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We introduce multiperiodicity in periodic metal-dielectric multilayers by stacking more than two types of metal
and/or dielectric layers into the unit cell. A simple way to characterize arbitrary multiperiodic multilayers using
permutation vectors is suggested and employed. Effects of multiperiodicity up to its fourth order are investigated.
We demonstrate that various topologies of multiple-sheet isofrequency and dispersion surfaces exist for such
plasmonic multilayers, including a photonic realization of nontrivial isolated Dirac cones.
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I. INTRODUCTION

Stratified media are a very well-known object in physics
[1–4] which is still revealing new and unique properties [5–7].
Efforts of recent years in the fabrication of nanostructured
layered media demonstrate properties able to surpass those of
natural materials. So-called metamaterials are one of the best
examples of rapid progress in the field of research of artificial
media. Metal-dielectric multilayered optical metamaterials,
plasmonic multilayers [8], possess a variety of striking
electromagnetic phenomena that include broadband all-angle
negative refraction [9,10], anomalous birefringence [11,12],
k-dependent precession of the optical axis [13], and ultrahigh
values for the Purcell factor [14,15].

Electromagnetic response of periodic layered metal-
dielectric nanostructures is the subject of many theoreti-
cal [16,17] and experimental [18,19] investigations. In such
multilayers, the layer thicknesses (the characteristic size of
a unit cell) are typically much smaller than the wavelength
of light that interacts with the multilayer. Therefore, it is
commonly assumed that the effective-medium approximation
holds, so one can say that the multilayer exhibits some sort of
an effective response attributable to the entire medium rather
than to the individual layers. Recently, it was found out that this
assumption is not necessarily true, as the wavelength of certain
modes that can propagate in some plasmonic multilayers,
notably hyperbolic metamaterials (HMMs), can be orders of
magnitude smaller that the vacuum wavelength of light, break-
ing the effective-medium limit even for nanometer-scale lay-
ers [20,21]. However, it was also shown that it is still possible to
build an effective-medium model with a nonlocal nature [22].

When the local effective-medium model ceases to be
applicable (either by virtue of photonic band-gap effects [20]
or by virtue of optical nonlocality [22]), the effects related to
the composition of the unit cell start to play a significant role in
the optical properties of a periodic plasmonic multilayer. This
has recently opened up an exciting emerging area of study
related to plasmonic multilayers where layers are arranged in
a more complex fashion than just alternating the same metal
and dielectric layers over and over. Two recent examples of
such structures, namely, multiscale HMMs [23] and photonic
hypercrystals [24], have shown a variety of interesting effects
potentially of use for hyperlensing and light-matter interaction
control.

Among other things, it was shown that the metamaterial’s
optical response in wave-vector space becomes increasingly
more complex as the number of layers in the unit cell
grows [23]. Therefore, a systematic study of such metama-
terials is warranted. In this paper, we focus on multiperiodic
plasmonic metamaterials, which are periodic metal-dielectric
multilayers with the unit cell consisting of more than two
layers. Specifically, by incorporating several different metals
and/or dielectrics in the unit cell, we require that more than one
kind of plasmonic interfaces are present in the metamaterial.
We investigate the effects brought about by this added
complexity, and show that propagating bulk plasmonic waves
form isofrequency surfaces with multiple-sheet topology in
the k-space, along with other interesting features such as the
Dirac-type cones.

The paper is organized as follows. In Sec. II, we introduce
the basic concept of multiperiodicity in metal-dielectric mul-
tilayers. In Sec. III, we develop a transfer-matrix approach to
multiperiodic multilayers, using permutation vectors to make
it applicable to multilayers with different layer arrangement
in a unit cell. Section IV follows with the derivation of the
dispersion equations for these multilayers, and Sec. V analyzes
these equations in the long-wavelength limit. In Sec. VI,
we explore the band structure of multiperiodic multilayers.
Finally, Sec. VII summarizes the paper.

II. MULTIPERIODICITY IN MULTILAYERS

One needs at least two different layers to form a periodic
multilayered structure. For plasmonic multilayer, these layers
are dielectric and metal ones. This means that in order to
form a plasmonic multilayer we need no fewer than one
metal-dielectric (plasmonic) interface, which is always present
between, a dielectric and a metal layer. The basic case of a
single plasmonic interface in the unit cell, corresponding to
the ordinary periodic metal-dielectric plasmonic multilayers,
has been considered widely in the literature [8].

Multiperiodicity assumes that there are two or more
different kinds of plasmonic interfaces in the structure. In
what follows, we will consider mainly (but not exclusively)
multiperiodicity of the second order: biperiodicity. To this end,
we double the number of layers in the period in comparison
with the basic case, and choose materials in such a way as to
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FIG. 1. (Color online) Diagram of a multiperiodic multilayer
formation by means of U (a) and U (b). Layers of different materials
are marked with different colors, with 1 and 2 denoting plasmonic
interfaces of two kinds. Period of the structure is d = 2(dd + dm).

have two nonequivalent kinds of plasmonic interfaces in the
resulting structure.

Consider the unit cell U composed of two two-layered
basic unit cells U (a),U (b) as shown in Fig. 1. In these
terms, multiperiodicity requires U (a) �= U (b). Given the layer
materials set {D(1), D(2), M (1), M (2)} with two dielectrics
and two metals (Fig. 2), there are P 4

2 = 4!/2! = 12 partial
permutations of how we can order layers in the basic biperiodic
unit cell. Since the structure is periodic and infinite, it is
invariant under the shift S or inverse I operators applied to U .
Therefore, it does not matter how we arrange basic unit cells
in U , i.e., U = U (a)U (b) is identically equal to U = U (b)U (a)

as S2{U (a)U (b)} = U (b)U (a), so the structure is invariant to
simultaneous inverse of layer order I {U (a)}I {U (b)} in U (a),U (b)

as well since S2{I {U (a)}I {U (b)}} = I {U (a)U (b)}, i.e., identical
to U = U (a)U (b).

As was stated above, U in the case of plasmonic multilayers
should be composed of alternating metal and dielectric layers.
We will also require that no additional sort of plasmonic
interface may arise when U (a) is stacked with U (b). Basically,
this means that in our consideration, the order of multiperiod-
icity is defined by the number of different kinds of plasmonic
interfaces in U . In the general consideration of multiperiodicity
(U = U (a)U (b)U (c) . . .), it is convenient to assume that all
different kinds of plasmonic interfaces are contained within
the basic cells U (a),U (b),U (c) . . ., not caring about appearance
of additional kinds of interfaces between the unit cells. That
is why we will restrict ourselves with such compositions of
U (a) and U (b) where one of the materials is shared, i.e., the
biperiodic structure is composed of either one metal and two

U(a) U(b)

U1

U4

U2

U3

D(1) M(1) M(2) D(1)

D(2) M(1) M(2) D(2)

D(1) M(1) M(1) D(2)

D(1) M(2) M(2) D(2)

FIG. 2. (Color online) List of generative U ’s. Different kinds of
plasmonic interfaces are highlighted with different dashing.

different dielectrics, or one dielectric and two different metals.
The case when U is composed of four entirely different
materials will result in more kinds of plasmonic boundaries
and does not fall under our definition of multiperiodicity (it is
actually a case of biperiodicity with surface plasmons split).

Now, with these restrictions in place, we are able to
itemize all possible biperiodic U ’s. Agreeing for the sake of
definiteness that the first layer is dielectric, we come to the
following possible basic cells set that define plasmonic inter-
faces: U (l=a,b) = {D(1)M (1), D(1)M (2), D(2)M (1), D(2)M (2)}.
With this set, four different general plasmonic multilayers can
be formed by corresponding generative U ’s as shown in Fig. 2.
It is seen that there are indeed only two sorts of plasmonic
interfaces in each U . Therefore, we are indeed dealing with
multiperiodicity of the second order, or biperiodicity. In Fig. 1,
it is shown how plasmonic interfaces appear in an infinite
structure with such unit cells. Our definition of multiperiod-
icity implies that in the biperiodic case, the interfaces always
alternate pairwise, i.e., are sequenced as . . . 11221122 . . . since
each layer is surrounded with the same materials on both sides,
bearing in mind that U is repeated infinitely.

In what follows, we will study eigenmodes and correspond-
ing optical properties of mainly, but not exclusively, biperiodic
metal-dielectric multilayers arranged according to Fig. 1 with
all the possible configurations presented in Fig. 2.

III. TRANSFER MATRICES AND PERMUTATIONS

In order to characterize electromagnetic properties of
structures under consideration, let us apply the transfer-matrix
formalism to the problem and represent U ’s as matrices. For
a single j th layer of thickness dj that has permittivity εj , the
transfer matrix connecting tangential components of electric
and magnetic fields is written as follows [25]:

Mj =
(

κj −i
σj

ξj

−iξjσj κj

)
,

κj = cos
(
kxj

dj

)
,

σj = sin
(
kxj

dj

)
.

(1)

Throughout this paper, we assume the TM polarization in
order to have surface plasmon polaritons at plasmonic inter-
faces [26]. For this polarization, the term ξj = ε

−1/2
j kxj

/kj

is a product of the layer impedance ε
−1/2
j and a ratio where

one may recognize the cosine of the propagation angle. For
the other (TE) polarization, ξj = √

εj kxj
/kj . In both cases,

kj = √
εj (ω/c) is the modulus of the wave vector in the layer

and kxj
=

√
k2
j − k2

y is the magnitude of its x component.
In this work, we will consider only real εj ’s, without taking

losses into account. Then, it is seen that Mj is a unimodular
matrix, i.e., det(Mj ) = 1. Unimodularity is a very important
property of transfer matrices reflecting the law of conservation
of energy.

Knowing the matrix of a single layer, we can now
express U (l):

U (l) = M1M2

=
(

κ1κ2 − ξ2

ξ1
σ1σ2 − i

ξ1
σ1κ2 − i

ξ2
κ1σ2

−iξ1σ1κ2 − iξ2κ1σ2 κ1κ2 − ξ1

ξ2
σ1σ2

)
. (2)
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Indices 1 and 2 point at the first and the second layer in the cell,
respectively. As U (l) is the product of unimodular matrices, it
is unimodular as well.

We can express U (l) as a matrix of the form

U (l) =
⎛
⎝ χj�

j −i 	j

γj

−iγj	
j �j

χj

⎞
⎠, (3)

where χ = [1,−ξn/ξm], γ = [ξm,ξn] are coefficients before
the vectors � and 	, defined as

� =
[
κκ

σσ

]
, 	 =

[
σκ

κσ

]
,

κj = cos
(
kxj

dj

)
,

σj = sin
(
kxj

dj

)
.

(4)

Here, the Einstein summation convention (e.g., χj�
j =∑

j χj�
j ) is assumed and will be used throughout the paper.

In Eq. (4), the indices at κ and σ are omitted. It is assumed
that they coincide with the position of the element in the
multiplication string, so that κκ means κ1κ2 and, for example,
σκ stands for σ1κ2.

If we compare Eqs. (1) and (3), we can realize that
recurrence relations can be obtained for the transfer matrix
describing the system of n + 1 layers:

�n+1 =
[
�nκ

	nσ

]
, 	n+1 =

[
	nκ

�nσ

]
, (5)

χn+1 =
[
χn − ξn+1

γn

]
, γn+1 =

[
γn

ξn+1

χn

]
. (6)

With U (l)’s determined, it is possible to derive U =
U (a)U (b), also a unimodular matrix. Astonishingly, it can be
written in the same form as U (l):

U =
(

χj�
j −i 	j

γj

−iγj	
j �j

χj

)
. (7)

Corresponding coefficient columns and permutation rows
calculated from (5) and (6) are the following:

χ =
[

1,−ξ2

ξ1
,−ξ3

ξ1
,−ξ3

ξ2
,−ξ4

ξ1
,−ξ4

ξ2
,−ξ4

ξ3
,

ξ2ξ4

ξ1ξ3

]
,

(8)

γ =
[
ξ1, ξ2, ξ3,−ξ1ξ3

ξ2
, ξ4,−ξ1ξ4

ξ2
,−ξ1ξ4

ξ3
,−ξ2ξ4

ξ3

]
,

(9)

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

κκκκ

σσκκ

σκσκ

κσσκ

σκκσ

κσκσ

κκσσ

σσσσ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 	 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σκκκ

κσκκ

κκσκ

σσσκ

κκκσ

σσκσ

σκσσ

κσσσ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

It can be seen that [�; 	] contains all the 2n−1 permutations
of κ and σ of the n layers, and this holds for any multilayer.

Again, we would like to point out that for arbitrary multilayer,
either periodic or not, the transfer matrix (7) will be of the
same form.

IV. DISPERSION EQUATIONS

In order to study the electromagnetic properties of plas-
monic multilayers, we shall obtain their dispersion equation
from the already derived transfer matrices. Eigenmodes sup-
ported by the structure can be found by solving the eigenvalue
problem det(U − ηI ) = 0. Keeping in mind that

det(U ) = χj

χk

�j�k + γj

γk

	j	k = 1, (11)

we yield the following characteristic polynomial:

η2 − tr(U )η + 1, (12)

where

tr(U ) =
(

χj + 1

χj

)
�j = xj�

j (13)

is the trace of U . The roots of the characteristic polynomial
are

η = xj�
j

2
± i

√
1 −

(
xj�j

2

)2

. (14)

For periodic structures having period d (see Fig. 1), Bloch’s
theorem applies in the form η = e−ikxd, where kx is the Bloch
wave vector of the plasmonic multilayer. For a band of allowed
propagating waves, they have real kx , therefore, |η| = 1. This
leads to an important consequence: the eigenvalues of U are
located on the unit circle. From Re[η]2 + Im[η]2 = 1 it is
straightforward to end up with

cos(kxd) = xj�
j

2
= tr(U )

2
, (15)

which is the dispersion equation sought. Notice that the
equation holds for arbitrary periodic multilayer characterized
by �,	,χ,γ forming U . It is also valid for complex kx’s since
Euler’s formula applies to complex numbers as well.

If we consider ω = 0, then kj = kxj
= ky = 0 and we

may see that all σj ’s become zero and only the first term
in � survives. Since χ1 = 1, Eq. (15) results in cos(kxd) = 1,
which is solved trivially by kx = 0. That is, for any periodic
multilayer there is at least one mode that starts from (k =
0, ω = 0).

Now, we write the explicit dispersion expressions for biperi-
odic plasmonic multilayers. In the case of U1,2 configurations
with different metals and common dielectric (see Fig. 2), we
have

x =
[

2; −ξ 2
d + ξ 2

m1

ξdξm1

; −2; −ξ 2
d + ξ 2

m1

ξdξm1

; −ξ 2
d + ξ 2

m2

ξdξm2

;

− ξ 2
m1

+ ξ 2
m2

ξm1ξm2

; −ξ 2
d + ξ 2

m2

ξdξm2

;
ξ 4
d + ξ 2

m1
ξ 2
m2

ξ 2
d ξm1ξm2

]
, (16)
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and the dispersion equation reads as follows (the indices m1,m2

are omitted in κ,σ combinations in the same manner as above):

2 cos(kxd)

= κ2
d (x1κκ + x6σσ ) + σ 2

d (x3κκ + x8σσ )

+ κdσd [(x2 + x4)σκ + (x5 + x7)κσ ]

= κ2
d

(
2κκ − ξ 2

m1
+ ξ 2

m2

ξm1ξm2

σσ

)
−σ 2

d

(
2κκ − ξ 4

d + ξ 2
m1

ξ 2
m2

ξ 2
d ξm1ξm2

σσ

)

− 2κdσd

[
ξ 2
d + ξ 2

m1

ξdξm1

σκ + ξ 2
d + ξ 2

m2

ξdξm2

κσ

]
. (17)

For U3,4, i.e., different dielectrics and common metal, the
expressions are (now the indices d1 and d2 are omitted)

x =
[

2; −ξ 2
m + ξ 2

d1

ξmξd1

; −ξ 2
d1

+ ξ 2
d2

ξd1ξd2

; −ξ 2
m + ξ 2

d2

ξmξd2

; −ξ 2
m + ξ 2

d1

ξmξd1

;

−2; −ξ 2
m + ξ 2

d2

ξmξd2

;
ξ 4
m + ξ 2

d1
ξ 2
d2

ξ 2
mξd1ξd2

]
, (18)

2 cos(kxd)

= κ2
m(x1κκ + x3σσ ) + σ 2

m(x6κκ + x8σσ )

+ κmσm [(x2 + x5)σκ + (x4 + x7)κσ ]

= κ2
m

(
2κκ − ξ 2

d1
+ ξ 2

d2

ξd1ξd2

σσ

)
− σ 2

m

(
2κκ − ξ 4

m + ξ 2
d1

ξ 2
d2

ξ 2
mξd1ξd2

σσ

)

− 2κmσm

[
ξ 2
m + ξ 2

d1

ξmξd1

σκ + ξ 2
m + ξ 2

d2

ξmξd2

κσ

]
. (19)

Transition between Eqs. (17) and (19) can be made
if index transformations d ↔ m and m1,m2 ↔ d1,d2 are
applied. The equations become equivalent if we assume both
equal dielectrics and equal metals, i.e., a common periodic
metal-dielectric multilayer. In this case,

tr(U (l)U (l)) = 4κ2
d κ2

m − 4

(
ξd

ξm

+ ξm

ξd

)
κdκmσdσm

+
(

ξ 2
d

ξ 2
m

+ ξ 2
m

ξ 2
d

)
σ 2

d σ 2
m + 2σ 2

d σ 2
m

=
[

2κdκm −
(

ξd

ξm

+ ξm

ξd

)
σdσm

]2

= tr2(U (l)),

(20)

exactly as it is expected from matrix algebra since the
eigenvalues of a matrix squared is equal to squares of its
eigenvalues.

V. QUASISTATIC AND LONG-WAVELENGTH LIMIT

In the quasistatic limit, when ω comes close to zero, kj (ω)
tends to zero too and it is obvious that kj ∼ kxj

∼ ky → 0.
Using the O notation, one may write for finite C that
O(Cf (ω)) = O(f (ω)). In the case of εd being the permittivity
of a dielectric that is constant O(εdf (ω)) = O(f (ω)), i.e.,
product of the infinitesimal and a finite constant is infinitesimal
as well. Therefore, kd = √

εd (ω/c) = O(ω). In the case of a

metal, the problem is a little more complicated since the Drude
formula goes to infinity as ω reaches zero: εm = εm(ω−2).
Nevertheless, km =

√
εm(ω−2)(ω/c) = iC which means εm

only lessens the order of the infinitesimal function km and
does not introduce any singularity in it. In reality, however,
permittivity of metals is almost entirely imaginary valued
at low frequencies. As we do not account for losses in this
work, εm will be considered as a finite negative constant
in the quasistatic approximation assuming that kj = O(ω)
both for dielectric and metal layers. Now, let us define α

as the following set of functions: α = C2
1 [C2(ω/c)2 − k2

y] =
O(f (ω2,k2

y)), with C1,C2 ∈ R being some constants. Thus,
we can express κj ,σj in the quasistatic limit:

κj → 1 − d2
j

2

(
k2
j − k2

y

) + d2
j

4!

(
k2
j − k2

y

)2 = 1 − α + α2,

σj → dj

(
k2
j − k2

y

)1/2 − d3
j

3!

(
k2
j − k2

y

)3/2 = α1/2 − α3/2,

(21)

where the order of expansion is determined solely by the last
term in �. In our case, we should take into account terms up to
α2 so that this term remains nonvanishing. Thus, this is what
remains in � (repeating terms are skipped):

� =

⎡
⎢⎢⎢⎢⎢⎣

10α2 − 4α + 1

−4α2 + α

. . .

−4α2 + α

α2

⎤
⎥⎥⎥⎥⎥⎦. (22)

Next, we clarify what happens to x. For ξj there is the following
limit:

ξj → 1√
εj

√
1 − k2

y

k2
j

→ 0. (23)

The only quantities that enter χ are of the kind ξi/ξj . Let us
suppose these quantities equal unity in the sense that they all
share the same order of infinitesimals, i.e., ξi = O(ξj ) and
ξj = O(ξi) simultaneously. However, we should keep in mind
that in x they are summed with their inverses, leading to the
appearance of quadratic terms. Since εm < 0, for metals ξ 2

j →
−0, while in the case of dielectrics ξ 2

j → +0. Taking this fact
into account, we obtain thereby (repeating terms are skipped)

x = [2 . . . 2] . (24)

Considering propagation along the layers, i.e., with kx = 0,
Eq. (15) gives

− 13α2 + 2α = 0. (25)

From Sec. IV we already know that a trivial solution always
exists for a multilayer, meaning that lower modes start from
zero frequency. Equation (25) has two solutions, with α = 0
approaching the light line. As a result, α = {0,α1} states that
there are two lower eigenmodes in the biperiodic plasmonic
multilayer, one corresponding to the light line and the other
deviating from it. Moreover, it can be seen by induction
that an overall number of low-frequency modes is equal
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FIG. 3. (Color online) Asymptotic dispersion diagrams and isofrequency surfaces (in arbitrary units) typical for plasmonic multilayers in
the long-wavelength limit. Structures are designed to embody the multiperiodicity of (a) the second order (bi-periodicity), (b) the third order,
and (c) the fourth order. Cross sections of the surfaces (the isofrequency contours) are marked with green.

to the number of different kinds of plasmonic interfaces in
the unit cell defining the order of multiperiodicity. Namely,
α = {0,α1, . . . ,αn−1}. Attention should be paid to the fact that
this result does not rely upon a specific configuration of U .
Additional modes are observed for arbitrary multiperiodic
multilayers with unit cells having n different plasmonic
interfaces. Kindred multiband behavior may also be observed
in a class of three-dimensional hybridized metamaterials [27].

Isofrequency surfaces kx(ky,kz) for low-frequency modes
of plasmonic multilayers in the cases of n = 2,3,4 are
demonstrated in Fig. 3. Biperiodicity assumes the presence of
two modes in the long-wavelength limit, exactly as Fig. 3(a)
shows. The inner surface is of the shape of a wheel rim,
which corresponds to the hyperbolic isofrequency contour.
The outward surface is rather flat and has an inverted camber
profile. For higher-order multiperiodic multilayers, additional
high-k surfaces are added in addition to these two ones, getting
flatter and flatter with the increase of n. Each increase of n adds
a new disconnected surface. Such a diversity of topologies
seen in isofrequency surfaces arises due to the plasmonic
nature of the structures considered in this work. All-dielectric
multilayers would always have an ellipsoid as the isofrequency
surface at low frequencies, without additional modes.

Note that one can also view the increasing number of
isofrequency surfaces in Fig. 3 as the mode structure of an
array of weakly coupled dielectric waveguides sandwiched
between perfect electrically conducting walls since one can
notice that the Drude model becomes similar to the perfect
electric conductor in the long-wavelength limit.

We would also like to reiterate that in the case of
equal metals and dielectrics, the structure is identical to the
plasmonic multilayer composed of two alternating layers.
Additional modes are arising due to the appearance of
solutions corresponding to kx = 2π/(nd),n = 2 . . . n, in such
consideration of two-layered cells.

Another approach to the long-wavelength regime is to make
the thickness of the unit cell d approaches zero. It is usually
assumed that when the wavelength is much larger then the
thickness of the period, the local effective-medium theory can
be used. Such an approximation can be applied to multiperiodic
multilayers in the same manner as to the basic periodic case
with only one kind of plasmonic interface, so we introduce it
here for completeness.

As a general rule, the local effective-medium theory
assumes that the fields do not vary in the layers and are
constant. Since the tangential component of the electric field
should be conserved, we are able to write the effective-medium
permittivity tensor in the case of n arbitrary layers, alternating
periodically in the multilayer:

ε̂eff
ij =

∣∣∣∣∣ε
eff
‖ δij , i,j = 1,2

εeff
⊥ δij , i,j = 3

(26)

εeff
‖ =

∑
n εndn∑
n dn

, εeff
⊥ =

(∑
n ε−1

n dn∑
n dn

)−1

. (27)

In the case of, e.g., different dielectrics and common metal,
we obtain

εeff
‖ = 1

2

(
εd1 + εd2

)
dd

D
+ εmdm

D
, (28)

εeff
⊥ = 2

((
ε−1
d1

+ ε−1
d2

)
dd + 2ε−1

m dm

D

)−1

, (29)

where εd1 ,εd2 are permittivities of different dielectrics and εm is
a permittivity of the common metal. Once again, for different
metals it is only needed to interchange the indices d and m

coming to εm1 ,εm2 as permittivities for different metals.
One should pay attention that the local effective-medium

approximation typically fails to describe electromagnetic
response of plasmonic multilayers in presence of strong
variation of the field inside the layers. However, it may be
useful in some cases, as will be shown in the following.

VI. PHOTONIC BAND STRUCTURE

The dispersion equations obtained in the previous sections
allow us to study photonic band structures and optical proper-
ties of multiperiodic plasmonic multilayers semianalytically.
In this section, we consider in detail the case of biperiodicity
shown in Figs. 1 and 2. Namely, we remind that the structure
is formed using two different plasmonic interfaces defined by
U (a) and U (b), each consisting of a dielectric layer and a metal
layer. Permittivities of dielectrics are taken to be constant,
while for metal layers the Drude model is assumed. For the
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U1,2 configurations, the plasma frequencies of metals ωp1

and ωp2 are slightly detuned from each other, and we put
ωp1 < ωp2. All dielectric layers have thickness dd and metal
layers have thickness dm; the total thickness of the unit cell is
d = 2(dd + dm).

Since there are two different plasmonic interfaces in the
unit cell, there are two resonant frequencies ωsp1,sp2 defined
as

U1,2 : ωsp1,sp2 = ωp1,p2√
1 + εd

,

(30)
U3,4 : ωsp1,sp2 = ωp√

1 + εd1,d2
,

at which the dielectric and metal permittivites are opposite,
and surface plasmons are excited:

U1,2 : εm1(ωsp1) = −εd, εm2(ωsp2) = −εd ;
(31)

U3,4 : εm(ωsp1) = −εd1, εm(ωsp2) = −εd2.

Given the existence of two surface plasmon frequencies, it is
natural to introduce the normalized frequency W̃ , which is
zero at the first resonance and unity at the second one. The
expression for W̃ is thus

W̃ = ω − ωsp1

ωsp2 − ωsp1
. (32)

Figures 4 and 5 show the photonic band structure of
plasmonic multilayers calculated from (17) and (19). As was
demonstrated previously [11,28], two dispersion branches
are present in the plasmonic multilayer formed by U (l).
When the multilayer is formed by the four-layered unit cell

FIG. 4. (Color online) Band diagrams showing kx zero eigen-
waves of the plasmonic multilayer in (a) U1< and (b) U1> con-
figurations, as per Eq. (35). Frequency is normalized according to
Eq. (32), and wave numbers are normalized by a factor of π/d. Roman
numerals (I–IV) number the modes; highlighted regions numbered as
1–3 correspond to characteristic cases depicted in Fig. 6. Blue and
red dots denote mode crossings.

FIG. 5. (Color online) Band diagrams for the plasmonic mul-
tilayer in (a) U3< and (b) U3> configurations, as per Eq. (36).
Highlighted regions 1 and 2 correspond to characteristic cases shown
in Fig. 7. The rest is the same as in Fig. 4

U = U (a)U (b), two additional modes appear, resulting in four
branches in total. Generally, the appearance of additional
modes is not surprising, as it can be expected, for example,
from the analysis of multilayered waveguides [29,30]. Also,
four distinct waves in the optical domain were reported in five-
layered structures with only one plasmonic interface [31,32],
which are therefore not genuinely multiperiodic in terms of
our definition.

In the region 1 of Figs. 4(a) and 5(a), we see that the
mode I emerges from the ordinate axis at the frequency
ωvol, which corresponds to the volume plasmon. We also
see that the modes I and II cross near that frequency. In the
effective-medium limit (d → 0), we can yield an expression
for ωvol because in that limit, εeff

‖ (ωvol) = 0 by definition. The
resulting expressions for ωvol can then be written for different
configurations:

U1,2 : ωvol =
√√√√ ω2

p1 + ω2
p2

2
(
1 + εd

dd

dm

) =
√√√√ 〈

ω2
p

〉
1 + εd

dd

dm

, (33)

U3,4 : ωvol =
√√√√ ω2

pi

1 + 1
2 (εd1 + εd2) dd

dm

=
√√√√ ω2

pi

1 + 〈εd〉 dd

dm

. (34)

Both expressions contain averaged values: the mean of the
squared plasma frequencies for U1,2 and average permittivity
of dielectrics for U3,4. That is, ωvol in bi-periodic plasmonic
multilayers is none other than the averaging of volume plasmon
frequencies of the constitutive systems U (l). Equations (33)
and (34) can be obtained from Eqs. (17) and (19) by expanding
the latter over the layer thicknesses, taking into account
terms up to the second order. One may obtain more precise
expressions for ωvol if the terms up to the fourth order are kept.
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Whether or not the modes I and II cross near ωvol is
determined by the frequency of the volume plasmon relative
to that of the surface plasmons, which can be learned from
Figs. 4(a) and 5(a). For the mode crossing to take place,
the volume plasmon should be below both surface plasmons,
i.e., ωvol ≤ min(ωsp1,ωsp2) and mode I emerges below surface
plasmons. Taking into account our previous assumption ωp1 <

ωp2, the crossing condition is fulfilled in U1,2 configurations
when

dd

dm

>
1

2

[
1 + ω2

p2

ω2
p1

− 1

εd

(
1 − ω2

p2

ω2
p1

)]
. (35)

The corresponding expressions for the U3,4 configurations,
given the previous assumption εd1 < εd2, are

dd

dm

> 2
εd1

εd1 + εd2
. (36)

Equations (35) and (36) act as criteria for the thicknesses of
metal and dielectric layers as regards their influence on the
band structure. In what follows, we will denote thinner-metal
multilayers meeting these criteria with the subscript “<” and
the remaining (thicker-metal) multilayers with the subscript
“>.” Figures 4 and 5 confirm that these two cases give rise to
topologically distinct band diagrams.

Both (35) and (36) are valid under the effective-medium
approach, so a rather good prediction for the mode crossing
point is only achieved when d → 0. The thinner the full
period, and the further ωvol deviates from ωsp1,sp2, the
better the effective-medium approximates the volume plasmon
frequencies.

Figures 6 and 7 show three-dimensional dispersion surfaces
W̃ (kx,ky) for some characteristic cases of Figs. 4 and 5,
respectively. For the regions labeled as “1,” i.e., the crossing of
modes I and II, we see [Figs. 6(1) and 7(1)] that the crossing
appears as touching of the inner contours, a hyperbolic and

FIG. 6. (Color online) Dispersion surfaces corresponding to re-
gions 1–3 of Fig. 4, with kx spanning the first Brillouin zone. Blue
arrows mark the asymptotic behavior of the dispersion surfaces as
k̃y → ∞, tending towards W̃ = 0 or 1. Blue dots indicate touching
points between the surfaces at the crossing between modes I and
II [see Fig. 4(a)]. Red dots indicate Dirac-type points, where outer
dispersion surfaces collapse.

FIG. 7. (Color online) Dispersion surfaces corresponding to re-
gions 1 and 2 of band diagrams of Fig. 5. Red dots indicate isolated
Dirac-type points. The rest is the same as in Fig. 6.

an elliptic one, which is highlighted in the figures. The first
surface plasmon frequency ωsp1 (or W̃ = 0), lying above the
frequency of the crossing point between modes I and II,
serves as an asymptote for two of the four modes (I and III
or II and III, depending on the configuration) as k̃y → ∞,
indicated in Figs. 6(1) and 7(1) with blue arrows. Close to
ωsp1, various eigenmodes behave in a rather different fashion
for each specific configuration, as described in Table I, but in
all the cases the mode III cuts off at W̃ = 0.

In the lower half of Figs. 6(2) and 7(2) showing region 2 in
Figs. 4 and 5, respectively, we observe how the outer contours
behave past the first resonance, i.e., for W̃ > 0. We see that
there are several special points where the contours collapse
[as can be seen from, e.g., Fig. 7(2)]. From the analysis of
the band structure we learn that this occurs near a certain
frequency ωcol between those for the two surface plasmons:
ωsp1 < ωcol < ωsp2. It is determined by

ωcol = ωp1,p2√
1 + 〈εd〉

. (37)

Around this ωcol, the dispersion surfaces become cone
shaped.

We also notice that the central region of the Brillouin
zone contains a dispersion surface at the frequencies between
surface plasmons in U< configurations, but is devoid of bands
in the case of U>. In Fig. 4(b), this absence of modes in the
center of the Brillouin zone leads to a band gap in frequency.
In contrast to the case of U3<,4<, the conelike outer bands
in the dispersion surface form isolated nontrivial Dirac-type
cones, as seen in Fig. 8(a). The points corresponding to the
intersection of these cones at ωcol are therefore called the
Dirac-type points. Their exact location would vary slightly
with the change of the layer thicknesses. Conventionally, such

TABLE I. Behavior of the photonic bands nearby W̃ = 0.

U< U>

U1,2 Modes I and II form an Mode II cuts off at ωsp1.
elliptic and a hyperbolic
band.

Band gap is present above
the surface plasmon.

U3,4 Mode I cuts off at ωsp1.
Mode II forms an elliptic
band in the central region.

Mode II forms a hyperbolic
band. No modes are in the
center of the Brillouin zone.
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FIG. 8. (Color online) (a) An enlarged view of an isolated Dirac-
type cone of Fig. 7(2), with its cross section marked by the dashed
line. (b) Zero photon density of states corresponding to the Dirac-type
point (in arbitrary units).

Dirac points occur in the center of the Brillouin zone where
k = 0, as it takes place in numerous photonic analogs of the
Dirac cones observed in graphene [33–35] or, alternatively,
Dirac cones may be observed at the corners of the Brillouin
zone [36]. Here, we have, however, nontrivial high-k Dirac
states far away from the center of the zone. Moreover, the
cones are pinned to each other in a robust way and do
not get disconnected for arbitrary filling ratios in U3<,4<

configurations. We point out once again that isolated Dirac
points (without an accompanying band in the center of the
Brillouin zone) are only present in the case of U3,4 (same
metal, different dielectrics).

At these Dirac points, the structure changes from all-
negatively to all-positively refracting. A number of effects
are associated with the Dirac points in metamaterials, such
as Zitterbewegung of optical pulses [37–39], field localization
and enhancement [40], and giant optical nonlocality [41]. One
of the main characteristics of these points is that they are
states with zero photonic density of states (PDOS). For the
mth mode, PDOS is proportional to

∫
d2k δ(ω − ωm(k)) and

is fully defined by dispersion surfaces. When these collapse
into a set of points, PDOS becomes zero. It can be seen in
Fig. 8(b), where it is also demonstrated that PDOS is almost
symmetrical around the Dirac point.

Above the Dirac points frequency we can see the second
surface plasmon at W̃ = 1, where there are outer dispersion
branches tending to ωsp2 asymptotically. Finally, for fre-
quencies higher than the second surface plasmon resonance

(W̃ > 1), a bottleneck-shaped surface is seen to appear in the
dispersion relations [see Fig. 6(3)]. In all the band diagrams
showing eigenmode structures for different U ’s it corresponds
to the broadband backward-propagating mode IV. This mode
is also of special interest, as it realizes broadband negative
refraction up to the ultraviolet region [10].

VII. CONCLUSIONS

We have defined multiperiodicity in plasmonic multilayers
and introduced the permutation-based formalism for its uni-
versal description within the transfer-matrix approach. It was
shown that for an arbitrary multilayer, its transfer matrix can be
written in the same form differing only in permutation vectors
and corresponding coefficient rows. Low-frequency modes of
plasmonic multilayers have been analyzed, and it was shown
that their number is equal to the order of multiperiodicity.
Multiperiodicity up to the fourth order has been considered.
We have shown the formation of diverse topological structures
in isofrequency and dispersion surfaces. Relations between
the topological features of these surfaces and geometrical con-
figuration of the biperiodic multilayers have been established
and explained using the interplay between surface plasmon
polaritons at individual metal-dielectric interfaces and volume
plasmon polaritons in the effective-medium limit. For some
biperiodic configurations, namely, those with two different
kinds of dielectrics and one kind of metal (U3,4 as shown
in Fig. 2), vanishing photonic density of states and isolated
nontrivial Dirac cones have been observed, differing from the
conventional Dirac cones in photonic structure by their high-k
location in the wave-vector space.
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