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Localization and dynamics of the one-dimensional biharmonic nonlinear Schrödinger (NLS) equation in the
presence of an external periodic potential is studied. The band-gap structure is determined using the Floquet-Bloch
theory and the shape of its dispersion curves as a function of the fourth-order dispersion coupling constant β is
discussed. Contrary to the classical NLS equation (β = 0) with an external periodic potential for which a gap in
the spectrum opens for any nonzero potential, here it is found that for certain negative β, there exists a nonzero
threshold value of potential strength below which there is no gap. For increasing values of potential amplitudes, the
shape of the dispersion curves change drastically leading to the formation of localized nonlinear modes that have
no counterpart in the classical NLS limit. A higher-order two-band tight-binding model is introduced that captures
and intuitively explains most of the numerical results related to the spectral bands. Lattice solitons corresponding
to spectral eigenvalues lying in the semi-infinite and first band gaps are constructed. In the anomalous dispersion
case, i.e., β < 0 (where for the self-focusing nonlinearity no localized nonradiating solitons exist in the absence
of an external potential), nonlinear finite-energy stationary modes with eigenvalues residing in the first band gap
are found and their properties are discussed. The stability of various localized lattice modes is studied via linear
stability analysis and direct numerical simulation.
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I. INTRODUCTION

Linear and nonlinear optical wave propagation in nonhomo-
geneous media is a subject of great scientific importance with
far-reaching technological applications [1,2]. The equation
that governs such optical wave phenomena is a nonlinear
Schrödinger-like equation in the presence of an external
potential. In homogeneous media, linear waves typically tend
to disperse or diffract whereas nonlinearity tends to either
suppress or enhance this behavior, or leads to the formation of
complex coherent structures.

The presence of inhomogeneities, on the other hand,
can profoundly alter the wave dynamics and its linear and
nonlinear behavior strongly depends on whether the medium it
propagates in is periodic, quasiperiodic, or random. Generally
speaking, for linear waves propagating in periodic media
the spectrum is composed of an infinite union of closed
intervals (called bands) separated by gaps. The field density
(or intensity) exhibits a periodic pattern. The picture is quite
different if the medium is random. In this case the spectrum
is dense and the corresponding eigenfunctions are localized in
space, a phenomenon known as Anderson localization. Finally,
for waves propagating in quasicrystals (a state “in between”
the periodic and random), the spectrum could exhibit a fractal
structure with corresponding eigenfunctions that are localized
in space.

In periodic structures, wave dynamics is typically governed
by the interplay between dispersion and self-focusing (attrac-
tive) or self-defocusing (repulsive) nonlinearity. A delicate
balance between these two effects results in the formation
of a nonlinear coherent structure known in the literature as
a lattice soliton [3]. These nonlinear lattice waves were first
predicted in the discrete case (coupled waveguide arrays) by
Christodoulides and Joseph [4] and later in photorefractive
optical crystals [5–7]. Following these seminal papers, a
large body of research work has emerged reporting on the

existence and stability of various types of exotic lattice soliton
structures in periodic, quasicrystals, and random media [8–23].
Moreover, discrete propagation and lattice spatial solitons have
been also reported in nematic liquid crystals. In this regard,
the nonlocality gives rise to novel, rich, and controllable phe-
nomena such as all-optical Landau-Zener tunneling between
diverse Floquet-Bloch bands, switching, and beam steering in
tunable waveguide arrays [24–28].

Thus far, most of the studies on lattice solitons have concen-
trated on models combining external potentials (linear and/or
nonlinear), Kerr-like and/or photorefractive nonlinearities,
and a second-order diffraction or dispersion term with little
attention (if any at all) on localization in periodic structures
with higher-order dispersion or diffraction.

In this paper, we study wave propagation in a one-
dimensional time-periodic lattice governed by the classical
self-focusing and defocusing nonlinear Schrödinger (NLS)
equation in the presence of a fourth-order dispersion

i
∂E

∂z
+ 1

2

∂2E

∂t2
− β

∂4E

∂t4
− V (t)E + g|E|2E = 0 , (1)

where, in the context of optics, the complex-valued function
E(t,z) corresponds to the slowly varying amplitude of the
electric field, z is a scaled propagation distance, t is the
temporal variable, β is a coupling constant taken to be
either positive (normal dispersion) or negative (anomalous
dispersion), and g = ±1. In Eq. (1), V (t) represents a time
crystal, which, optically, can be formed (as an example) by
interfering two time-harmonic waves with different frequen-
cies. The spectral properties of the corresponding linearized
problem are identified and its band structure as a function of
the coupling constant β is determined. We find that in the
anomalous dispersion regime and for certain values of β a gap
in the spectrum opens only for potential strengths exceeding a
nonzero threshold value. This is contrary to the classical β = 0
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case where a gap in the spectrum (for the linear problem) opens
for any arbitrary strength of a periodic potential. Interestingly
enough, we note that as the potential strength increases the
geometric structure of the dispersion curves (i.e., curvature)
changes its shape from being concave up to concave down.
This is observed for both positive and negative values of β.

Some of these numerical findings are explained analytically
using a two-band discrete diatomic chain. Lattice solitons
corresponding to eigenvalues in the semi-infinite and first
gap are numerically constructed. Importantly, we have found
stationary localized states in the anomalous dispersion case
where in the absence of an external periodic potential (with
g = +1) they fail to exist. The question of stability of various
nonlinear modes is addressed.

The paper is organized as follows. In Sec. II we set up a
general framework for the construction of band structure using
Floquet-Bloch theory followed by a detailed numerical study
of the geometric shape of the dispersion curves. In Sec. III we
present a two-band discrete tight-binding model to intuitively
explain our results found in previous sections. Nonlinear lattice
modes with zero and multiple nodes are reported in Sec. IV
and their stability properties (based on linear stability analysis
as well as direct numerical simulations) are subsequently
discussed in Sec. V. Finally, we conclude in Sec. VI.

II. FLOQUET-BLOCH THEORY AND
SPECTRAL BAND GAP

We consider a lattice V (t) with fundamental period T

and denote by ω = 2π/T the period of its dual. To deter-
mine the properties of the band-gap structure, we linearize
Eq. (1) around the trivial zero solution by writing E(t,z) =
εF (t)e−iλz, |ε| � 1 and obtain, to leading order in ε, the
following spectral eigenvalue problem:

Wβ(∂t )F = λF , (2)

subject to the quasiperiodic boundary condition

F (t + T ) = F (t)eiμT , (3)

where μ is the Floquet exponent and

Wβ(∂t ) ≡ β∂4
t − ∂2

t /2 + V (t) . (4)

Solutions to Eq. (2) satisfying Eq. (3) are constructed using
Floquet-Bloch (FB) theory that enables one to decompose the
eigenfunctions F in the product form

F (t,μ) = G(t,μ)eiμt , (5)

where G(t) is a T periodic function. Equations (2) to (5)
constitute a periodic boundary value problem for the eigen-
functions G(t) and corresponding eigenvalues λ. When β = 0,

it is known that the spectrum of W0(∂t ) consists of an infinite
union of closed intervals called spectral bands separated by
gaps. As we will see later, the band-gap structure for the
β �= 0 case is highly nontrivial and its dispersion curves exhibit
fundamentally different shape (hence supporting new types
of lattice solitons) depending on whether the fourth-order
dispersion term is normal or anomalous.

A. Normal dispersion regime

First, we consider problem (2) for β > 0 in the nearly
lattice-free case for which the quantity εV ≡ max0�t�T |V (t)|
(a measure of the potential size) is very small compared to
1. In this limit, the band curves are approximately given (to
leading order in εV ) by

λn(μ) = 	(μ + ωn) , (6)

where 	(ξ ) ≡ ξ 2/2 + βξ 4 and ωn = nω. This expression is
valid for frequencies μ away from the Bragg points Pnm ≡
−ω(n + m)/2 defined by λn(Pnm) = λm(Pnm) with integers
n �= m. Close to and at the Bragg points sω/2, for s = ±1,

the correct form of the dispersion relation is obtained using a
first-order degenerate perturbation theory

λ(μ) ≈ V0 + ω2/8 + βω4/16 ± [
V 2

1 + γ 2(μ − sω/2)2]1/2
,

(7)

valid for frequencies satisfying |μ − sω/2| � 1 with γ ≡
ω(1 + βω2)/2. A few remarks are now in order. (i) The
measure of the gap at the edge of the first Brillouin zone (BZ),
i.e., μ = sω/2 is independent of β (at least to leading order in
εV ). (ii) Any small-enough periodic potential opens a gap in
the spectrum similar to what happens for β = 0. The curvature
of the dispersion bands (or the effective mass) near the edge
of the BZ does change and it increases as β gets larger. As
we shall see later, drastic changes take place for moderate and
large values of potential amplitudes leading to a change in the
curvature of the dispersion curves at the center (and edges) of
the band.

To systematically explore the shape of the band-gap
structure and verify the perturbation results, as well as to
highlight its new features, we shall consider throughout the
rest of the paper a periodic potential of the form

V (t) = U0 sin2

(
πt

2

)
, U0 � 0 . (8)

We have numerically solved Eq. (2) subject to condition (3)
using a Fourier collocation method outlined in Appendix A
(this method is also known in the physics literature as
partial wave expansion). For comparison, we have also used
spectral and finite difference differentiation matrices [29,30].
Figures 1(a) and 1(b) show the first three band gaps for β =
1/8. The shaded regions (referred to as FB or spectral bands)
represent eigenvalue and potential amplitude pairs (λ,U0) that
support bounded Bloch waves (5) with real μ, whereas the
unshaded areas (band gaps) correspond to complex values of
μ. The latter case can support localized lattice solitons that
bifurcate from the edge or center of the BZ [31,32]. Moreover,
the solid (dashed) lines trace the minimum (maximum) values
of each single band. As one can see from Fig. 1(a), the global
generic features of the dispersion curves in the shallow lattice
limit, resembles that of the β = 0 case, i.e., the immediate
opening of a gap. For comparison, we show in Fig. 1(c)
the β = 0 case. However, we point out that for moderate lattice
strengths a significant and unexpected behavior pertaining
to the geometric characteristics of the dispersion bands
occurs.
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FIG. 1. Floquet-Bloch bands for (a, b) β = 1/8, (c) β = 0 as
a function of U0. Regions I, II, and III are the semi-infinite, first,
and second band gaps, respectively. The solid (dashed) line shows
min λ(μ)[max λ(μ)].

The local curvature of the first band at the center (edges)
of the first BZ changes its sign from positive (negative) at
U0 = 5 to negative (positive) at U0 = 25 (see Fig. 2). The
critical value U cr

0 needed to flip the local concavity of the first
band depends, of course, on the fourth-order dispersion term:
the larger β is, the higher U cr

0 becomes. Similar observations
have been reported in [33] for the zigzag discrete model where
a change in the curvature of the dispersion band occurs only
at the edges of the BZ. This local behavior equally extends to
higher-order bands. For example, at U0 ≈ 80 the second band
does change its curvature at the center of the BZ, but this time
from negative to positive. It is worth noting that the sign of the
curvature at the first and second FB band minima and maxima
points does not change (see first and third rows in Fig. 2).

Generally speaking, the symmetry and periodicity of the
Floquet-Bloch modes determine the kind of lattice solitons
that will bifurcate from the band edges. With this in mind, we
show in Fig. 3 typical real-valued FB modes with periods 2 and
4 corresponding to μ = 0 and μ = ±π/2, respectively. When
approaching the first dispersion curve from the semi-infinite
(first) gap the band-edge location (in μ) depends on U0. Indeed,
in the shallow lattice limit, this happens at μ = 0(±π/2) and
the FB mode has period 2(4) as shown in Fig. 3(a) [Fig. 3(b)].
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FIG. 2. From top to bottom: First FB band, group velocity, and
curvature for β = 1/8 at various values of U0.
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FIG. 3. FB modes (unnormalized) for β = 1/8 and U0 = 5. The
first (second) row corresponds to the first (second) band.

However, this is not the case in the deep lattice limit, where
for the same β the band edge encountered from the semi-
infinite (first) gap is now located at μ = ±π/2(0) and the
new corresponding FB mode now has period 4(2). Similar
arguments related to the periodicity of the FB modes as well
as the flipping of the edges equally hold for the second band
[Figs. 3(c) and 3(d)]. As we shall see in Sec. IV, this switching
of the Bloch modes will result in the formation of new types of
lattice solitary waves bifurcating from the newly formed band
edge.

B. Anomalous dispersion regime

In this section we study the band structure for the negative
β case. We have identified two major peculiarities that have
no counterpart whatsoever in the β � 0 regime. First, in the
shallow lattice limit we have numerically found a nonzero
threshold value U th

0 dependent on β, below which there is no
gap in the spectrum. This is in sharp contrast to the β = 0
case for which a gap exists for any nonzero periodic potential.
Such behavior is clearly illustrated in Fig. 4. Our numerical
experiments seem to indicate that the threshold required to
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FIG. 4. (Top) Band structure for β = −1/10 where shaded
regions indicate spectral bands. The solid (dashed) line gives
min λ(μ)(max λ). Figs. (a),(b) and (c) depicts the first (solid line)
and second (dashed line) bands at U0 = 0.5,2.0835,5, respectively.
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FIG. 5. Band-gap structure for β = −1/8 and various values of
U0. Regions I, II, and III correspond to the semi-infinite, first, and
second band gaps, respectively. The solid and dashed lines indicate
minimum and maximum values of λ.

open a gap exists only for |β| � 2/π2 and changes as |β| gets
smaller.

To support our numerical findings, we resort to perturbation
theory assuming a shallow lattice limit and coupling constant
β satisfying |β|ω2 > 1. In this case, the curves λ0 and λ−1

intersect at the point μ = ω/2. Inspecting Eq. (7) at that
point shows that there exists β∗(ω) > 0 for which ω2/8 −
|β|ω4/16 > λ0(0) for any |β| < β∗(ω) (recall that V0 and V1

are arbitrarily small), hence no global gap exists. We would
like to point out that the lack of a global gap for small potentials
is reminiscent of the two-dimensional linear Schrödinger
equation [∂2

x + ∂2
y + V(x,y)]� = E� with periodicV where a

gap in the spectrum exists only if max(V) > Vth. So in essence,
there is a “trade-off” between dimensionality and higher-order
dispersion. The full range of eigenvalues versus potential
amplitudes is shown in Fig. 5 for β = −1/8. The second
interesting property we have observed is the flattening-out and
local concavity change of the second band at moderate values
followed by a change in the first band at higher U0. Note
that this is the opposite of what happened in the β > 0 case.
In particular, Fig. 6 shows a zoom-in of the band dynamics
at the center of the BZ. The second dispersion band evolves
from a V-shaped curve at moderate potential values to a single
hump-like form at higher strengths.
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FIG. 7. FB modes (unnormalized) for β = −1/8 and U0 = 10.

The first (second) row corresponds to the first (second) band.

While the band curves for the anomalous case change
drastically in comparison with β > 0, the FB modes, on the
other hand, seem to largely preserve their symmetry properties
and periodicity at the center of the BZ with a slight difference
in parity at the edge of the BZ (see Fig. 7 right column).

III. TIGHT-BINDING LIMIT: HIGHER-ORDER
DIATOMIC CHAIN

In the preceding sections, some of the intriguing struc-
ture of the dispersion band curves were obtained in the
moderate to deep lattice regime. It is in that limit where
part of the previous results can be intuitively understood
and explained using a simplified linear discrete two-band
tight-binding model. The configuration we have in mind is
shown in Fig. 8. The basic unit cell is composed of two
types of “atoms” periodically extended along a lattice of
integer index n. The nth position of both atoms is labeled an

and bn, respectively. We assume that the coupling constants
between nearest neighbor {(an,bn),(bn−1,an)} and next-nearest
neighbor {(an,an+1),(bn,bn+1)} for n ∈ Z are given by 1,c >

0,κ1,κ2, respectively.
The equations describing wave propagation in such a

linearly coupled diatomic chain are given by

i
dan

dz
+ bn + cbn−1 + κ1(an+1 + an−1) = 0 , (9)

i
dbn

dz
+ can+1 + an + κ2(bn+1 + bn−1) = 0 . (10)

FIG. 8. (Color online) Schematic illustration of the diatomic
lattice model. Shown are the coupling constants between different
sites.
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FIG. 9. Dispersion relation (13) for c = 2,κ1 = 1/2, and κ2 = (a)
1/10, (b) 1/2, (c) 1, and (d) 3.

We then assume a plane-wave solution, the so-called discrete
Floquet-Bloch mode, of the form

an(z) = AeiQne−iνz , (11)

bn(z) = BeiQne−iνz , (12)

where A,B are constant amplitudes, ν is the longitudinal wave
number (spatial eigenenergy), and Q is the real Bloch mo-
mentum that lies within the reduced BZ [−π,π ]. Substituting
Eqs. (11) and (12) into Eqs. (9) and (10) we find a nontrivial
solution to exist only if the wave number ν satisfies

ν±(Q) = −(κ1 + κ2) cos(Q) ± �1/2(Q) , (13)

�(Q) = (κ1 − κ2)2 cos2(Q) + 2c cos(Q) + c2 + 1 . (14)

Notice that ν± admits the symmetries

ν±(−κ1, − κ2) = −ν∓(κ1,κ2) , (15)

ν±(κ1,κ2) = ν±(κ2,κ1) . (16)

Throughout the rest of the paper, we fix the model parameters
to, for example, c = 2 and κ1 = 1/2 and consider only positive
values of κ2. Our results can be extended to the negative κj ,j =
1,2 case by using the symmetry relation (15). The dispersion
relation ν± is shown in Fig. 9 for various values of κ2. It is
obvious that there is a profound change in the local geometric
structure of the ν+ branch shape (i.e., the flipping of curvature),
whereas the graph of the lower part (ν−) is almost unaffected.
We remark that if κ1 = −1/2 and κ2 is negative, then the sign
of the curvature of the lower band changes as |κ2| increases,
leaving the upper band unaffected. Similar qualitative behavior
was observed in Secs. II A and II B where a “reorientation” of
the first and second bands took place at moderate-to-large
potential amplitudes (near the tight-binding limit). To shed
more light on the local behavior of the dispersion relation we
examine its long wave limit when Q → 0. In this case, Eq. (13)
yields

ν± ≈ a±
0 + a±

2 Q2/2 , (17)
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FIG. 10. Group velocity (20) for c = 2,κ1 = 1/2 and κ2 = (a)
1/10, (b) 1/2, (c) 1, and (d) 3.

where

a±
0 = −(κ1 + κ2) ± [(κ1 − κ2)2 + (1 + c)2]1/2 , (18)

a±
2 = κ1 + κ2 ∓ c + (κ1 − κ2)2

[(κ1 − κ2)2 + (1 + c)2]1/2
. (19)

Scrutinizing the expression for a−
2 shows that the lower

dispersion branch ν− always resembles an up-facing parabola
with a positive-definite curvature whereas the upper one (ν+)
changes its local curvature from negative to positive at some
κ2 = κ∗

2 (c,κ1). Further increasing the value of κ2 results in
disappearance of the gap and it remains closed for all larger
values of κ2 [see Fig. 9(d)]. This is, of course, unrealistic since
this happens when the next-nearest neighbor coupling κ2 is
more dominant than the nearest-neighbor ones.

The group velocity and group velocity dispersion are readily
obtained from Eq. (13) and are given, respectively, by

dν±
dQ

= sin(Q)(κ1 + κ2) ± 1

2
�−1/2�Q , (20)

d2ν±
dQ2

= cos(Q)(κ1 + κ2) ± 1

2
�−1/2

(
�QQ − 1

2
�−1�2

Q

)
,

(21)

�Q = − sin(2Q)(κ1 − κ2)2 − 2c sin(Q), (22)

�QQ = −2 cos(2Q)(κ1 − κ2)2 − 2c cos(Q). (23)

As is expected, the curvature of the lower branch ν− remains
positive at the center of the BZ and negative at the edges. On the
other hand, at Q = 0(±π ) the upper branch’s group velocity
dispersion changes its sign from negative (positive) to positive
(negative). These discrete group velocity and curvature shown
in Figs. 10 and 11, respectively, qualitatively agree with the
continuous cases discussed in Figs. 2 and 6.

It can be seen in Fig. 11 that the slope of the lower branch
group velocity dispersion is positive for −π < Q < 0 and
negative for π > Q > 0. The upper branch clearly changes
its group velocity dispersion from negative to positive at the
center of the BZ.
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IV. LATTICE SOLITONS

In this section we find gap soliton solutions to Eq. (1) for
the nonlinearity coefficient g = ±1 and eigenvalues residing
in either the semi-infinite or first band gaps identified in
Secs. II A and II B. Families of both positive and negative β

solutions corresponding to moderate potential amplitudes 0 <

U0 � 10 as well as large amplitudes U0 � 25 are numerically
constructed using the fixed-point spectral renormalization
scheme outlined in Appendix B. Recall that in the absence
of an external potential it is known [34,35] that in the
anomalous dispersion regime (β < 0) with g = +1 localized
nonradiating solutions to Eq. (1) do not exist. Here, we show
that the presence of a periodic potential can “trap” the radiation
and lead to self-induced localized nonradiating stationary
modes with negative β. The corresponding soliton eigenvalue
depends on the sign of g. For g = +1 they lie in the first gap,
whereas for g = −1 they reside either in the semi-infinite or
first gap. One interesting aspect of our lattice solitons is that
certain family members bifurcate from band edges that have no
counterpart whatsoever in the classical limit (β = 0). Similar
to the classical NLS limit [36], the present band-gap solutions
happen to bifurcate from band edges where sgn(λ′′) is the same
as g. In addition, we find two bifurcating families of soliton
solutions: one on-site (centered around a lattice minimum)
and the other off-site (centered around a lattice peak). For the
classical case, all ground-state solutions are on-site [36]. We
remark that lattice solitons also exist in nematic liquid crystals
in which their structure and dynamics exhibit rich behavior
due to the presence of nonlocality [24–28].

A. Normal dispersion regime

1. Shallow-to-moderate potentials

In Fig. 12 we show typical lattice solitons for β = 1/8
and potential amplitude U0 = 5 corresponding to various
eigenvalues residing in the semi-infinite and first band gap.
The solutions shown in Figs. 12(b), 12(d), and 12(e) bifurcate
from the corresponding band edge inheriting the symmetries,
parity, and fine structure of the Bloch functions depicted
in Figs. 3(a), 3(d), and 3(b), respectively. These localized
solutions are all on-site (even or odd about t = 0). We have
already seen in Sec. II A for the shallow lattice limit and in the
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FIG. 12. Lattice solitons for β = 1/8 and U0 = 5 (see Fig. 13
for the location of the corresponding eigenvalues in the power
curve). In panels (a), (b), (c), and (d), g = +1 at eigenvalues
λ = −1,2.2,3.3,5.4, respectively. Panels (e) and (f) correspond to
g = −1 and eigenvalues λ = 3.5,5.6, respectively. Vertical lines
indicate potential minima.

normal dispersion regime that the linear dispersion bands and
Floquet-Bloch modes largely resemble the β = 0 case. Thus it
is no surprise that all the modes shown in Fig. 12 look similar
to those found in [32,36]. Near the bifurcating band edges
the solutions are low-amplitude and broad (occupying many
lattice sites). Far from the bifurcating band edge the lattice
solitons are highly localized (occupying few lattice sites). The
power curves versus soliton eigenvalue is shown in Fig. 13 for
g = ±1. These curves trace a continuous one-parameter (i.e.,
λ) family of solutions for different g and band gaps. Lattice
solitons in the same family typically inherit characteristic
properties of the Bloch wave parent they bifurcate from, e.g.,
symmetry, parity, and fine-structure periodicity. The right solid
line traces the first gap soliton family bifurcating from the left
edge of the second band, whereas the dashed line follows
a different family of modes bifurcating from the first band.
Finally, the left solid curve shown in Fig. 13 traces a new
family of solutions bifurcating from the left side of the first
band into the semi-infinite gap.
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FIG. 13. Power curves for β = 1/8 and U0 = 5. Each point on
the solid (g = +1) and dashed (g = −1) lines represents a soliton
solution. Typical profiles of such solutions are shown in Fig. 12.
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FIG. 14. Lattice solitons for β = 1/8 and U0 = 25 (see Fig. 15
for the location of the corresponding eigenvalues in the power
curve). In panels (a), (b), (c), and (d), g = +1 at eigenvalues
λ = 3,7.6,9.1,19.8, respectively. Panels (e) and (f) correspond to
g = −1 and eigenvalues λ = 9,19.9, respectively. Vertical lines
indicate potential minima.

2. Large potentials

Next we consider families of lattice solitons in the large
potential regime (U0 = 25). Recall from Sec. II A that in this
limit the first band changed its geometric characteristics. As
a result, the solitons will bifurcate from the edge (rather than
the center) of the BZ when approached from the semi-infinite
gap. Alternatively, at the first band the lattice modes will now
bifurcate from the center of the BZ (rather than the edges)
if approached from the first gap. This unusual behavior of
the band structure will evidently have to affect the bifurcating
soliton family. Indeed Fig. 14 shows new solutions with no
counterpart whatsoever in the β = 0 case. For example, the
soliton in Fig. 14(b) is fundamentally different than that of
Fig. 12(b), in spite of the fact they both bifurcate into the
semi-infinite gap. The latter is positive-definite and has a two-
periodic fine structure, whereas the former is sign-indefinite
and four-periodic [and vice versa for the solutions in Figs. 14(e)
and 12(e)]. A further consequence of the first band-gap
reorientation is that the first gap family of solutions does
not preserve their fast scale periodicity in moving from one
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FIG. 15. Power curves for β = 1/8 and U0 = 25. Each point on
the solid (g = +1) and dashed (g = −1) lines represents a soliton
solution. Typical profiles of such solutions are shown in Fig. 14.

band edge to the other. For instance, the bifurcating solution
Fig. 14(d) has four-periodic fine structure while the soliton
in Fig. 14(c) (belonging to the same family) is two-periodic
near the opposite band edge where the corresponding FB mode
has the same period. The lattice soliton existence curves (also
called power curves) corresponding to Fig. 14 are shown in
Fig. 15.

B. Anomalous dispersion regime

1. Shallow-to-moderate potentials

In the preceding section, we have seen that most of the
interesting features of the lattice solitons came from the
unusual geometric structure of the dispersion bands (primarily
the locations of the band edges). While most of the intriguing
behavior of the nonlinear modes will naturally extend to the
anomalous dispersion regime, one important difference is that
here we find localized nonradiating solutions (for g = +1)
that cease to exist when U0 = 0. Figure 16 shows such and
other solutions for eigenvalues residing in the semi-infinite
and first gap where β = −1/8 and U0 = 10. The solutions
depicted in Figs. 16(a), 16(c), and 16(f) bifurcate from the
corresponding Bloch modes shown in Figs. 7(b), 7(d), and 7(a),
respectively. These solutions bear little resemblance to those
found when β > 0. The most striking feature we have observed
is the off-site (around t = 1) structure of certain solution sets
[see Figs. 16(a), 16(b), 16(e), and 16(f)]. Recall that in the
previous section (β > 0) and earlier work [32,36] (β = 0)
all the ground-state solutions found are on-site. It appears
that these solitons acquire the fine structure (periodicity)
of the corresponding Bloch waves, but take different Bloch
symmetries. For instance, the Bloch mode in Fig. 7(b) is indeed
odd around t = 0, however, it is also even about t = 1. The
lattice solitons shown in Figs. 16(a), 16(b), 16(e), and 16(f)
take even symmetries around the lattice maximum t = 1,

whereas Figs. 16(c) and 16(d) have even symmetry centered
at t = 0. Similar to the first gap soliton family (β > 0), the
bifurcating solution in Fig. 16(c) has a four-periodic fast scale
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FIG. 16. Lattice solitons for β = −1/8 and U0 = 10 (see Fig. 17
for the location of the corresponding eigenvalues in the power
curve). In panels (a), (b), (c), and (d), g = −1 at eigenvalues
λ = 8.2,11,3.2,6.1, respectively. Panels (e) and (f) correspond to
g = +1 and eigenvalues λ = 3.2,6.3, respectively. Vertical lines
indicate potential minima.
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FIG. 17. Power curves for β = −1/8 and U0 = 10. Each point
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solution. Typical profiles of such solutions are shown in Fig. 16.

while the solution in Fig. 16(d) is in the same family, yet has
period 2. The soliton existence curve is shown in Fig. 17 for
eigenvalues lying inside the semi-infinite and first band gaps.
It should be noted that these solutions bifurcate from band
edges whose curvature sign equals that of g. The family of
solutions with g = −1 (corresponding to the left solid line
in Fig. 17) bifurcate from the right side of the second band
and the solutions with g = +1 (shown by the dashed line in
Fig. 17) bifurcate from the left edge of the first band. Finally,
note for g = −1 a solution family is traced in the semi-infinite
gap (as shown by the right solid line in Fig. 17) from the right
edge of the first band.

2. Large potentials

Finally, we discuss here the formation of coherent structures
in the deep lattice limit (U0 = 45). In Sec. II B, we saw that in
this regime the second band changed its local curvatures at the
center and edges of the BZ. Thus, we expect all lattice solitons
with corresponding eigenvalues near the second band edge
to admit alternative features, similar to what occurred in the
normal dispersion case. We again emphasize that most of our
findings share no similarities with either the classical NLS limit
or the positive β case. Indeed, Fig. 18 depicts representatives
from each family. The solution shown in Fig. 18(c) now
bifurcates from the second band at the center of the BZ (rather
than the edge) and consequently is now off-site (centered
around t = 1) with odd parity and a two-periodic fine structure.
We also see the solution in Fig. 18(e) has fine period 2
as opposed to the four-periodic solution in Fig. 16(e). We
remark that many of the lattice soliton characteristics can be
understood from the power curves shown in Fig. 19.

V. STABILITY ANALYSIS

Having found a large families of lattice soliton solutions we
turn our attention in this section to the question of stability. We
carry out a numerical linear stability analysis and supplement
it with direct numerical simulations. To determine the linear
stability properties of a lattice soliton family member (β �= 0)
we consider small perturbations on solutions to Eq. (1) of the
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FIG. 18. Lattice solitons for β = −1/8 and U0 = 45 (see Fig. 19
for the location of the corresponding eigenvalues in the power
curve). In panels (a), (b), (c), and (d), g = −1 at eigenvalues
λ = 36.3,46,16.2,34.8, respectively. Panels (e) and (f) correspond to
g = +1 and eigenvalues λ = 16.5,35.3, respectively. Vertical lines
indicate potential minima.

form

E(t,z) = [φ(t) + χ (t,z)]e−iλz , (24)

where the “size” of |χ | is much smaller than that of φ.

Linearizing around the solution φ(t) we find, to leading order
in χ , the stability equation

i
∂χ

∂z
+ λχ + 1

2

∂2χ

∂t2
− β

∂4χ

∂t4
− V (t)χ

+ gφ2χ∗ + 2g|φ|2χ = 0 . (25)

This evolution equation governs the perturbation χ (t,z) subject
to a localized initial condition χ (t,0) and boundary conditions
χ → 0 as |t | → ∞.

Let us for now assume that the evolution of this perturbation
is exponential in z, i.e.,

χ (t,z) = [v(t) + w(t)]eσz + [v∗(t) − w∗(t)]eσ ∗z . (26)
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FIG. 19. Power curves for β = −1/8 and U0 = 45. Each point
on the solid (g = −1) and dashed (g = +1) lines represents a soliton
solution. Typical profiles of such solutions are shown in Fig. 18.
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Substituting Eq. (26) into Eq. (25) results in the following
eigenvalue problem:

iMY = σY , (27)

which can be solved for the eigenvalue σ and its corresponding
eigenfunction Y ≡ (v,w)T . Here, we define

M =
(

M1 −Wβ + M2

−Wβ + M3 −M1

)
,

M1 = g

2
[φ2 − (φ∗)2],

M2 = λ + 2g|φ|2 − g

2
[φ2 + (φ∗)2],

M3 = λ + 2g|φ|2 + g

2
[φ2 + (φ∗)2]. (28)

The nonlinear mode φ(t) is said to be exponentially unstable
if σ has a nonzero real component, neutrally stable if σ is
purely imaginary, and oscillatory unstable if σ ∈ C. Since all
the eigenmodes φ(t) we found in the previous section are
real-valued, by symmetry arguments, if σ is an eigenvalue of
Eq. (27) with eigenfunction Y , so is −σ ∗ with corresponding
eigenfunction Y∗.

The standard direct approaches to numerically solving
Eq. (27) are to truncate the domain on some large grid and
represent the derivatives by differentiation matrices [29,30]
or instead to represent the functions in terms of their
respective Fourier series [37]. However, it is known in
the literature [38,39] that the discretization of continuous
eigenvalue problems (particularly nonsymmetric) can lead to
the generation of spurious eigenvalues. Alternative approaches
include iterative schemes [40] as well as the Evans function
method [36,41–43]. Theoretical approaches to characterize the
spectral properties of Eq. (27) (β = 0) have been intensively
studied [44–46]. Here we address the question of stability in
three different manners: (i) integrate Eq. (25) using a random
localized initial condition; (ii) solve Eq. (27) via standard
discretization methods; and (iii) monitor the nonlinear evo-
lution of an initially perturbed solution to Eq. (1) through
direct numerical simulation (DNS). All the results presented
below concerning the computation of the unstable eigenvalues
σ are based on the Fourier collocation method and found to
agree well with the spectral or finite-difference differentiation
matrices used to approximate all derivatives. We use explicit
fourth-order schemes to integrate in z, either by a spectral
Runge-Kutta or split-step Fourier method.

A. Normal dispersion case

To begin with, we remark that all sufficiently low-intensity
solutions with eigenvalues λ close enough to any bifurcating
band edge (regardless of the values for β,g, and U0) are
exponentially stable, in the sense of Eq. (26). Intuitively
speaking, these are broad, low-amplitude solutions nearly
corresponding to linear-bounded Bloch waves. Consequently,
the nonlinear terms appearing in Eq. (27) can be neglected so
that λ is nearly in the spectrum of Wβ, implying σ ≈ 0. With
this in mind, we shall consider only cases where the soliton
eigenvalues are away from any bifurcating band edge. Also,
we present stability results only for a representative of each
soliton family rather than scanning individual cases.

FIG. 20. (Color online) (a) Lattice soliton φ(t) given in Fig. 14(a)
with max |φ| ≈ 2.73. (b) φ(t) + χ (t,0) where χ (t,0) is the pertur-
bation given in Eq. (29) for one realization of randomness and
ε = 0.1. (c) Spectrum of the linear stability eigenvalue problem (27)
corresponding to the lattice soliton in panel (a). (d) Dynamic stability
obtained by direct numerical simulation using Eq. (1) with initial
condition shown in panel (b).

Now, consider the family of solutions corresponding to
β = 1/8 shown in Figs. 12 and 14. First, we present stability
results concerning the semi-infinite gap solution depicted
in Fig. 14(a). We have also obtained stability results (not
shown here) for the soliton shown in Fig. 12(a) and found
similar conclusions to the former case. The spectrum of
the eigenvalue problem (27) is shown in Fig. 20(c). It is
located entirely on the imaginary axis (thus the lattice mode
is exponentially or neutrally stable) and the corresponding
eigenfunctions are bounded and oscillatory. To extend the
stability analysis beyond the linear regime we resort to direct
numerical simulations. To this end, we initially seed the soliton
with a random and localized perturbation in the form

χ (t,0) = ε max
τ

|φ(τ )|δr (t)e−t2/50 , (29)

and monitor its evolution using Eq. (1). Here, ε is a small
positive parameter and δr (t) is a random function of t chosen
as follows. Upon discretizing t , i.e., t → tj , the function δr (t)
is replaced by δr (tj ), which is defined at the grid points tj by a
random number uniformly distributed in [0,1]. All results were
performed for one realization of the random function δr (t).
A typical perturbed semi-infinite gap solution along with its
stable nonlinear evolution are shown in Fig. 20. The random
perturbation seems to be completely washed out and the input
beam persists for a relatively long distance. Our results are
consistent with the β = 0 case where on-site lattice solutions
were also found to be linearly and nonlinearly stable [32,36].
Thus, one could conclude that the addition of a normal fourth-
order dispersion does not seem to cause any drastic deviation
regarding the stability properties of these lattice solitons.

When numerically solving eigenvalue problem (27) for
lattice solitons corresponding to eigenvalues in the first band
gap, spurious eigenvalues seem to emerge. Therefore, we adopt
instead the dynamics approach to linear stability and simulate
Eq. (25) subject to initial condition (29). Moreover, we shall
use the quantity maxt |χ (t,z)| as a guiding measure for the
development of any instability or the lack thereof. In particular,
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FIG. 21. (Color online) Dynamical evolution of the linear stabil-
ity problem (25) with initial random perturbation given in Eq. (29)
for β = 1/8. (a, b) correspond to soliton solutions depicted in
Figs. 12(f) and 14(f), respectively, for g = −1. (c, d) for solutions
shown in Figs. 12(c) and 14(c), respectively, with g = +1. A linear
least-squares fit (dashed line) is also shown with approximate slopes
of (a) 0.15, (b) 2.3, (c) 0.041, and (d) 0.28. The logarithm is base 10.

we focus here on moderate potentials (for g = −1) with the
solution shown in Fig. 12(f) that corresponds to eigenvalue λ

deep inside the first gap. As a reminder, this soliton is centered
at a lattice minimum. Figure 21(a) shows the dynamics
evolution of the quantity maxt |χ (t,z)| as a function of z. As
is evident, it grows almost at a linear rate (on a linear scale)
suggesting an algebraic type of instability (for convenience, a
linear least-squares fit is applied to the numerical curve). This
can be thought of as a weak instability and its fate for large z

would eventually be determined by nonlinear effects that could
either enhance or further weaken this instability. We point out
that previous works related to linear stability of lattice solitons
for the classical NLS equation (β = 0) [31,47] have found
solutions similar in shape to ours to be weakly exponentially
unstable [i.e., 0 < Re(σ ) � 1]. Those results were obtained
using direct discretization methods for Eq. (27) with β = 0. In
essence, the normal higher-order dispersive effects seem not
to significantly alter the stability properties of our soliton in
comparison to its classical counterpart. To supplement our
findings and further study the large z nonlinear dynamics
of the soliton we resort to direct numerical simulations.
Figure 22 shows the nonlinear evolution of the soliton given
in Fig. 12(f) perturbed by a random localized wave in the
form of Eq. (29). One immediately notices that this solution
maintains a coherent structure for relatively long distances
and does not breakup. This further suggests that this algebraic
instability is indeed weak and probably is being suppressed by
the presence of the nonlinearity. Similar instability trends have
been observed as well for the lattice soliton with large potential
amplitude shown in Fig. 14(f). It also seems to grow at a
polynomial rate [see Fig. 21(b)]. Direct numerical simulation
seems to support these findings and indicate, as shown in
Fig. 22, that the lattice mode resists the random perturbation
and maintains its near original form up to z = 100.

Finally, we address the issue of stability related to the
gap solitons shown in Figs. 12(c) and 14(c), corresponding
to g = +1. Notice that both solitons have odd parity and

FIG. 22. (Color online) Direct numerical simulation of the lattice
soliton shown in Fig. 12(f) with U0 = 5, max |φ| ≈ 2.01 (left) and
Fig. 14(f) with U0 = 25, max |φ| ≈ 3.94 (right). For both panels the
random perturbation is given by Eq. (29) with ε = 0.1 and g = −1.

are centered at a potential minimum with localization length
decreasing as a function of U0. Simulating Eq. (25) with the
initial condition given in Eq. (29) reveals that the quantity
log maxt |χ (t,z)| measured for both solutions grows linearly
in a semilog scale (base 10); see Figs. 21(c) and 21(d). The
instability growth rates are readily obtained from a least-
squares fit and are approximately given by 0.041 [Fig. 21(c)]
and 0.28 [Fig. 21(d)]. The deep lattice soliton is seen to be
profoundly more unstable (have a larger growth rate value)
compared to its shallow lattice counterpart. To shed more
light on the dynamics of the instability we again resort to
direct numerical simulations where both solitons are perturbed
using the random input (29). Figure 23 reveals a rich internal
dynamics for both modes. Most notable is the nonlinear
evolution of the soliton residing on the deep lattice where a
breakup of the soliton occurs at an early stage of the nonlinear
instability. However, this is not the case with the shallow lattice
soliton where it seems to disintegrate at a much later distance.
This dynamical instability scenario is notably different than the

FIG. 23. (Color online) Direct numerical simulation of the lattice
soliton shown in Fig. 12(c) with U0 = 5, max |φ| ≈ 2.27 (left) and
Fig. 14(c) with U0 = 25, max |φ| ≈ 4.32 (right). For both panels the
random perturbation is given by Eq. (29) with ε = 0.1 and g = +1.
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previous gap lattice soliton one (g = −1) where no significant
instability was observed. We next point out an interesting
link between the stability results shown in Fig. 21 to those
in Fig. 23. The growth rate in Fig. 21(d) is roughly seven
times larger than that in Fig. 21(c). Notice now that the
dramatic onset of instability shown in Fig. 23 for U0 = 5
occurs approximately seven times later (z ≈ 14) than when
U0 = 25 (z ≈ 2). Due to randomness, each simulation run has
a different initial condition with form induced from Eq. (29),
yet the linear instability growth rates from Eq. (25) agree
quite well with the relative nonlinear instability counterpart.
The large z dynamics of both solitons is degeneracy into
an alternating pattern of pulses centered at a lattice site.
Similar behavior attributed to oscillatory instabilities (σ ∈ C)
have been reported in the classical case [31,32]. It was
shown in [36,48] that self-focusing first gap solutions display
oscillatory instabilities when at least one of the sidebands,
λ ± Im(σ ), lies inside a spectral band. It should also be noted
that given a strong-enough perturbation the solution can jump
to other lattice sites, however, we do not show it here.

B. Anomalous dispersion case

Several types of soliton solutions have been identified in
Sec. IV B, both in shallow-to-moderate (U0 = 10) as well
as the deep lattice (U0 = 45) regimes. Some have their
eigenvalues in the semi-infinite gap and others in the first
gap (see examples in Figs. 16 and 18). As we have pointed out
earlier, since our solution set is relatively large our approach to
stability is going to be selective rather than collective. With this
in mind, we first present numerical stability results (linear and
nonlinear) pertaining to the specific family member shown
in Fig. 16(b). We would like to point out that we have also
studied the question of stability of other semi-infinite gap
soliton solutions with larger potential amplitude like the one
shown in Fig. 18(b). Our findings are similar to those presented
below. Diagonalizing the eigenvalue problem (27) reveals that
the mode shown in Fig. 16(b) is neutrally stable (see Fig. 24).

FIG. 24. (Color online) (a) Lattice soliton φ(t) given in Fig. 16(b)
with max |φ| ≈ 2.26. (b) φ(t) + χ (t,0) where χ (t,0) is the pertur-
bation given in Eq. (29) for one realization of randomness and
ε = 0.1. (c) Spectrum of the linear stability eigenvalue problem (27)
corresponding to the lattice soliton in panel (a). (d) Dynamic stability
obtained by direct numerical simulation using Eq. (1) with initial
condition shown in panel (b).
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FIG. 25. (Color online) Dynamical evolution of the linear stabil-
ity problem (25) with initial random perturbation given in Eq. (29)
for β = −1/8. Panels (a, b) correspond to soliton solutions depicted
in Figs. 16(e) and 18(e), respectively, for g = +1. (c, d) Solutions
shown in Figs. 16(d) and 18(d), respectively, with g = −1. A linear
least-squares fit (dashed line) is also shown with approximate slopes
of (a) 0.81, (b) 3.5, (c) 0.27, and (d) 0.15. The logarithm is base 10.

Recall that this solution is centered around a lattice maximum
(off-site) at t = 1. In [36,48] it was shown that for β = 0 all
off-site soliton solutions are unstable. To confirm our stability
findings we perturb the semi-infinite gap solution in Fig. 16(b)
with the perturbation of the form (29). Figure 24 shows the
dynamical evolution of such a soliton solution, and as one can
see, the mode profile remains coherent for long distances.

When discussing the question of linear stability of all
first gap solitons, we shall adopt the dynamics approach
governed by Eq. (25) subject to initial condition (29) rather
than solving the eigenvalue problem (27) that seems to give
spurious eigenvalues. In what follows, we shall present results
concerning the g = +1 high-intensity solutions shown in
Figs. 16(e) and 18(e). We reiterate, both solutions are off-site
centered at a lattice maximum and exhibit even parity with
a slight difference in their so-called fast-scale periodicity.
The moderate lattice soliton has a fast-scale periodicity of 4
as opposed to 2 for the deep lattice soliton. This difference
is a direct result of the local change in the linear band
geometrical structure observed in Sec. II B. A summary of the
linear dynamics simulations results is presented in Figs. 25(a)
and 25(b). The common feature between the two cases is the
development of an algebraic instability. However, the linear
least-squares fit indicates that for the deep lattice case the
instability grows faster than in the shallow lattice regime. In
fact, the direct numerical simulations in Fig. 26 show these
solutions, for both moderate and large lattice strengths, do
maintain their original shape up to z = 100. For the large
potential solution, a fine oscillatory structure is present in both
Figs. 25(b) and 26.

Finally, the numerical linear and nonlinear stability of the
g = −1 soliton solutions shown in Figs. 16(d) and 18(d) is
analyzed. This time, Fig. 25(c) shows the onset of instability
is accompanied by a strong transient dynamic until it relaxes
into a well-defined linear growth (in a semilog scale). This is
not quite the case observed in Fig. 25(d). Here, the transient
motion is “quasiperiodic” that is being washed-out at around
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FIG. 26. (Color online) Direct numerical simulation of the lattice
soliton shown in Fig. 16(e) with U0 = 10, max |φ| ≈ 2.35 (left) and
Fig. 18(e) with U0 = 45, max |φ| ≈ 5.11 (right). For both panels the
random perturbation is given by Eq. (29) with ε = 0.1 and g = +1.

z = 20 after which a linear growth takes over. This scenario is
clearly different than the one reported in Figs. 21(c) and 21(d)
where no such obvious separation between transient and
linear growth periods is seen. A linear least-squares fit is
applied to the logarithm base 10 of max |χ | as z increases.
In Fig. 27, typical evolutions of the instability are shown for
these solutions after being perturbed by Eq. (29). In the shallow
lattice case, the soliton breaks up into oscillating pulses
centered around the lattice maximum t = 1. This shifting from
on-site to off-site is known as symmetry breaking [36] and has
been observed for β = 0 in excited states. The large potential
solution in Fig. 18(d) is off-site and no symmetry-breaking
instability occurs, however, it does degenerate into a highly
oscillatory set of pulses. We also note the instability appears
stronger in Fig. 26(c) at shallower potentials as compared to
Fig. 26(d). As the lattice strength increases so does the measure
of the band gap and as a result the spectral bands become
flatter. Since oscillatory instabilities occur when the sidebands
λ ± Im(σ ) lie inside FB bands it has been suggested [47] that
increasing the lattice strength creates more stable solutions. We

FIG. 27. (Color online) Direct numerical simulation of the lattice
soliton shown in Fig. 16(d) with U0 = 10, max |φ| ≈ 2.53 (left) and
Fig. 18(d) with U0 = 45, max |φ| ≈ 5.31 (right). For both panels the
random perturbation is given by Eq. (29) with ε = 0.1 and g = −1.

again remark that strong perturbations can induce solutions to
change sites while evolving.

VI. CONCLUSION

In this paper we have extensively studied the dynamical
behavior of the biharmonic nonlinear Schrödinger equation
in one space dimension and in the presence of an external
periodic potential. Various band-gap structures have been
numerically computed using the Floquet-Bloch theory. The
geometric characteristics of the dispersion curves as a function
of the fourth-order dispersion coupling constant β have been
identified. In sharp contrast to the classical NLS equation
with an external periodic potential for which a gap in the
spectrum opens for any nonzero potential, here it is found
(for negative β) that there exists a nonzero threshold value of
potential strength (dependent on β) below which there is no
gap. For increasing values of potential amplitudes, the shape
of the dispersion curves changes appreciably giving rise to
new families of localized modes that have no counterpart
in the classical NLS equation. Part of our numerical results
related to the spectral bands are intuitively explained using
a higher-order two-band tight-binding model. Lattice solitons
corresponding to spectral eigenvalues lying in the the semi-
infinite and first band gap were numerically found using a real-
space fixed-point renormalization scheme. In the anomalous
dispersion case, where for g = +1 no localized nonradiating
solitons exist in the absence of any external potential, nonlinear
finite-energy modes have been identified. Using a combination
of linear stability analysis and direct numerical simulations we
have addressed the question of stability for various localized
lattice modes.
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APPENDIX A: COMPUTATION OF BAND STRUCTURE

In this section we briefly outline the numerical scheme used
to construct the FB band structures. The method is based on
expanding the eigenfunction and potential in Floquet-Fourier
series (also known as Hill’s Method [49])

F (t,μ) =
∑
n∈Z

Cn(μ)ei(ωn+μ)t , (A1)

V (t) =
∑
m∈Z

Vmeiωmt , (A2)

for ω = 2π/T and ωn = nω. Substituting Eqs. (A1) and (A2)
into Eq. (2) gives an infinite-dimensional algebraic system for
the Fourier coefficients Cj ,j ∈ Z

	(μ + ωj )Cj (μ) +
∑
�∈Z

V�Cj−�(μ) = λ(μ)Cj (μ) , (A3)

with 	(ξ ) ≡ ξ 2/2 + βξ 4. For μ in the first BZ [−π/T ,π/T ]
we truncate system (A3) on the lattice sites to j =
−N/2, . . . ,N/2 (for even N ) and obtain the following
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eigenvalue problem

P(μ)C = λC , (A4)

where

P(μ)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

	− N
2

V ∗
1

V1 	− N
2 +1

. . .

. . .
. . .

	N
2 −1 V ∗

1

V1 	N
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A5)

and C = (C−N/2, . . . ,CN/2)T ; 	j ≡ V0 + 	(μ + ωj ). For po-
tential (8) the Fourier coefficients are V0 = U0/2 and V1 =
−U0/4 = V ∗

1 . An alternate method of finding the band struc-
ture is to represent the derivatives in Eq. (2) by differentiation
matrices and collocate the potential function at the nodal
values. To do so, we substitute Eq. (5) into Eq. (2); expand the
resulting operator Wβ(∂t + iμ) in powers of μ; then represent
each derivative by its corresponding differentiation matrices
giving the computational problem[

βD(4) − 1
2D(2) + diag(Vj )

]
G = λG ,

D(4) = D4 + 4iμD3 − 6μ2D2 − 4iμ3D1 + μ4 , (A6)

D(2) = D2 + 2iμD1 − μ2 ,

where Vj = V (tj ) and Dn represents either the finite differ-
ence or spectral periodic differentiation matrices of the nth
derivative. Only μ in the first BZ need to be considered due to
periodicity.

APPENDIX B: FIXED-POINT
RENORMALIZATION METHOD

Here, we present the real-space fixed-point renormalization
scheme [50] used in this paper to numerically compute lattice

solitons. Substituting the waveguide solutions of the form
E(t,z) = φ(t)e−iλz into Eq. (1) gives

(Wβ − λ)φ = g|φ|2φ , (B1)

for Wβ(∂t ) ≡ β∂4
t − ∂2

t /2 + V (t). Now set φ = r�, for con-
stant r, substitute into Eq. (B1); and take the inner product of
the resulting equation with � yielding

|r|2 = 〈�,Wβ�〉 − λ||�||22
g||�||44

, (B2)

where

||f ||pp :=
∫
R

|f |pdt ,

〈h1,h2〉 =
∫
R

h∗
1(t)h2(t)dt .

This rescaled solution is approximated by the equation

L� = g|r|2|�|2� , L=βD4− 1
2D2+diag(Vj − λ) , (B3)

where D2 and D4 are the spectral or finite-difference differ-
entiation matrices corresponding to ∂2

t and ∂4
t , respectively,

and Vj = V (tj ). Note that for λ residing in the band gaps,
the matrix on the left-hand side of Eq. (B3) is invertible. We
further rewrite Eq. (B3) as follows

� = Q(�) , (B4)

for Q(�) = g|r|2L−1(|�|2�). In some cases, for example,
with highly nonlinear lattice modes, the direct successive
approximation applied to Eq. (B4) fails to converge. To
overcome this difficulty, we employ the successive overrelax-
ation fixed-point renormalization scheme where we multiply
Eq. (B4) by a fixed positive relaxation factor α and then add
� to both sides. This suggests the iterative method

�n+1 = (1 − α)�n + αQ(�n) ; (B5)

when α = 1, Eq. (B5) reduces to the spectral renormalization
method.
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