distance, that is,

�(z,t) = 1

2π

∫ +∞

−∞
�(0,ν) exp [−iν(t − z/c) − A(ν)z] .

(8)
Below, for simplicity of notation, we disregard the small value
z/c.

For the input step pulse, ��(0,t) = �0�(t), which is
switched on at t = 0 and has the amplitude �0 [here �(t)
is the Heaviside step function], the integral in the solution (8)
was calculated in Ref. [1]. The result is expressed in terms
of infinite sum of the Bessel functions of ascending order,
multiplied by the coefficients, depending on α, γ , and t . To
simplify calculation of the integral in Eq. (8), it is usually
reduced with the help of the convolution theorem to (see, for
example, Refs. [9–11])

�(z,t) =
∫ +∞

−∞
�(0,t − τ )R(z,τ )dτ, (9)

where R(z,τ ) is the output radiation from the absorber of
length z, if the input radiation is a very short pulse whose
shape is described by the Dirac δ function δ(t), i.e., R(z,τ )
is the Green’s function of the absorber of thickness z. This
function is [1,9,10,12]

R(z,t) = δ(t) − e−γ t�(t)

√
b

t
J1(2

√
bt), (10)

where J1 (x) is the first-order Bessel function, b = αzγ /2, and
t is the local time, defined in the retarded reference frame as
tr = t − z/c. Below we drop the index r; however, we keep
in mind that this time depends on z. The inverse value of b is
referred to as superradiant time TR = 1/b (see Ref. [8]). Then
the parameter b may be referred to as superradiant rate. It is
also referred to as the effective thickness parameter, since for
the absorber of thickness z this parameter is proportional to z.

For the input step pulse equation (9) is reduced to (see, for
example, Refs. [9,13])

��(z,t) = �0�(t)

[
e−γ tJ0(2

√
bt)+γ

∫ t

0
e−γ τ J0(2

√
bτ )dτ

]
.

(11)

Another version of this expression,

��(z,t) = �0�(t)

[
1 −

∫ t

0
e−γ τ

√
b

τ
J1(2

√
bτ )dτ

]
, (12)

can be found, for example, in Refs. [10,11]). Meanwhile,
the equation for the output field can be expressed in a fast
converging series (see Appendix in Ref. [13]),

��(z,t) = �0�(t)

{
e−b/γ + e−γ t

[
f0(b)J0(2

√
bt)

+
∞∑

n=1

fn(b,t)jn(bt)

]}
, (13)

where jn(bt) = Jn(2
√

bt)/(bt)n/2, Jn(2
√

bt) is the Bessel
function of the nth order, f0(b) = f0(b,t) = 1 − exp(−b/γ ),
and

fn(b,t) = (γ t)n
[

1 − e−b/γ

n∑
k=0

(b/γ )k

k!

]
. (14)

It should be noted that the sum in Eq. (14) is a truncated Taylor
series for exp(b/γ ). Thus, with increase of n, the expression
in square brackets in Eq. (14) tends to zero, i.e.,

lim
n→∞

[
1 − e−b/γ

n∑
k=0

(b/γ )k

k!

]
= 0. (15)

Depending on the values of the parameters b and γ , it is
enough to take into account only one or two first terms in
the sum, which is the third term in Eq. (13), to obtain a fine
approximation for ��(z,t). If b � γ , i.e., the superradiant rate
is much faster than the decay rate of the atomic coherence, then
time evolution of the output field ��(z,t) is well approximated
by the function

��(z,t) ≈ �0�(t)e−γ tJ0(2
√

bt), (16)

which is the main part of the second term in Eq. (13). Other
terms give minor contribution. This condition is satisfied if
αl/2 � 1, where l is the length of the absorbing sample.

To find the spatiotemporal evolution of the atomic coher-
ence along the sample we can use Eq. (4) and obtain, according
to the convolution theorem, the result

σeg(z,t) = i

∫ +∞

−∞
e−γ (t−τ )�(t − τ )�(z,τ )dτ, (17)

where z changes between 0, which is a coordinate of the front
face of the sample, and l, which is a coordinate of the sample
end. For the step pulse Eq. (17) is reduced to (see Ref. [13])

σeg(z,t) = i�0�(t)
∫ t

0
e−γ τ J0(2

√
bτ )dτ. (18)

From Eqs. (11) and (13) it follows that the atomic coherence
can be expressed as

σeg(z,t) = i�0

γ
�(t)

{
e−γ t

∞∑
n=1

fn(b,t)jn(bt)

+ e−b/γ [1 − e−γ tJ0(2
√

bt)]

}
. (19)
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FIG. 1. (Color online) Spatial dependencies of the imaginary part
of the atomic coherence, −iσeg(z,tp), (solid line in red) and the
radiation field, �(z,tp), (dotted black line) along the absorber at
t = tp . Both are normalized to 1 (see the text for details). Vertical
bold blue lines divide the plot into domains (I, II, and III), where
the imaginary part of the atomic coherence has one sign (plus or
minus). Thin horizontal lines show the values of the two first extrema
of the field amplitude. The excitation scheme of the absorber, cut into
slices, and phase shifters (PSs) placed between them, are shown in
the bottom.

If b � γ , then evolution of the atomic coherence is well
approximated by the main part of the first term in the sum
in Eq. (19), which is

σeg(z,t) ≈ i�0t�(t)e−γ t J1(2
√

bt)√
bt

. (20)

The coherence σeg(z,t) is purely imaginary, since the radiation
field is in exact resonance. The sign of this coherence oscillates
with time t and distance z (since b = αzγ /2) according to the
Bessel function J1(2

√
bt).

We choose time tp satisfying the condition bltp � 1, where
bl = αlγ /2 and l is the coordinate of the output facet of the
sample. Spatial dependencies of the radiation field ��(z,tp)
(dotted line) and the imaginary part of the coherence σeg(z,tp)
(solid line) along the sample, if γ tp → 0 and bltp = 30, are
shown in Fig. 1. In this case ��(z,tp) and σeg(z,tp) are well
described by Eqs. (16) and (20), respectively. The plot of the
field amplitude is normalized to �0 and the atomic coherence
to �0tp; thus both are defined as nondimensional values, which
have the same maxima equal to 1.

In one’s mind the sample can be divided into several
domains such that in the neighboring domains the atomic
coherences have opposite phases. This phenomenon can be
understood with the help of the concept of Feynman et al.
[14], explaining how the light propagates in a linear regime
through a dielectric medium.

According to his concept, the radiation field at the output
of a finite-size sample can be considered as a result of
the interference of the input field, as if it would propagate
without interaction, with the secondary field radiated by the
linear polarization induced in the sample. The secondary
field is actually a coherently scattered field whose phase is
opposite to the phase of the incident radiation field. Destructive
interference of these fields leads to attenuation of the radiation
field at the output of the sample.

In Fig. 1 the sample is divided into three domains marked
by vertical lines, placed at coordinates z (in units of btp),
where σeg(z,tp) is zero. Below we refer to the coordinates of
the right borders of the domains I, II, and III as z1, z2, and z3,
respectively.

In domain I the imaginary part of the atomic coherence is
positive. Therefore the phase of the coherently scattered field
is opposite to the phase of the incident field, and the sum
of these fields, �(z,tp), is attenuated due to their destructive
interference. As a result, the sum field and atomic coherence
decrease with distance.

At some distance the sum field, �(z,tp), becomes zero.
However, this process has some inertia due to the energy
accumulation in the atomic excitation. Therefore, at a par-
ticular distance the scattered field becomes even greater than
the incident field, producing the phase change of the sum
field, �(z,tp). This is also confirmed by the wave equation (2),
rewritten in the retarded reference frame as

∂�(z,tr )/∂z = iαγ σeg(z,tr )/2. (21)

From this equation it is seen that if the imaginary part of
σeg(z,tr ) is positive, the spatial derivative of the sum field is
negative and this derivative becomes zero only if σeg(z,tr ) = 0,
which takes place at coordinate z1. Thus, before coordinate z1

the atomic coherence forces the sum field �(z,tp) to decrease,
and when the sum field becomes zero the atomic coherence
continues this tendency, making the field amplitude negative.

After the point where the sum field becomes negative, the
field in its turn tends to reverse the phase of the coherence,
bringing its amplitude to zero at z1 [marked by the first gray
(red) circle on the left in Fig. 1]. This process is oscillatory
and is repeated in the next domains.

According to Eqs. (16) and (20) [as well as Eq. (21)],
the absolute value of the sum field �(z,tp) reaches its local
maxima at coordinates where σeg(z,tp) = 0. Since at these
points the amplitude of the coherently scattered field takes
maximum values, we propose to shift the phase of the sum
fields simultaneously at the same points by π , including the
front face of the sample. Then we expect that in all domains
the incident and scattered fields will interfere constructively,
producing a pulse of large amplitude. The position of the phase
shifters (PS) in the sample, cut into slices at coordinates z1,
z2, and z3, is shown at the bottom of Fig. 1. Effectively, such a
phase shift of the sum fields will force the atomic coherences
to amplify the field along the whole sample coherently, i.e.,
we will cause effective phasing of the atomic coherences in all
domains shown in Fig. 1. The phases of the atomic coherences
in each domain will be −π/2 with respect to the fields incident
to the domain.
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III. DOMAIN I

Assume that at time tp > 0 the value of the coherence of
the particles, located at the output facet of the sample, reaches
its first zero value, σeg(l,tp) = 0. This condition is satisfied if
bltp = 3.67. By that time only domain I of atomic coherence
(see Fig. 1) is developed in the sample. At the same time we
instantly change the phase of the input field by π . Then the
incident field becomes in phase with the secondary (coherently
scattered) field. Their constructive interference should result
in a strong and short pulse.

To find the transients, induced by that phase shift, we
consider the incident radiation field �(0,t) as consisting of
two pulses, i.e.,

�1(0,t) = ��(0,t) − 2��(0,t − tp), (22)

where ��(0,t) = �0�(t) is the step pulse, defined in the
previous section. Then the output field is

�1(z1,t) = ��(z1,t) − 2��(z1,t − tp). (23)

Here the function ��(z1,τ ) is defined in Eqs. (11) and
(13), where b = b1 = αz1γ /2 and z1 = l. If b1 � γ , the
approximate equation (16) is valid, and then

�1(z1,t) = �0[�(t)e−γ tJ0(2
√

b1t) − 2�(t − tp)e−γ (t−tp)

× J0(2
√

b1(t − tp))]. (24)

From this equation we see that just after tp (t = tp + 0) the
amplitude of the output field is

�1(z1,tp) = �0[e−γ tpJ0(2
√

b1tp) − 2]. (25)

If γ tp � 1, then the maximum amplitude of the pulse is
�1(z1,tp) = −2.4�0, its phase is opposite to the phase of the
input field, and intensity is 5.76 times larger than the intensity
of the incident radiation field. The shape of the pulse is shown
in Fig. 2, where the intensity of the output field is plotted
without approximation (16) for different values of the decay
rate of the atomic coherence γ .
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FIG. 2. (Color online) The field intensity and the shape of the
pulse, generated at the output of the sample by the phase shift of the
radiation field, applied at the input at time tp satisfying the condition
bltp = 3.67. bl is the superradiant parameter of the sample. The
field intensity is normalized to |�0|2. The decay rates of the atomic
coherence are γ = 0.003bl (solid line in red) and γ = 0.3bl (dotted
line in blue).

IV. DOMAINS I PLUS II

In this section we consider the case if bltp = 12.3. Then,
by time tp two domains (I and II, see Fig. 1) are developed in
the absorber. We could cut the absorber of length l into two
slices of lengths z1 and l − z1, where z1 satisfies the relation
αz1γ tp/2 = 3.67. Below we define the parameters b1 and b2

for these slices, which are b1 = 3.67/tp and b2 = 8.63/tp.
Then, by definition, we have b1 + b2 = bl . We can make a gap
δ12 between these slices and place the phase shifters in front
of each slice (see the bottom of Fig. 1). When phase shifters
are off, the input and hence output fields for the second slice
acquire an additional phase factor exp(ikδ12) due to the gap
between slices. The distance between the slices can be quite
large to be able to place the phase shifter not touching the
absorbing slices. We assume that within the gap, where there
is no absorbing medium, the amplitude of the field does not
change and only its phase ϕ changes to ϕ + ikδ12. Therefore,
in the second slice the evolution of the field and the atomic
polarization is identical to that shown in Fig. 1, where this gap
is zero (δ12 = 0), except for the total phase shift, ikδ12, of both
the field and polarization. Below we neglect this phase factor,
since it does not affect the intensity of the output field from
the composite absorber.

The output field from the first slice of the composite
absorber, �1(z1,t), is described by Eq. (23), where the
cooperative rate b is b1. Due to the second phase shifter,
switched on at tp (see Fig. 1), the input field for the second
slice is �1(z1,t)[1 − 2�(t − tp)]. The explicit expression for
this field is

�π1(z1,t) = ��(z1,t)[1 − 2�(t − tp)] + 2��(z1,t − tp),

(26)

where the index π means that the phase of the field �1(z1,t)
is changed by π . Here we disregard the distance δ12 between
pieces and put its value equal to zero, since its contribution to
the intensity of the output field from the composite absorber
is zero for any value of δ12.

With the help of Eq. (9), one can calculate the radiation
field �2(z2,t) at the output of the second slice and obtain the
expression, which is reduced to

�2(z2,t) = ��(z2,t) + 2��(z2,t − tp)

− 2�(t − tp)�12(z1,z2,t,tp). (27)

Here the functions ��(z2,t) and ��(z2,t − tp) are defined in
Eq. (11), where the superradiant rate b is substituted by the
sum of the superradiant rates of the slices, i.e., bl = b1 + b2,
the gap between slices δ12 being omitted. These functions
describe those components of the output field from the second
slice, which are produced by the input fields ��(z1,t) and
��(z1,t − tp), respectively. Their derivation is given in the
Appendix. The function �12(z1,z2,t,tp) (valid for t ≥ tp) is

�12(z1,z2,t,tp) = ��(z1,t) − b2

×
∫ t−tp

0
��(z1,t − τ )e−γ τ j1(b2τ )dτ. (28)

It describes the transformation of the field �(t − tp)��(z1,t)
by the second slice of the absorber. The function j1(b2τ ) is
defined just after Eq. (13). Multiple integration in Eq. (28) can

013819-4



TRANSFORMATION OF SUBRADIANT STATES TO . . . PHYSICAL REVIEW A 90, 013819 (2014)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 |Ω2(l,t)|2 

b1t 

FIG. 3. (Color online) The field intensity at the output of the
composite absorber consisting of two slices. The π -phase shift of
the fields at the input of the first and second slices of the composite
absorber are applied at time tp satisfying the condition b1tp = 3.67,
where b1 is the superradiant rate of the first slice. The time scale is
normalized to this rate. The field intensity is normalized to |�0|2. The
decay rates of the atomic coherence are γ = 0.01b1 (solid line in red)
and γ = 0.1b1 (dotted line in blue).

be avoided if instead of Eq. (11) for ��(z1,t − τ ) one uses
Eq. (13).

Just after the phase shift of the fields (at time t = tp + 0),
the amplitude of the output field from the second slice is

�2(z2,tp) = ��(z2,tp) + 2��(z2,0) − 2��(z1,tp). (29)

If b1,2 � γ , then according to the approximate equation (16),
this amplitude is approximated as

�2(z2,tp) = �0{2 + e−γ tp [J0(2
√

(b1 + b2)tp)

− 2J0(2
√

b1tp)]}. (30)

If γ tp � 1, then for the chosen values of the superradiant
rates of the slices, i.e., b1 = 3.67/tp and b2 = 8.63/tp, the
amplitude of the output field is 3.1�0 and its intensity is
9.65 times larger than the intensity of the incident radiation
field. The shape of the pulse appearing at the output of the
composite absorber after the phase shift of the fields is shown
in Fig. 3, where the output field intensity is plotted according
to Eq. (27) for different values of the decay rate of the atomic
coherence γ .

V. THREE DOMAINS

If by time tp the superradiant rate of the absorber bl satisfies
the relation bltp = 25.87, then three domains are developed
inside the absorber. We divide such absorber in three slices
satisfying the relations b1tp = 3.67, b2tp = 8.63, and b3tp =
13.57, where bk = αlkγ /2, and lk is the thickness of the kth
slice, which is related to the coordinates zk of the domain
borders (see Fig. 1) as follows: l1 = z1, l2 = z2 − z1, and l3 =
z3 − z2. We make gaps between the slices and place phase
shifters between them and before the first slice.

In the previous section it was shown that after the π -phase
shift of the fields before the first and second slices, the output
field from the second slice �2(z2,t) is described by Eq. (27).
Due to its π -phase shift, produced between the second and

third slices by the phase shifter, the input field for the third
slice is

�π2(z2,t) = ��(z2,t)[1 − 2�(t − tp)] − 2��(z2,t − tp)

+ 2�(t − tp)�12(z1,z2,t,tp). (31)

With the help of Eq. (9), we calculate the amplitude of the
radiation field �3(z3,t) at the output of the third slice, which
is

�(z3,t) = ��(z3,t)+2�(t−tp)[A(t) + B(t) + C(t) + D(t)],

(32)

where

A(t) = ��(z1,t) − ��(z2,t) − ��(z3,t − tp), (33)

B(t) = −b2

∫ t−td

0
��(z1,t − τ )e−γ τ j1(b2τ )dτ, (34)

C(t) = −b3

∫ t−td

0
[��(z1,t − τ ) − ��(z2,t − τ )] e−γ τ

× j1(b3τ )dτ, (35)

D(t) = b2b3

∫ t−td

0
dτ1

∫ t−td−τ1

0
dτ2��(z1,t − τ1 − τ2)

× e−γ (τ1+τ2)j1(b2τ2)j1(b3τ1). (36)

Just after tp (t = tp + 0), the functions B(t), C(t), and D(t)
are zero. Therefore the amplitude of the output field at t = tp
takes the value

�3(z3,tp) = −2�0 + 2��(z1,tp) − 2��(z2,tp) + ��(z3,tp).

(37)

If γ tp � 1, then according to the approximate equation (16)
this amplitude is approximated as

�3(z3,tp) = �0{−2 + e−γ tp [2J0(2
√

b1tp)

− 2J0(2
√

(b1+b2)tp)+J0(2
√

(b1+b2+b3)tp)]},
(38)

and for the specified values of the parameters b1, b2, and b3

the amplitude of the output field from the composite absorber
is 3.65 times larger than the amplitude of the input field �0,
and its intensity is 13.36 times larger than the intensity of the
incident field. Thus, by the phase shift of the incident fields at
the inputs of the layers of the composite absorber we transform
the subradiant state of the atom-field system to a superradiant
state, which is realized in emission of a short and strong pulse.
The shape of the pulse is shown in Fig. 4 for different values
of the decay rate of the atomic coherence. The dependence of
the normalized maximum of the pulse intensity In, induced by
the phase shifts, on the number of slices n is shown in the inset
of Fig. 4(a) for the case γ tp � 1.

VI. DISCUSSION

Recently the idea of the transformation of a subradiant
state to a superradiant state was experimentally verified

013819-5
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FIG. 4. (Color online) The field intensity at the output of the
composite absorber consisting of three slices. The π -phase shift of
the fields at the input of all slices of the composite absorber are
applied at time tp satisfying the condition b1tp = 3.67, where b1 is
the superradiant rate of the first slice. The time scale is normalized to
this rate. The field intensity is normalized to |�0|2. The decay rates
of the atomic coherence are γ = 0.01b1 (a) and γ = 0.1b1 (b). The
dependence of the normalized maximum of the pulse intensity In,
induced by the phase shifts, on the number of slices n is shown in the
inset to (a) for the case γ tp � 1.

with γ -quanta propagating in the sandwich absorbers [15].
Mechanical displacement of odd slices of the composite
absorber (sandwich) by a half-wavelength of the radiation field
allowed the nuclear coherence along all slices to phase. Since
the wavelength of γ -quanta (86 pm for 14.4-keV photons) is
extremely small, such a displacement was easily implemented
by a polyvinylidene-fluoride (PVDF) piezopolymer thin film.
In the optical domain this method is inapplicable, since
the radiation wavelength is 3 orders of magnitude larger.
Therefore, in this paper different method of effective phasing
of the atomic coherence along the composite absorber is
proposed. In spite of this difference, comparison of Eq. (32)
with Eq. (45) in Ref. [15] shows some similarity of the results.
However, there is a qualitative difference in propagation of the
step pulse and exponentially decaying pulse through a thick
resonant medium if the decay rate of the latter is comparable
with the decay rate of the atomic coherence.

It is also interesting to notice that the pulses, produced by
the effective phasing of the atomic coherence, look similar
to the pulses, generated by stacking of coherent transients
[10,11,16,17]. Physically they are different, since the stacking
is produced by many pulses or phase switchings at different
moments of time. However, the value of the maximum
amplitude of the pulse, generated, for example, by two phase
switchings,

�max(t2) = �0{2 − 2e−γ t1J0(2
√

bt1) + e−γ t2J0(2
√

bt2)},
(39)

almost coincides with the maximum amplitude [Eq. (30)]
generated from the composite absorber consisting of two slices
if γ t1 � 1 and γ t2 � 1. The first term in Eq. (38) corresponds
to the transients induced by the second phase switching; the
second term describes transients induced by the first phase
switching, and the last term describes the transients induced
by the leading edge of the step pulse. Here b is the superradiant
rate of a single absorber, t1 is a time interval between the
first phase switching and the pulse generation, and t2 is a
time interval between the beginning of the step pulse and
the second phase switching. These intervals are chosen such
that the functions J0(2

√
bt1,2) have local extrema. If many

phase switchings of the field are applied at particular moments
of time, then, as estimated in Refs. [10,11], the maximum
intensity of the pulse is 156 times larger than the intensity of
the incident field. This is also applicable to the multilayered
absorber with a particular combination of thicknesses of the
layers.

VII. THE PRACTICALITY OF THE SCHEME WITH THE
SLICED ABSORBER

To implement experimentally the proposed scheme with
the sliced absorber, one needs an absorbing medium with large
optical thickness and a narrow absorption line. It is informative
to compare the conditions of phasing of the atomic coherence
in the sliced absorber with the conditions for the observation
of the stacking of coherent transients in a single absorber.
The first experimental observation of the stacking of coherent
transients was performed in a gas sample (HC15N) with a
single absorption line at millimeter wavelength with a width of
100 kHz [11]. Recently, stacking was also observed in the
optical domain in cold 85Rb atoms [17]. We can analyze
the conditions of generating the superradiant pulse in such
a cold gas with homogeneous linewidth γ = 3 MHz, which
corresponds to the dephasing time T2 = 53 ns. To realize the
scheme with three slices, we need to satisfy the condition
bltp = 25.87 at time tp when the phases of the fields at the
entrance of the slices are abruptly changed by π according to
Fig. 1. Here, bl = b1 + b2 + b3 is the superradiant rate of the
absorber consisting of three slices (see Sec. V).

A. The choice of optical thickness

If we take αl = 33 (as in Ref. [17]) for our composite
absorber, then tp = 83 ns, which is comparable with T2 =
53 ns. In this case, only 20% of the amplitude of the transients,
induced by the appropriate phasing of the absorber slices,
contribute, since, for example, for the absorber consisting of
two slices the factor of the last two terms in Eq. (30), describing
the maximum amplitude of the transients, is exp(−tp/T2) =
0.2. Thus, if αl = 33, then it is more effective to work with
a single sample, since about 80% of gain in the composite
absorber is lost due to irreversible dephasing.

Since the equations for the sliced absorber (30) and for
the stacking of coherent transients (39) are quite similar, this
problem with absorber of effective thickness αl = 33 is also
relevant to the experiment reported in Ref. [17], where the
observed transients were not too large.
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If we take αl = 150, then time tp, satisfying the relation
bltp = 25.87, appreciably shortens to the value tp = 18.3 ns,
which is much shorter than T2 = 53 ns. In this case the
lengths of the slices satisfy the relations αl1 = 21.3, αl2 =
50, and αl3 = 78.7, and their superradiant times are TR1 =
1/b1 = 4.986 ns, TR2 = 1/b2 = 2.121 ns, and TR3 = 1/b3 =
1.349 ns, respectively. The accuracy in preparation of slices
with a given length is not crucial. For example, 10% misfit
in the slice lengths with respect to those listed above reduces
the intensity of the superradiant pulse only by 7.5%. This is
because the maxima of the Bessel functions, which contribute
to the amplitude of the signal [see, for example, Eq. (30)], are
quite smooth functions of bn, where n = 1,2,3.

B. Arrangement of the absorbing slices

It is possible to place the absorbing slices in a row with
large gaps between them, where the phase shifters are placed.
As it was already mentioned above, these gaps do not affect
the evolution of the field and atomic polarization in the slices.
The distance between slices is to be taken into account only for
proper synchronization of the phase shifts of the fields at time
tp at the entrance into each slice. For example, for the third
slice this time is to be corrected to tp3 = tp + z3in/c, where z3in

is the distance between the front of the first slice and the front
of the third slice. If the longitudinal sizes of slices and gaps are
large enough, the retardation z3in/c could be appreciable with
respect to the time scale of the superradiant pulse formation.

C. Rate of the phase shift

The subradiant time TR = 1/bl of the composite absorber
with αl = 150 is TR = 0.7 ns. This time defines the rate of the
development of the coherently scattered field, which produces
the main part of the superradiant pulse after the phase shift
of the incident field. Since this time is quite short, the phase
shift must be fast. Otherwise, the coherently scattered field
will quickly follow any slow change of the field phase and no
pronounced transients will be observed after the phase switch.
A low-cost waveform generator with 3-ns rise time, used in
Ref. [17] for the step phase modulation, is too slow for our
scheme. Phase switching time should be at least no longer than
50 ps. Phase shifters with a switch time of 50 ps are practically
available (see, for example, Refs. [18,19]). To describe how
the phase-shift rate influences the signal, we model the phase
shift by the function

ϕ(t − tp) = tan−1

(
t − tp

τph

)
+ π

2
, (40)

where τph is a free parameter. We select such a value of τph

that in a time interval 50 ps the phase ϕ(t − tp) changes from
0.1π to 0.9π (see Fig. 5) and find that τph = 8 ps.

D. Calculation of the signal at the exit of the slices

If the phase of the field incident to the composite absorber
changes at time tp in accordance with Eq. (40), then the field
at the exit of the first slice of the absorber is

�ϕ1(z1,t) = �0�(t)

[
eiϕ1(t) − b1

∫ t

0
eiϕ1(t−τ )−γ τ j1(b1τ )dτ

]
,

(41)
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FIG. 5. (Color online) Time dependence of the phase variation in
time (bold solid line). The parameters are τph = 8 ps and tp = 25 ps.
Thin horizontal lines show the borders of the phase change within the
time interval 50 ps.

where ϕ1(t) = ϕ(t − tp). Below we adopt the values of the
relevant parameters as T2 = 53 ns, tp = 18.3 ns, TR1 =
1/b1 = 4.986 ns, and τph = 8 ps. Time dependence of this
field intensity is compared with that for the field, produced by
the instantaneous phase shift by π [Eq. (23)] in Fig. 6(a), where
only a short time window, demonstrating the formation of
the superradiant pulse, is shown. Due to the noninstantaneous
phase shift, the maximum of the pulse intensity decreases only
by 2.5%.

A phase shift of the field at the entrance of the second slice,
ϕ2(t) = ϕ(t − tp), results in

�ϕ1(z1,t)e
iϕ2(t). (42)

This field is transformed to

�ϕ2(z2,t) = eiϕ2(t)�ϕ1(z1,t) − b2

∫ t

0
eiϕ2(t−τ )−γ τ

×�ϕ1(z1,t − tp)j1(b2τ )dτ (43)

at the exit of the second slice. Time dependence of the field
intensity is compared in Fig. 6(b) with that for the field
generated at the exit of the second slice if instantaneous
phase shifts of the fields by π take place simultaneously at
time tp before the entrances of the first and second slices of
the composite absorber [Eq. (27)]. The superradiant time of
the second slice is TR2 = 1/b2 = 2.121 ns. The maximum
intensity of the superradiant pulse decreases by 5% due to
noninstantaneous phase shift of the fields entering the slices.

Phase shift, ϕ3(t) = ϕ(t − tp), of the field at the entrance
of the third slice,

�ϕ2(z2,t)e
iϕ3(t), (44)
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FIG. 6. (Color online) Time dependence of intensity of the field
In(t) at the exit of the nth slice (n = 1,2,3). I0 is the intensity of the
field incident to the composite absorber. The solid line (in red) shows
the intensity time dependence for the instantaneous phase shifts. Dots
(in blue) show the intensity if the phases change smoothly. Parameters
are defined in the text.

results in the following evolution of the field at the exit of the
composite absorber:

�ϕ3(z3,t) = eiϕ3(t)�ϕ2(z1,t) − b3

∫ t

0
eiϕ3(t−τ )−γ τ

×�ϕ2(z1,t − tp)j1(b3τ )dτ. (45)

Comparison of intensity of this field with the intensity
of the field generated by the instantaneous phase shifts
[Eq. (32)] is shown in Fig. 6(c), which demonstrates that the
noninstantaneous character of the phase shifts decreases the
intensity of the superradiant pulse by 10%.

E. Nonsimultaneous phase shifts

Below we analyze the case if the phases of the fields
in front of the slices are switched not simultaneously, for
example, because of bad synchronization of the phase shifters.
For simplicity, our consideration is limited by the absorber
consisting of two slices with effective superradiant rates b1

and b2. We assume that the phase shifts ϕ1(t) and ϕ2(t) take
place at times tp = t1 and tp = t2, respectively. Then the output
field from the composite absorber is described by Eq. (43). For
the stepwise phase shifts this equation is reduced to

�2(z2,t) = ��(z2,t) − 2{��(z2,t − t1)

+�(t − t2)[�12(z1,z2,t,t2)

− 2�12(z1,z2,t − t1,t2 − t1)]} (46)

if t2 > t1, and

�2(z2,t) = ��(z2,t) + 2[��(z2,t − t1) − �(t − t2)

×�12(z1,z2,t,t2)] (47)

if t1 > t2.
In both cases two distinguished pulses appear at t = t1 and

t = t2. The absolute value of the amplitude of the first pulse is
smaller than that of the second pulse. If t2 > t1 and γ t1,2 � 1,
then the amplitudes of the pulses are

�2(z2,t1) = �0[J0(2
√

(b1 + b2)t1) − 2], (48)

�2(z2,t2) = �0{J0(2
√

(b1+b2)t2)−2[J0(2
√

(b1+b2)(t2−t1))

+ J0(2
√

b1t2) − 2J0(2
√

b1(t2 − t1))]}. (49)

If t1 > t2 and γ t1,2 � 1, then

�2(z2,t2) = �0[J0(2
√

(b1 + b2)t2) − 2J0(2
√

b1t2)], (50)

�2(z2,t1) = ��(z2,t1) + 2[��(z2,0) − �12(z1,z2,t1,t2)].

(51)

Figure 7 shows the dependence of the intensity of the
second pulse on the time difference t2 − t1 if TR1 = 1/b1 =
4.986 ns, TR2 = 1/b2 = 2.121 ns, t1 = 18.3 ns, T2 → ∞, and
the phases are switched instantaneously. For the given values
of the parameters, the second pulse has maximum if t2 − t1 =

4 2 0 2 4 64

6

8

10

12

14I2max/I0

t2 - t1 (ns) 

FIG. 7. (Color online) Normalized maximum intensity of the
second superradiant pulse I2max versus t2 − t1, bold solid line. Thin
horizontal line shows maximum intensity for t2 = t1.
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FIG. 8. (Color online) Time dependence of the pulses induced by
nonsimultaneous phase shifts of the fields in front of two slices of
the composite absorber. The solid line (in red) corresponds to the
instantaneous phase shifts and the dotted line (in blue) corresponds to
the case of smooth phase shifts (during 50 ps). The time delay between
phase shifts is 1.8 ns. The moments of time of the phase shifts are
t1 = 16.5 ns, t2 = 18.3 ns in (a), and t1 = 18.3 ns, t2 = 16.5 ns in (b).

1.8 ns. Its intensity increases by 30% with respect to the
intensity of the pulse when t2 = t1. We assume that two effects,
i.e., phasing of the atomic coherence and stacking of the
coherent transients, together give the intensity enhancement
of the superradiant pulse. Figure 8 shows these pulses if the
coherence decay T2 = 53 ns and noninstantaneous phase shifts
with parameter τph = 8 ps are taken into account.

F. The switching time of the field

We considered the excitation of the composite absorber by
the step pulse, which is switched on instantly at time t = 0.
This is also an idealization. Let us suppose that the input pulse
is switched on slowly according to the expression

�(0,t) = �0�(t)(1 − e−t/τon ), (52)

where time τon is the rise time of the field amplitude. Then, for
example, at the exit of the first slice this field is transformed to

�(z1,t) = �0�(t)γ
∫ t

0

[
1 +

(
1 − γ τon

γ τon

)
e−(t−τ )/τon

]
× e−γ τ J0(2

√
b1τ )dτ. (53)

If, for example, the amplitude of the incident field [Eq. (52)]
reaches 90% of its maximum value within 3 ns, then τon =
1.3 ns. Comparison of �(z1,t) [Eq. (53)] with the output field
amplitude ��(z1,t), produced by the step pulse incident to the
first slice (TR1 = 1/b1 = 4.986 ns, T2 = 52 ns), is shown in
Fig. 9. It is seen that the front parts of these fields are different,
while the following wiggles approach each other very fast. For
this reason, we expect that the way of switching on the incident
pulse is not so important for the process of coherence phasing

0 20 40 60 80 1000.4
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0.4

0.6

0.8

Ω2(z1,t)/Ω0
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FIG. 9. (Color online) Time dependence of the fields at the exit
of the first slice. They are produced by the input step pulse (solid
line in red) and pulse whose front grows slowly according to Eq. (52)
(dots in blue). Details are in the text.

if τon � TR1. In real experiments it is preferable to use the cw
incident field with fast switching of its phase at t = 0 instead
of stepwise switching of the incident field at t = 0.

VIII. CONCLUSION

In this paper it is shown that during the step pulse
propagation through a thick resonant absorber, the atomic
coherence is formed into spatial domains with opposite phases.
As a result, a subradiant state is developed in the absorber. It
is proposed to divide the absorber into slices in accordance
with these domains and place phase shifters between them and
in front of the absorber. Fast phase switching of the incident
fields at the input of each slice transforms the subradiant state
to a superradiant state, seen as a strong and short pulse. The
intensity of the produced pulse is an order of magnitude larger
with respect to the intensity of the incident field, while in CRIB
and echo techniques the pulses produced are smaller.
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APPENDIX

To calculate the output field from the second slice of the
absorber if the input field is ��(z1,t) or ��(z1,t − tp), we
use Eq. (9), which is reduced, for example, for ��(z1,t) to the
expression

��(z2,t) = ��(z1,t) −
∫ t

0
��(z1,t − τ )

× e−γ τ

√
b2

τ
J1(2

√
b2τ )dτ. (A1)
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Then we apply the Laplace transform

F (p) =
∫ +∞

0
e−ptf (t)dt (A2)

to the function ��(z2,t). It can be done in the following
way. First we calculate the Laplace transform of the function
��(z1,t) in the form represented in Eq. (12). The Laplace
transform of the function

√
b1/tJ1

(
2
√

b1t
)

in the integral term
in Eq. (12) can be found with the help of the differentiation
theorem. This Laplace transform is

1 − e−b1/p. (A3)

Then the Laplace transform of the whole integral term in
Eq. (12) can be calculated with the help of the linear
transformation and integration theorems. The result of this
calculation is

1

p
[1 − e−b1/(p+γ )]. (A4)

Finally, the Laplace transform of ��(z1,t) is

��(z1,p) = 1

p
e−b1/(p+γ ). (A5)

Second, since the integral in Eq. (A1) is the convolution of
two functions, the Laplace transform of the right-hand side of
Eq. (A1) is

��(z1,p) − ��(z1,p)(1 − e−b2/(p+γ )). (A6)

Combining Eqs. (A5) and (A6), we obtain the Laplace
transform of ��(z2,t), which is

��(z2,p) = 1

p
e−(b1+b2)/(p+γ ). (A7)

Comparison of Eq. (A7) with Eq. (A5) gives the result that
transmission of the field ��(z1,t) through the second slice of
length l − z1 simply changes the argument z1 of the function
describing the field to z2 = l. This result is obvious, since
without phase shifters the light propagation through two slices,
having effective thickness parameters b1 and b2 and placed in
a row, is the same as the light propagation through the absorber
with the effective thickness parameter bl = b1 + b2.
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