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There is a broad interest in enhancing the strength of light-atom interactions to the point where injecting
a single photon induces a nonlinear material response. Here we show theoretically that sub-Doppler-cooled
two-level atoms that are spatially organized by weak optical fields give rise to a nonlinear material response that
is greatly enhanced beyond that attainable in a homogeneous gas. Specifically, in the regime where the intensity
of the applied optical fields is much less than the off-resonance saturation intensity, we show that the third-order
nonlinear susceptibility scales inversely with atomic temperature and, due to this scaling, can be two orders of
magnitude larger than that of a homogeneous gas for typical experimental parameters. As a result, we predict that
spatially bunched two-level atoms can exhibit single-photon nonlinearities. Our model is valid for all regimes of
atomic bunching and simultaneously accounts for the backaction of the atoms on the optical fields. Our results
agree with previous theoretical and experimental results for light-atom interactions that have considered only
limited regimes of atomic bunching. For lattice beams tuned to the low-frequency side of the atomic transition,
we find that the nonlinearity transitions from a self-focusing type to a self-defocusing type at a critical intensity.
We also show that higher than third-order nonlinear optical susceptibilities are significant in the regime where
the dipole potential energy is on the order of the atomic thermal energy. We therefore find that it is crucial to
retain high-order nonlinearities to accurately predict interactions of laser fields with spatially organized ultracold
atoms. The model presented here is a foundation for modeling low-light-level nonlinear optical processes for
ultracold atoms in optical lattices.
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I. INTRODUCTION

The ability to realize photon-photon interactions at the
single-photon level will allow for quantum control of op-
tical fields, which has important applications in quantum
information science. Photons interact via a nonlinear optical
polarization in a material, such as a gas of atoms, but typical
light-matter interaction strengths tend to be small, so it is dif-
ficult to obtain single-photon nonlinearities. Two-level atoms
are predicted to realize single-photon nonlinearities when the
optical fields are focused to the size of a wavelength [1].
However, it is experimentally difficult to focus optical fields to
this size and the ultimate single-photon limit has not yet been
reached in systems of two-level atoms.

In order to reach the single-photon limit, researchers
have been searching for ways to further enhance the light-
matter interaction strength. Promising techniques include
placing atoms inside optical cavities or hollow fibers [2,3],
employing electromagnetically induced transparency [4], and
using Rydberg blockade [5,6]. Single-photon effects have
been observed recently [7–10], which represents a significant
step towards realizing quantum logic gates and quantum
memories. Enhancing the light-atom interaction strength is
also of interest for classical applications in low-light-level
nonlinear optics, such as slow light [11] and reducing the
threshold for all-optical switching using transverse optical
patterns [12].

In this paper we describe a different approach for enhancing
the interaction strength that relies on spatial bunching of
ultracold two-level atoms in free space. Specifically, we
show that spatial organization of atoms in a one-dimensional

*BLS31@phy.duke.edu

optical lattice produces a nonlinear susceptibility that is more
than two orders of magnitude larger than that attainable
via the saturable nonlinearity alone for typical experimental
parameters. We thus conclude that single-photon nonlinearities
are experimentally feasible in two-level atoms that are spatially
organized in an optical lattice.

While it is known that spatial organization of atoms
in an optical lattice enhances the light-atom interaction
strength [13], existing theoretical models are either restricted
to a specific atomic bunching regime [14–17] or work in the
far-detuned regime where the backaction of the atoms on
the lattice-forming optical fields is insignificant and therefore
ignored [18–22]. We develop a theoretical model that is valid
for all degrees of atomic bunching and accounts for the
backaction of the atoms on the lattice-forming optical fields.
We are interested in the regime of strong backaction, where
small changes in the effective susceptibility of the atomic
sample give rise to different physical effects such as transverse
optical instabilities [23–25] and Bragg scattering [22,26,27].

Our model explicitly connects the results of the zero-
temperature models of the optomechanical physics commu-
nity [14,15] with the finite-temperature models of the nonlinear
optics community [28–30]. The results of our model also
provide insight into the effects of high-order nonlinearities.
We show that it is important to consider nonlinear optical
susceptibilities beyond the third-order response when there
is substantial atomic bunching, even at low optical field
intensities. As we show, these high-order nonlinear terms
enhance (weaken) the effective susceptibility when atoms are
tightly bunched in a red (blue) optical lattice, a result that is
supported by multiple experiments (see, e.g., [30–33]).

We study light-atom interactions in three parameter
regimes, depicted in Fig. 1, which are delineated by the ratio
of the dipole potential energy to the thermal energy of the
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FIG. 1. (Color online) Counterpropagating optical fields (vac-
uum wave number k and wave number in medium k′) are applied
to a gas of atoms. Three regimes are depicted: I, homogeneous; II,
weak bunching; and III, tight bunching.

atoms. In regime I, the thermal energy exceeds the dipole
potential energy and there is weak or no atomic bunching. In
regime II, the dipole potential energy is on the order of the
thermal energy of the atoms and the majority of the atoms
are trapped in the optical lattice. In regime III, the dipole
potential energy greatly exceeds the thermal energy, which
results in strong atomic bunching. Figure 1 also emphasizes
that the wave vector of the applied optical fields inside the
atomic medium k′ can be different from the vacuum wave
vector k because of the backaction of the atoms on the optical
fields [14]. By accounting for this backaction, our model is
self-consistent.

This paper is organized as follows. In Sec. II we present
an overview of our model. In Sec. III we calculate the
normalized density distribution and the material susceptibility
for the specific case of equal-intensity frequency-degenerate
counterpropagating fields. In Sec. IV we analyze the results of
our model in regimes I, II, and III and we discuss the impact on
the light-atom interaction from both the nonlinearity that arises
due to atomic bunching and the saturable nonlinearity, which
couples the optical fields to the internal states of the atoms.
In Sec. V we summarize the insights our model provides into
the enhanced light-atom interaction strengths achievable via
atomic bunching of ultracold atoms in an optical lattice.

II. THEORETICAL MODEL

Two-level atoms interact with optical fields according to
the effective susceptibility

χeff(z) = −6π

k3
eg

η(z)
2� − i

1 + 4�2

1

1 + I (z)/Is�

, (1)

which is the fundamental quantity that describes the light-
atom interaction strength [34]. Here η(z) is the density
distribution of atoms, � = (ω − ωeg)/� is the detuning of the
vacuum applied field frequency ω from the atomic resonant
frequency ωeg normalized by the natural linewidth �, and
keg = ωeg/c. We take I (z) = 2ε0c〈 �E(z,t) · �E∗(z,t)〉t as the
total optical field intensity, where ε0 is the permittivity of
free space, c is the speed of light in vacuum, and 〈 〉t denotes
a time average. We also define Is� = Is(1 + 4�2) as the
off-resonance saturation intensity, where Is = 4ε0c�

2�2/| �μ|2
is the resonant saturation intensity, with �μ the dipole moment.
The factor [1 + I (z)/Is�]−1 in Eq. (1) corresponds to the
saturable nonlinearity. For the purposes of this paper, we
consider detunings that are large enough so that χeff(z) is

essentially real and hence we neglect absorption. Also, we
only consider the case where the atoms are in steady-state and
thermal equilibrium and where they do not experience a net
radiation pressure force.

It is useful to analyze a limiting case of Eq. (1) before
we describe the specifics of our model. We take the density
distribution η(z) to be the steady-state solution of the Fokker-
Planck equation, given by

η(z) = naη̃ exp(−U ), (2)

where na is the average atomic density, η̃ is a normalization
constant, and U is the dipole potential normalized by the
atomic thermal energy. The dipole potential for a two-level
atom and moderately large detunings (e.g., |�| � 3 for
max[I (z)]/Is < 1) is just the ac Stark shift. Therefore,

U = �I (z)

Is�T
, (3)

where T is the atomic temperature normalized by the Doppler
temperature TD = ��/2kB . If we consider the limiting case
max(U ) � 1 and max[I (z)]/Is� � 1, Eq. (1) is given ap-
proximately by

χeff(z) ≈ χlin

[
1 −

(
�

T

I (z) − 〈I (z)〉
Is�

+ I (z)

Is�

)]
, (4)

where the factor χlin = −6π (2�)na/[k3
eg(1 + 4�2)] is the

linear susceptibility and 〈I (z)〉 denotes the spatially averaged
value of the intensity. The second term in Eq. (4) corresponds
to the bunching-induced nonlinearity and the third term
corresponds to the saturable (Kerr) nonlinearity. As we show
in Sec. III, the bunching-induced nonlinearity arises only due
to the spatially dependent part of the intensity. For many
applications, such as wave mixing, it is the spatially dependent
part of χeff(z) that is of interest. Even though both the
bunching-induced nonlinearity and the saturable nonlinearity
scale with I (z)/Is�, the bunching-induced nonlinearity may be
much larger than the saturable nonlinearity for a gas cooled to
sub-Doppler temperatures. Below, we demonstrate the impact
of this bunching-induced effect on χeff(z) over all atomic
bunching regimes, not limited to the approximations that were
used to obtain Eq. (4).

We consider a one-dimensional optical lattice created by
two frequency-degenerate counterpropagating optical fields
incident on a sample of two-level atoms, as depicted in Fig. 1.
The total applied electric field is then

�E(z,t) = �F (z,t)ei(kz−ωt) + �B(z,t)ei(−kz−ωt) + c.c., (5)

where k is the wave number of the optical fields in vacuum
(mnemonics F for forward and B for backward).

Because atoms spatially organize into the potential minima
of an optical lattice, the periodicity of the density distri-
bution equals the periodicity of the intensity distribution
inside the atomic medium [14,15]. It is therefore conve-
nient to define the density distribution η(z) via the Floquet
expansion

η(z) = na

∞∑
j=−∞

ηj (z)ej2ikz. (6)
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The coefficients ηj (z) are derived in Sec. III and have a slowly
varying position dependence that accounts for the backaction
of the atoms on the optical fields. Contrary to our approach,
Refs. [18,19,22] take the periodicity of the density distribution
to be equal to that of the vacuum intensity distribution,
which is a very good approximation when the optical fields
are far detuned and the backaction is small. However, we
are interested in the regime of strong backaction where
one can achieve strong nonlinear effects at low light levels.

We investigate the interaction between the applied optical
fields and the atomic medium via the polarization �P =
ε0χeff(z) �E using Eqs. (1) and (6) [34]. We consider the regime
where max[I (z)]/Is� � 1 so that [1 + I (z)/Is�]−1 ≈ 1 −
I (z)/Is�. For |�| � 3, this requires only that max[I (z)]/Is �
1. Making the rotating-wave approximation and considering
both steady-state field amplitudes and parallel optical field
polarizations [ �F (z)|| �B(z)], the wave equation gives rise to the
coupled amplitude equations

∂F

∂z
= ik

2
χlin

[(
η0(z) − 4ε0c

Is�

[(|F |2 + |B|2)η0(z) + FB∗η−1(z) + F ∗Bη1(z)]

)
F

+
(

η1(z)e2ikz − 4ε0c

Is�

[(|F |2 + |B|2)η1(z)e2ikz + FB∗e2ikzη0(z) + F ∗Be−2ikzη2(z)e4ikz]

)
Be−2ikz

]
(7)

and

∂B

∂z
= − ik

2
χlin

[(
η0(z) − 4ε0c

Is�

[(|F |2 + |B|2)η0(z) + FB∗η−1(z) + F ∗Bη1(z)]

)
B

+
(

η−1(z)e−2ikz − 4ε0c

Is�

[(|F |2 + |B|2)η−1(z)e−2ikz + FB∗e2ikzη−2(z)e−4ikz + F ∗Be−2ikzη0(z)]

)
Fe2ikz

]
, (8)

where F ≡ F (z), B ≡ B(z), and we have only retained terms
that have equal or nearly equal spatial variations. In Eqs. (7)
and (8) the first term in large parentheses on the right-hand
side gives rise to the dispersion of the optical fields as they
propagate through the atomic medium and the other represents
the nonlinear coupling between the forward and backward
fields. In the remainder of this paper we treat the special case
of equal-intensity counterpropagating fields, which suppresses
the radiation pressure force and allows us to investigate solely
the effects of the dipole potential that gives rise to atomic
bunching.

III. UNIFORM OPTICAL LATTICE

Under our conditions, we find that each optical field
experiences the same susceptibility and hence each optical
field has a wave vector k′ = nk inside the atomic medium,
where the index of refraction n � 1 + χeff/2 [34]. Here χeff is
independent of z and contains only those terms from Eq. (1)
that are spatially matched to each optical field, i.e., only those
terms that are kept in Eqs. (7) and (8). We can therefore take
the optical field amplitudes to have the forms

F (z) = F̃ eik(χeff/2)z, B(z) = B̃e−ik(χeff/2)z, (9)

where F̃ and B̃ are independent of z. Analogously, we define

ηj (z) = naηj e
j2ik(χeff/2)z, (10)

where the coefficients ηj are independent of z because the
periodicity of the density distribution in Eq. (6) exactly equals
the intensity distribution inside the medium. We note that
ηj = η−j holds, as will be shown later.

Imposing the boundary conditions F (−L/2) = B(L/2) for
a medium of length L, Eqs. (7) and (8) allow us to find the

susceptibility

χeff = χlin

(
η0 + η±1 − s

2
(3η0 + η∓1 + 3η±1 + η±2)

)
, (11)

where s = 〈I (z)〉/Is� is known as the saturation parameter
and

ηj = 1

λ′/2

∫ λ′/4

−λ′/4

η(z)

na

e−j2ik′zdz (12)

with λ′ = 2π/k′.
We calculate the density distribution from Eq. (2), where

the position-independent part of U does not contribute to the
dipole force and thus does not give rise to atomic bunching.
We absorb the position-independent part of U into a new
normalization constant η̃′ and the Fourier coefficients become

ηj = η̃′k′

π

∫ π/2k′

−π/2k′
exp[−ζ cos(2k′z)]e−j2ik′zdz, (13)

where

ζ = �s

T
(14)

is the spatially averaged value of U in Eq. (3).
From Eq. (13) we find that ηj = η̃′Ij (−ζ ), where Ij are

modified Bessel functions of the first kind of order j . We also
determine η̃′ by integrating the density distribution over one
period, i.e.,

λ′

2
= η̃′

∫ π/2k′

−π/2k′
exp[−ζ cos(2k′z)]dz. (15)

This results in the relation λ′/2 = πη̃′I0(−ζ )/k′. Therefore,
the normalization constant is

η̃′ = 1

I0(−ζ )
. (16)
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FIG. 2. Bunching parameter as a function of the depth of the
dipole potential wells of the optical lattice.

Previous research has indicated the importance of the nor-
malization constant for defining a physically accurate density
distribution, but they do not explicitly calculate it and instead
either take it to be fixed by experimental conditions [22,28,29]
or do not require it for their analysis [35]. By explicitly
accounting for this normalization constant, our model is
applicable to all regimes of atomic bunching.

Combining Eqs. (13) and (16), the Fourier coefficients are

ηj = Ij (−ζ )

I0(−ζ )
. (17)

We also define the bunching parameter

b = |η1|, (18)

which describes the degree of atomic bunching and distin-
guishes the three regimes depicted in Fig. 1. This is analogous
to the bunching parameter introduced in Ref. [36], but where
we have only retained the first-order Fourier component of
the density distribution because it is the only component that
directly contributes to coupling the forward and backward
waves. The bunching parameter b ∈ [0,1], where b = 0 cor-
responds to a homogeneous gas and b = 1 corresponds to the
case where the density distribution consists of infinitesimally
thin sheets of atoms. Figure 2 shows b as a function of |ζ |. Here
we define the regimes of atomic bunching using reasonable
but arbitrary cutoffs of the bunching parameter. Regime I
occurs where b < 0.2 (|ζ | < 0.4). Regime II occurs where
0.2 � b � 0.8 (0.4 � |ζ | � 2.9), where the thermal energy
of the atoms is on the order of the dipole potential energy.
Regime III corresponds to strong spatial localization of the
atoms, where b > 0.8 (|ζ | > 2.9), which is attainable using
typical conditions in a magneto-optical trap [26].

Examples of the density distribution are plotted in Fig. 3 for
two different bunching parameters. Figure 3(a) shows regime
I, where the density distribution is weakly modulated about

FIG. 3. (Color online) Atomic density distributions for (a) b =
0.01 (|ζ | = 0.2) and (b) b = 0.86 (|ζ | = 4), with � < 0 (red solid
curve) and � > 0 (blue dotted curve).

the average atomic density η(z)/na = 1. Figure 3(b) shows
the density distribution for regime III, where the local density
greatly exceeds the average density and the atoms are well
localized to the potential wells. In fact, it is in this parameter
regime where the first Bragg scattering experiments for atoms
in optical lattices were performed: b � 0.99 in Ref. [27] and
b � 0.5 in Ref. [26]. Figure 3 also shows that, when using
red- (� < 0) versus blue- (� > 0) detuned optical fields, the
density maxima occur at different locations (phase shifted by
z = λ′/4). This is consistent with the spatial organization of
the atoms into the dipole potential minima, which corresponds
to the intensity maxima (minima) for red (blue) optical lattices.

Combining Eqs. (11) and (17), the effective susceptibility
experienced by the optical fields is

χeff = χlin

[
1 + I1(−ζ )

I0(−ζ )
− s

2

(
3 + 4

I1(−ζ )

I0(−ζ )
+ I2(−ζ )

I0(−ζ )

)]
.

(19)

Equation (19) provides the basis for the analysis in the
remainder of this paper, where we study how χeff varies with
ζ in the three regimes depicted in Fig. 1.

In regime I, a good approximation of χeff is a Taylor
expansion to first order in s, which is given by

χeff

|χlin| � − �

|�|
(

1 − �s

2T
− 3

2
s

)
for b < 0.2. (20)

This equation is consistent with Eq. (4), where the factor of 1/2
appearing in the nonlinear terms in Eq. (20) arises because only
one term in the exponential form of the intensity distribution
gives rise to the spatially matched, nonlinear coupling in the
wave equation. This weak-bunching regime has been shown
to exhibit interesting nonlinear optical phenomena, such as
transverse optical pattern formation [25].

Transverse optical pattern formation has also been shown to
occur in regime III [24]. In this tight-bunching regime, a good
approximation of χeff for b > 0.8 is an asymptotic expansion,
which is given by

χeff

|χlin| �
{

2 − T
2|�|s − 4s + 2T

|�| for � < 0
− T

2|�|s − 3T
4|�| for � > 0.

(21)

The typical behavior of χeff is plotted in Fig. 4 as a
function of both s and b along with the Taylor and asymptotic
expansions. Figures 4(a) and 4(b) each depict two cases, with
and without bunching, the latter for which we neglect the
bunching-induced nonlinearity by taking T → ∞. The overall
scale of each curve in Fig. 4 is set by χlin and the slope of each
curve is directly related to the third-order nonlinear optical
susceptibility χ (3). From Eq. (20), the third-order nonlinear
susceptibility in regime I is given by

χ (3) � �

|�|
2ε0c|χlin|

Is�

(
�

2T
+ 3

2

)
for b < 0.2, (22)

where the first term is the contribution from the bunching-
induced nonlinearity and the second is from the saturable
(Kerr) nonlinearity.

In the case of a homogeneous gas (b = 0), χ (3) =
3ε0c|χlin|�/Is�|�|, corresponding to a self-defocusing
(self-focusing) nonlinearity for red (blue) detunings. This
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FIG. 4. (Color online) Effective susceptibility as a function of
s and b for (a) red detunings (� = −3) and (b) blue detunings
(� = 3). The solid curve is the case T = 3/146, corresponding
to a temperature of 3 μK and TD = 146 μK for rubidium. The
long-dashed line is the case where T → ∞ (b = 0). The triangles
represent the Taylor-series expansion (20) and the circles represent
the asymptotic expansion (21). The vertical dotted lines correspond
to b = 0.2 and 0.8, which designate the boundaries between regimes
I, II, and III for increasing intensity.

has important implications for nonlinear optical processes in
homogeneous atoms, e.g., transverse optical pattern formation,
where patterns can only form when χ (3) > 0 [37]. Our model is
consistent with experiments that find pattern formation occurs
only for blue-detuned optical fields when using a homogeneous
gas of atoms [12].

Despite the fact that homogeneous atomic samples give
rise to strong nonlinear susceptibilities [12,38], the nonlinear
susceptibility can be further enhanced by using sub-Doppler-
cooled atoms, which is indicated by the inverse dependence of
χ (3) on T in Eq. (22). This appears as the steep slopes in Fig. 4
for b < 0.2 and T = 3/146. For a gas of rubidium atoms at
3 μK, achievable using Sisyphus cooling, for example [24,30],
and |�| = 7, χ (3) is more than two orders of magnitude larger
than in the homogeneous case.

In the homogeneous case, the only contribution to the
nonlinear susceptibility is the saturable nonlinearity, which
itself is predicted to reach the single-photon nonlinearity
threshold when the optical fields are focused to the size of
a wavelength [1]. With the enhanced material response due
to atomic bunching, we predict that one can achieve single-
photon nonlinearities, e.g., single-photon optical switching

using transverse optical pattern formation [12], without the
requirement of focusing the optical fields to their ultimate
limit. It is this regime that is of interest for low-light-level
nonlinear optical applications and the search for photon-
photon interactions at the single-photon level.

In the case of strong atomic bunching (b > 0.8), χ (3) is only
greater than the case of a homogeneous gas for red detunings.
From Eq. (21), χ (3) in regime III is

χ (3) �
{ 2ε0c|χlin|

Is�

(
T

2|�|s2 − 4
)

for � < 0

2ε0c|χlin|
Is�

T
2|�|s2 for � > 0.

(23)

Here χ (3) depends on the intensity because there are high-
order nonlinear terms in χeff that are larger than the third-order
contribution and cannot be neglected. This will be discussed
further in Sec. IV.

Equation (23) indicates that, for larger intensities, χ (3) →
−8ε0c|χlin|/Is� for red detunings and χ (3) → 0 for blue
detunings, which are both independent of the atomic tem-
perature. This arises from the fact that the bunching-induced
nonlinearity plays a less substantial role once the atoms are
confined tightly. In addition, χ (3) is a factor of 8/3 larger in
magnitude than in the homogeneous case. However, both χeff

and χ (3) approach zero for blue detunings, which indicates
that the atoms are not interacting with the optical fields. This
is consistent with the fact that tightly bunched atoms interact
strongly with the intensity maxima (minima) of a red (blue)
optical lattice and χ (3) is therefore stronger (weaker) than for
the homogeneous gas.

Figure 4(a) indicates that there is a local maximum in χeff

for red detunings and increasing s in regime III. From Eq. (23),
this critical point occurs at s � √

T/8|�| or when

|ζ | �
√

|�|
8T

. (24)

This critical point corresponds to the case where the non-
linearity transitions from self-focusing to self-defocusing for
increasing intensities, which, for red detunings, corresponds
to the condition at which the saturable nonlinearity begins to
dominate over the bunching-induced nonlinearity.

However, there does not exist a critical point for atoms
in a blue optical lattice, which spatially bunch into the
standing-wave nodes. In this case, increasing the depth
of the dipole potential wells only reduces the number of
atoms that can interact with the optical fields. This supports
multiple experiments that find that nonlinear optical processes
occurring in the tight-bunching regime are induced at higher
intensities using blue-detuned optical fields [24,30–33].

In order to better understand the trends appearing in Fig. 4
for the different bunching regimes, we will next investigate the
different contributions to χeff due to the bunching-induced and
saturable nonlinearities.

IV. INTERFERENCE BETWEEN COMPETING
NONLINEARITIES

To understand the physical effects that contribute to the
susceptibility, we decompose χeff into parts as

χeff = χlin + χbunching + χSN + χbunching+SN, (25)
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FIG. 5. Components of χeff as functions of ζ : (a) χlin/χlin (dashed
line) and χbunching/χlin (solid curve) and (b) χSN/χlins (dashed line)
and χbunching+SN/χlins (solid curve).

indicating the contributions due to linear effects, the bunching-
induced nonlinearity, the saturable nonlinearity, and the com-
bined effects of these two nonlinearities, respectively. We find
that

χbunching = χlin
I1(−ζ )

I0(−ζ )
, (26)

χSN = −3χlin

2
s, (27)

and

χbunching+SN = −χlin

2
s

(
4
I1(−ζ )

I0(−ζ )
+ I2(−ζ )

I0(−ζ )

)
, (28)

where the numerical factor of 3 in χSN appears because the
spatially independent part of the intensity polarizes the atoms
and contributes to the saturable nonlinearity. This numerical
factor is absent in χbunching because only the spatially dependent
part of the dipole potential gives rise to atomic bunching.

Another important difference between χbunching and χSN is
the characteristic time scale associated with each. The response
time of χSN is on the order of the inverse spontaneous emission
rate 1/� (e.g., 26 ns for rubidium). However, the response time
of χbunching is on the order of the time it takes for an atom to
move a distance of λ′/2, which is temperature dependent and
much slower than that of χSN (e.g., 20 μs for rubidium atoms at
3 μK). This separation of time scales allows us to distinguish
between the different nonlinear effects [25].

The relative contributions of each nonlinear effect in
Eqs. (26)–(28) are illustrated in Fig. 5. If we first consider blue
detunings (ζ > 0) in Figs. 5(a) and 5(b), the contributions χlin

and χbunching have opposite signs, as do χbunching+SN and χSN.
Therefore, each of these sets of terms interferes destructively,
resulting in a very small χeff. This is the expected result for
atoms localized in the intensity minima and supports the trend
in Fig. 4(b) for larger intensities, where the potential depth is
larger.

For red detunings (ζ < 0), Figs. 5(a) and 5(b) show that
χlin and χbunching have the same sign, which is opposite the
sign of χSN and χbunching+SN. However, destructively interfering
processes in this case do not have identical dependences on
s and the relative strengths of the nonlinear contributions to
χeff depend on whether one is below or above the critical point
given by Eq. (24).

The case of very tight atomic bunching (b > 0.8, |ζ | >

2.9) corresponds to well-localized atoms and is the regime
relevant to optomechanical-type systems. In the limit T → 0,
we expect the results of our model to match the results of
the zero-temperature models of Refs. [14,15], which treat the
bunched atoms as infinitely thin dielectric sheets. We note
that our model does not account for Bose condensation and
this limit simply reproduces the atomic density distribution
considered in Refs. [14,15]. These works show that the wave
vector in the medium is larger than (identical to) the vacuum
wave vector for red (blue) optical lattices. Taking T → 0 in
Eq. (19), the wave vector in the medium k′ = k(1 + χeff/2)
becomes

k′ =
{
k[1 + χlin(1 − 2s)] for � < 0
k for � > 0,

(29)

which agrees with the results of Refs. [14,15].
This result would not have been obtained if we had

used approximate expressions for χbunching and χbunching+SN.
Specifically, Eqs. (26) and (28) contain high-order nonlinear
contributions (where χbunching+SN is fifth order in the lowest-
order Taylor expansion of ζ ), which are neglected in most
nonlinear optical models that consider s � 1 [28,34].

These high-order nonlinear terms become less important as
the bunching parameter decreases. In regime I, the role played
by χbunching+SN is far less substantial and χeff for b < 0.2 is
given by Eq. (20). We are only in the third-order nonlinear
optical regime for b < 0.2. We note that we do not account for
Doppler broadening in our model and any extensions of the
analysis in this paper for T � 1 should incorporate this effect.

Equation (20) provides insights into predictions for non-
linear optical processes, e.g., transverse optical pattern for-
mation. The threshold condition at which transverse optical
pattern formation can occur is approximately kχNL

eff L � π/2,
where χNL

eff = χeff − χlin is the nonlinear part of the effective
susceptibility [39]. From Eq. (20), this threshold condition in
the third-order nonlinear optical regime is

〈I (z)〉
Is

� k2

12naL�

(1 + 4�2)2

3 + �/T
. (30)

The minimum intensity threshold is therefore obtained by
maximizing na , minimizing �, and minimizing T .

In addition, pattern formation will only occur in the third-
order nonlinear regime when χbunching + χSN > 0 [37]. Based
on Eq. (20), this condition is always satisfied for blue detunings
(χlin < 0), but it is only met for red detunings (χlin > 0) when
|χbunching| > |χSN|. For sufficiently cold atoms, |χbunching| �
|χSN| and the threshold for pattern formation will be the same
for both detunings. However, when the atomic temperature
approaches the Doppler temperature (T � 1), χbunching and χSN

interfere constructively (destructively) for blue (red) optical
lattices. This implies that the threshold for transverse pattern
formation should occur at lower optical intensities for blue
detunings, which agrees with the predictions of Ref. [28].
Only on the self-focusing side of the critical point of Eq. (24)
will transverse pattern formation occur for red detunings.
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V. CONCLUSION

We have shown that spatially organized two-level atoms
give rise to a large nonlinear material response at very low
optical intensities and that the achievable nonlinear suscepti-
bility is more than two orders of magnitude larger for spatially
organized two-level atoms than for a homogeneous sample of
warm atoms. We predicted that, by using sub-Doppler-cooled
two-level atoms, single-photon nonlinear optics is experimen-
tally feasible. Our model uncovers insights into the competing
effects of atomic bunching and the saturable nonlinearity and
shows that high-order nonlinear terms play a substantial role
even at low intensities for sufficiently cold atoms. Our model is
consistent with the results obtained in other theoretical models

and experimental findings over a wide range of temperatures
and is therefore a general model that may be used to describe
a broad scope of low-light-level physical systems. Future
extensions of this work will need to consider Sisyphus cooling
and multi-wave-mixing processes [40], which will be useful in
predicting thresholds for more complicated nonlinear optical
processes, e.g., transverse optical pattern formation [24].
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