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Higher-order nonclassical properties of fields propagating through a codirectional asymmetric nonlinear optical
coupler which is prepared by combining a linear waveguide and a nonlinear (quadratic) waveguide operated by
second harmonic generation are studied. A completely quantum mechanical description is used here to describe
the system. Closed form analytic solutions of Heisenberg’s equations of motion for various modes are used to show
the existence of higher-order antibunching, higher-order squeezing, and higher-order two-mode and multimode
entanglement in the asymmetric nonlinear optical coupler. It is also shown that nonclassical properties of light
can transfer from a nonlinear waveguide to a linear waveguide.
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I. INTRODUCTION

Several new applications of nonclassical states have been
reported in recent past [1–6]. For example, applications
of squeezed states are reported in the implementation of
continuous variable quantum cryptography [1], teleportation
of coherent states [2], etc.; antibunching is shown to be useful
in building single photon sources [3]; and entangled states
have appeared as one of the main resources of quantum
information processing as it is shown to be essential for
the implementation of a set of protocols of discrete [4]
and continuous variable quantum cryptography [1], quantum
teleportation [5], dense coding [6], etc. As a consequence of
these recently reported applications, generation of nonclassical
states in various quantum systems emerged as one of the
most important areas of interest in quantum information
theory and quantum optics. Several systems are already
investigated and have been shown to produce entanglement
and other nonclassical states (see [7,8], and references therein).
However, experimentally realizable simple systems that can
be used to generate and manipulate nonclassical states are
still of much interest. One such experimentally realizable
and relatively simple system is the nonlinear optical coupler.
Nonlinear optical couplers are of specific interest because
they can be easily realized using optical fibers or photonic
crystals, and the amount of nonclassicality present in the
output field can be controlled by controlling the interaction
length and the coupling constant. Further, recently Matthews
et al. have experimentally demonstrated manipulation of
multiphoton entanglement in quantum circuits constructed
using waveguides [9]. Quantum circuits implemented by them
can also be viewed as optical coupler based quantum circuits as
in their circuits waveguides are essentially combined to form
couplers. Using similar arrangements of optical couplers the
same group has also successfully implemented reconfigurable
controlled two-qubit operation [10] and Shor’s algorithm
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[11] on a photonic chip. In another interesting application,
Mandal and Midda have shown that a universal irreversible
gate library (NAND gate) can be built using nonlinear optical
couplers [12]. Mandal and Midda’s work essentially showed
that, in principle, a classical computer can be built using
optical couplers. Further, a directional optical coupler is one
of the most important integrated guided wave components
[13]. Thus if we can establish the possibility of generation
of intermodal entanglement or any other nonclassicality in a
directional optical coupler, that would imply the existence of
another source of entanglement or other required nonclassical
fields in a complex on-chip photonic circuit that can be used
to perform a specific task related to quantum computation
or quantum communication. In addition to the fact that
waveguide based directional couplers can be realized easily,
its potential adoptability in the integrated waveguide based
photonic circuits provides it an edge over many other systems
where nonclassical characters have already been studied as
most of the atomic and optomechanical systems cannot be
used in integrated quantum optic devices, such as in on-chip
photonic circuits. Further, it is already established by several
groups that integrated waveguide based structures are a better
source of entanglement compared to those based on bulk
crystal ([14], and references therein). These facts motivated us
to systematically investigate the possibility of observation of
nonclassicality in nonlinear optical couplers. Among different
possible nonlinear optical couplers one of the simplest systems
is a codirectional asymmetric nonlinear optical coupler that is
prepared by combining a linear waveguide and a nonlinear
(quadratic) waveguide operated by second harmonic genera-
tion. Waveguides interact with each other through evanescent
waves and we may say that transfer of nonclassical effect from
the nonlinear waveguide to the linear one happens through
evanescent waves. The present paper aims to study various
higher-order nonclassical properties of this specific optical
coupler with specific attention to entanglement.

It is interesting to note that several nonclassical properties
of optical couplers have been studied in the past (see [15] for
a review). For example, photon statistics, phase properties,
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and squeezing in codirectional and contradirectional Kerr
nonlinear couplers are studied with fixed and varying linear
coupling constants [16–20]; photon statistics of Raman and
Brillouin couplers [21] and parametric couplers [22] is studied
in detail; and photon statistics and other nonclassical properties
of asymmetric [23–27] and symmetric [27–29] directional
nonlinear couplers is investigated for various conditions such
as strong pump [23], weak pump [25], phase mismatch-
ing [30] for codirectional [25,28,30] and contradirectional
[26,28,30] propagation of classical (coherent) and nonclassical
[27,29] input modes. However, almost all the earlier studies
were limited to the investigation of lower-order nonclassical
effects (e.g., squeezing and antibunching) either under the
conventional short-length approximation [26] or under the
parametric approximation where a pump mode is assumed
to be strong and treated classically as a c number [30].
Only a few discrete efforts have recently been made to
study higher-order nonclassical effects and entanglement in
optical couplers [31–36], but even these efforts are limited
to Kerr nonlinear couplers. For example, in 2004, Leonski
and Miranowicz reported entanglement in Kerr nonlinear
couplers [33]; subsequently, entanglement in pumped Kerr
nonlinear optical couplers [34], entanglement sudden death
[31], and thermally induced entanglement [32] are reported
in Kerr nonlinear couplers. Amplitude squared (higher-order)
squeezing is also reported in Kerr nonlinear couplers [36].
However, neither has any effort yet been made to rigorously
study the higher-order nonclassical effects in nonlinear optical
couplers in general, nor has a serious effort been made to study
entanglement in nonlinear optical couplers other than Kerr
nonlinear couplers. Keeping these facts in mind in the present
paper we aim to study higher-order nonclassical effects (e.g.,
higher-order antibunching, squeezing, and entanglement) in
codirectional nonlinear optical coupler.

The remaining part of the paper is organized as follows.
In Sec. II we briefly describe the momentum operator that
describes the model of the asymmetric nonlinear optical
coupler studied here and perturbative solutions of equations
of motion corresponding to different field modes present in
the momentum operator. In Sec. III we list a set of criteria of
nonclassicality with special attention to those kinds of non-
classicalities that are never explored for asymmetric nonlinear
optical coupler. In Sec. IV we use the criteria described in
the previous section to illustrate the nonclassical characters
of various field modes present in the asymmetric nonlinear
optical coupler. Specifically, we have reported higher-order
squeezing, antibunching, and entanglement. Finally, the paper
is concluded in Sec. V.

II. THE MODEL AND THE SOLUTIONS

An asymmetric nonlinear optical coupler is schematically
shown in Fig. 1. We are interested in the nonclassical properties
of this coupler. From Fig. 1 we can clearly see that a linear
waveguide is combined with a nonlinear one with χ (2) non-
linearity to form the asymmetric coupler. As the χ (2) medium
can produce second harmonic generation, we may say that the
coupler is operated by second harmonic generation. The linear
waveguide carries the electromagnetic field characterized by
the bosonic field annihilation (creation) operator a (a†). On

FIG. 1. (Color online) Schematic diagram of a codirectional
asymmetric nonlinear optical coupler prepared by combining a
linear waveguide with a nonlinear (quadratic) waveguide operated by
second harmonic generation. The fields involved are described by the
corresponding annihilation operators, as shown; L is the interaction
length.

the other hand, the field operators bi (b†i ) correspond to
the nonlinear medium. Further, b1 (k1) and b2 (k2) denote
annihilation operators (wave vectors) for fundamental and
second harmonic modes, respectively. Now the nonlinear
momentum operator in the interaction picture for this coupler
can be written as

G = −�kab
†
1 − ��b2

1b
†
2 exp(i�kz) + H.c., (1)

where H.c. stands for the Hermitian conjugate and �k =
|2k1 − k2| denotes the phase mismatch between the funda-
mental and second harmonic beams. The parameters k and
� are the linear and nonlinear coupling constants and are
proportional to the linear (χ (1)) and nonlinear (χ (2)) suscepti-
bilities, respectively. The value of χ (2) is considerably smaller
than χ (1) (typically χ (2)/χ (1) � 10−6) and as a consequence
� � k unless an extremely strong pump is present. The model
is elaborately discussed by some of the present authors in
their earlier publications [15,24,25]. Specifically, in Ref. [24]
single mode and intermodal squeezing, antibunching, and
subshot noise was studied using analytic expressions of spatial
evolution of field operators obtained by short-length solution
of the Heisenberg’s equations of motion corresponding to (1).
The validity of the short-length solution used in Ref. [24] was
strictly restricted by the condition �z � 1. Later on Sen and
Mandal developed a perturbative solution technique [37] that
can solve Heisenberg’s equations of motion for �z � 1. The
Sen-Mandal technique was subsequently used in Ref. [25] to
obtain spatial evolution of field operators corresponding to
(1) and to study single-mode and intermodal squeezing and
antibunching. Interestingly, in [25] some nonclassical charac-
ters of asymmetric nonlinear optical coupler were observed
which were not observed in the earlier investigations [15,24]
performed using short-length solution. This was indicative of
the fact that the Sen-Mandal perturbative method provides
better solution1 for the study of nonclassical properties. The
same fact is observed in other optical systems, too ([8], and
references therein). However, neither entanglement nor any

1In fact, short-length (time) solution can be obtained as a special
case of Sen-Mandal perturbative solution.
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of the higher-order nonclassical properties were studied in
earlier papers. Keeping these facts in mind we have used
the solution reported in Ref. [25] to study the higher-order
nonclassicalities.

In Ref. [25] closed form analytic expressions for evolution
of field operators valid up to linear power of the coupling
coefficient � were obtained as follows:

a(z) = f1a(0) + f2b1(0) + f3b
†
1(0)b2(0) + f4a

†(0)b2(0),

b1(z) = g1a(0) + g2b1(0) + g3b
†
1(0)b2(0) + g4a

†(0)b2(0),

b2(z) = h1b2(0) + h2b
2
1(0) + h3b1(0)a(0) + h4a

2(0), (2)

where

f1 = g2 = cos |k|z, f2 = −g1∗ = − ik∗

|k| sin |k|z,

f3 = 2k∗�∗

4|k|2 − (�k)2

[
G−f1 + f2

k∗

{
�k − 2|k|2

�k
G−

}]
,

f4 = 4k∗2�∗

�k[4|k|2 − (�k)2]
G−f1 + 2k∗�∗

[4|k|2 − (�k)2]
G+f2,

g3 = 2�∗k
[4|k|2 − (�k)2]

G+f2 − 2�∗(2|k|2 − (�k)2)f1

�k[4|k|2 − (�k)2]
G−,

g4 = 4�∗|k|2
�k[4|k|2 − (�k)2]

f2 − 2�∗(2|k|2 − (�k)2)

�k[4|k|2 − (�k)2]

× (G+ − 1)f2 + 2k∗�∗

[4|k|2 − (�k)2]
G−f1,

h1 = 1,

h2 = �G∗
−

2�k
− i�

2[4|k|2 − (�k)2]
{2|k|(G∗

+ − 1) sin 2|k|z

− i�k[1 − (G∗
+ − 1) cos 2|k|z]},

h3 = −�|k|
k∗[4|k|2 − (�k)2]

{i�k(G∗
+ − 1) sin 2|k|z

+ 2|k|[1 − (G∗
+ − 1) cos 2|k|z]},

h4 = −�|k|2G∗
−

2k∗2
�k

− i�|k|2
2k∗2 [4|k|2 − (�k)2]

{2|k|(G∗
+ − 1)

× sin 2|k|z − i�k[1 − (G∗
+ − 1) cos 2|k|z]}, (3)

where G± = [1 ± exp(−i�kz)]. In what follows we will use
these closed form analytic expressions of the field operators
to investigate the spatial evolution of entanglement and some
higher-order nonclassical characteristics of the field modes.
We will not discuss the usual nonclassical characters such as
squeezing and antibunching as they are already discussed in
Ref. [25].

III. CRITERIA OF NONCLASSICALITY

A state having negative or highly singular (more singular
than δ function) Glauber-Sudarshan P function is referred
to as a nonclassical state as it cannot be expressed as a
classical mixture of coherent states. P function provides
us an essential as well as sufficient criterion for detection
of nonclassicality. However, P function is not directly ex-
perimentally measurable. Consequently, several operational

criteria for nonclassicality have been proposed in the last
50 years. A large number of these criteria are expressed
as inequalities involving expectation values of functions
of annihilation and creation operators. This implies that
Eqs. (2) and (3) provide us with the sufficient mathematical
framework required to study the nonclassical properties of
the codirectional asymmetric nonlinear optical coupler. As
mentioned above we are interested in the higher-order non-
classical properties of radiation fields. In quantum optics and
quantum information higher-order nonclassical properties of
bosons (e.g., higher-order Hong-Mandel squeezing, higher-
order antibunching, higher-order sub-Poissonian statistics,
higher-order entanglement, etc.) are often studied ([38], and
references therein). Until recently, past studies on higher-order
nonclassicalities were predominantly restricted to theoretical
investigations. However, a bunch of exciting experimental
demonstrations of higher-order nonclassicalities have been
recently reported [39–41]. Specifically, the existence of higher-
order nonclassicality in bipartite multimode states produced
in a twin-beam experiment has been recently demonstrated
by Allevi, Olivares, and Bondani [39] using a new criterion
for higher-order nonclassicality introduced by them. They also
showed that detection of weak nonclassicalities is easier with
their higher-order criterion of nonclassicality as compared
to the existing lower-order criteria [39]. This observation
was consistent with the earlier theoretical observation of
Pathak and Garcia [42] that established that the depth of
nonclassicality in higher-order antibunching increases with
the order. The possibility that higher-order nonclassicality
may be more useful in identifying the weak nonclassicalities
has considerably increased the interest of the quantum optics
community on the higher-order nonclassical characters of
bosonic fields. In the remaining part of this section we list
a set of criteria of higher-order nonclassicalities, and in the
following section we study the possibility of satisfying those
criteria in the codirectional asymmetric nonlinear optical
coupler.

A. Higher-order squeezing

Higher-order squeezing is usually studied using two differ-
ent approaches [43–45]. In the first approach introduced by
Hillery in 1987 [43] reduction of variance of an amplitude
powered quadrature variable for a quantum state with respect
to its coherent state counterpart reflects nonclassicality. In
contrast, in the second type of higher-order squeezing intro-
duced by Hong and Mandel in 1985 [44,45], higher-order
squeezing is reflected through the reduction of higher-order
moments of usual quadrature operators with respect to their
coherent state counterparts. In the present paper we have
studied higher-order squeezing using Hillery’s criterion of
amplitude powered squeezing. Specifically, Hillery introduced
amplitude powered quadrature variables as

Y1,a = ak + (a†)k

2
(4)

and

Y2,a = i

(
(a†)k − ak

2

)
. (5)
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As Y1,a and Y2,a do not commute we can obtain uncertainty
relation and a condition of squeezing. For example, for
k = 2, Hillery’s criterion for amplitude squared squeezing is
described as

Ai,a = 〈(�Yi,a)2〉 − 〈
Na + 1

2

〉
< 0, (6)

where i ∈ {1,2}.

B. Higher-order antibunching

Since 1977 signatures of higher-order nonclassical photon
statistics (HONPS) in different optical systems of interest
have been investigated by some of the present authors
using criterion based on higher-order moments of number
operators (cf. Ref. [15] and Chap. 10 of [46], and references
therein). However, higher-order antibunching (HOA) was not
specifically discussed, but it was demonstrated there for
degenerate and nondegenerate parametric processes in single
and compound signal-idler modes, respectively, and for Raman
scattering in compound Stokes–anti-Stokes mode up to n = 5.
Further, it was shown that the value of the parameter that
describes HONPS decreases with increasing n occurring on a
shorter time interval in parametric processes, whereas different
order HONPS occurs on the same time interval in Raman
scattering. A specific criterion for HOA was first introduced
by Lee [47] in 1990 using higher-order moments of number
operators. Initially, HOA was considered to be a phenomenon
that appears rarely in optical systems, but in 2006, some of
the present authors established that it is not really a rare
phenomenon [48]. Since then HOA has been reported in
several quantum optical systems ([38], and references therein)
and atomic systems [49]. However, no effort has yet been made
to study HOA in optical couplers. Thus the present study of
HOA in asymmetric nonlinear optical couplers is expected to
lead to similar observations in other types of optical couplers.
Before we proceed further, we would like to note that signature
of HOA can be observed through a bunch of equivalent but
different criteria, all of which can be interpreted as modified
Lee criterion. In what follows we will use the following simple
criterion of nth-order single-mode antibunching introduced by
Pathak and Garcia [42]:

Da(n) = 〈a†nan〉 − 〈a†a〉n < 0. (7)

Here n = 2 corresponds to the usual antibunching and n � 3
refers to the higher-order antibunching. Here it would be apt
to note that the term “higher-order antibunching” was coined
by Lee in his pioneering work [47] in 1990. In Ref. [47],
Lee used Da(2) = 〈a†2a2〉 − 〈a†a〉2 < 0 as the condition of
antibunching and supported his choice by citing a 1959 work
of Mandel [50], and Lee stated, “The correspondence between
antibunching and sub-Poisson distribution has been estab-
lished by Mandel through the so-called Poisson transform.
Therefore, we consider antibunching and the sub-Poissonian
distribution as equivalent. In this paper.” This is how the term
HOA originated. The same notion of HOA was used in all
the future works on this topic [38,42,48,49,51], and in the
present work we have also followed the same convention.
However, for n = 2, Lee’s criterion yields a condition of
nonclassical state as 〈a†2(t)a2(t)〉 − 〈a†(t)a(t)〉2 < 0, which
is more related to sub-Poisson behavior. Technically, it is

more appropriate to characterize antibunching by the cri-
terion g(2)(τ ) > g(2)(0) where g(2)(τ ) = 〈a†(t)a†(t+τ )a(t+τ )a(t)〉

〈a†(t)a(t)〉〈a†(t+τ )a(t+τ )〉
and to characterize the sub-Poissonian photon statistics by
g(2)(0) = 〈a†(t)a†(t)a(t)a(t)〉

〈a†(t)a(t)〉〈a†(t)a(t)〉 < 1 [52] or equivalently by the

criterion Da(2) = 〈a†2(t)a2(t)〉 − 〈a†(t)a(t)〉2 < 0 as is used
in the present paper. It is interesting to note that following
the same convention as was adopted in [47], several other
authors [53,54] have also used Da(2) < 0 as the criterion of
antibunching. This specific choice of antibunching criterion
can be justified if we note that for any finite bandwidth
electromagnetic field g(2)(τ ) → 1 for sufficiently long time
scale (τ → ∞) [54]. This is so because if g(2)(τ ) = 1, then
g(2)(0) < 1 or Da(2) < 0 essentially implies g(2)(τ ) > g(2)(0).
Thus for any finite bandwidth electromagnetic field which
satisfies g(2)(0) < 1 or Da(2) < 0 will always show antibunch-
ing for some time scale. Further, the criterion of higher-order
sub-Poissonian photon statistics (HOSPS) is different from
(7) for all values of n � 3 ([38], and references therein). Thus,
although (7) reduces to the criterion of sub-Poissonian photon
statistics for n = 2, it does not reduce to the criterion of HOSPS
for n � 3 and consequently it is not a criterion of HOSPS.
However, it gives a nonclassical photon statistics as shown by
Lee [47], and following Lee the specific nonclassical character
revealed by this criterion is traditionally being referred to as
HOA [38,42,47–49,51] and in what follows we have also used
the same convention.

C. Entanglement and higher-order entanglement

There exist several inseparability criteria ([55], and refer-
ences therein) that are expressed in terms of expectation values
of field operators and thus suitable for study of entanglement
dynamics within the framework of the present approach.
Among these criteria, the criterion of Duan et al. [56], which
is usually referred to as Duan’s criterion, and Hillery-Zubairy
criterion I and II (HZ-I and HZ-II) [57–59] have received more
attention for various reasons, such as computational simplicity,
experimental realizability, and their recent success in detecting
entanglement in various optical, atomic, and optomechanical
systems ([8,49], and references therein). To begin with we
may note that the first inseparability criterion of Hillery and
Zubairy, i.e., the HZ-I criterion of inseparability, is described as

〈NaNb〉 − |〈ab†〉|2 < 0, (8)

whereas the second criterion of Hillery and Zubairy, i.e., the
HZ-II criterion, is given by

〈Na〉〈Nb〉 − |〈ab〉|2 < 0. (9)

The other criterion of inseparability to be used in the present
paper is the criterion of Duan et al., which is described as
follows [56]:

dab = 〈(�uab)2〉 + 〈(�vab)2〉 − 2 < 0, (10)

where

uab = 1√
2
{(a + a†) + (b + b†)},

(11)

vab = − i√
2
{(a − a†) + (b − b†)}.
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Clearly our analytic solution (2)–(3) enable us to investigate
intermodal entanglement in asymmetric nonlinear optical cou-
pler using all three inseparability criteria described above and
a set of other criteria listed in [60]. It is interesting to note that
all the inseparability criteria described above and in the rest of
the paper are special cases of the Shchukin-Vogel inseparbility
criterion [61]. Miranowicz et al. have clearly established this
point in Refs. [60,62]. As all three inseparability criteria that
are explicitly described here are only sufficient (not necessary),
a particular criterion may fail to identify entanglement detected
by another criterion. Keeping this fact in mind, we use all these
criteria to study the intermodal entanglement in asymmetric
nonlinear optical coupler. The criteria described above can
only detect bipartite entanglement of lowest order. As the pos-
sibility of generation of entanglement in asymmetric nonlinear
optical coupler has not been discussed earlier we have studied
the spatial evolution of intermodal entanglement using these
lower-order inseparability criteria. However, to be consistent
with the focus of the present paper, we need to investigate the
possibility of observing higher-order entanglement, too. For
that purpose we require another set of criteria for detection
of higher-order entanglement. All criteria for detection of
multipartite entanglement are essentially higher-order criteria
[63–65] as they reveal some higher-order correlation. Inter-
estingly, there exist higher-order inseparability criteria for
detection of higher-order entanglement in the bipartite case,
too. Specifically, Hillery and Zubairy introduced two criteria
for intermodal higher-order entanglement [57] as follows:

E
m,n
ab = 〈(a†)mam(b†)nbn〉 − |〈am(b†)n〉|2 < 0 (12)

and

E
′m,n
ab = 〈(a†)mam〉〈(b†)nbn〉 − |〈ambn〉|2 < 0. (13)

Here m and n are nonzero positive integers and the lowest pos-
sible values of m and n are m = n = 1, which reduces (12) and
(13) to usual HZ-I criterion [i.e., (8)] and HZ-II criterion [i.e.,
(9)], respectively. Thus, these two criteria are a generalized
version of the well-known lower-order criteria of Hillery and
Zubairy and we may refer to (12) and (13) as the HZ-I criterion
and the HZ-II criterion, respectively, in analogy to the lowest-
order cases. A quantum state will be referred to as a (bipartite)
higher-order entangled state if it is found to satisfy (12) and/or
(13) for any choice of integer m and n satisfying m + n � 3.

The other type of higher-order entanglement i.e., multipartite
entanglement can be detected in various ways. In the present
paper we have used a set of multimode inseparability criteria
introduced by Li et al. [66]. Specifically, Li et al. have shown
that a three-mode quantum state is not biseparable in the form
ab1|b2 (i.e., compound mode ab1 is entangled with the mode
b2) if the following inequality holds for the three-mode system:

E
m,n,l
ab1|b2

= 〈
(a†)mam(b†1)nbn

1(b†2)lbl
2

〉 − ∣∣〈ambn
1(b†2)l

〉∣∣2
< 0,

(14)

where m,n,l are positive integers and annihilation operators
a,b1,b2 correspond to the three modes. A quantum state satis-
fying the above inequality is referred to as the ab1|b2 entangled
state. The three-mode inseparability criterion can be written in
various alternative forms. For example, an alternative criterion

for detection of the ab1|b2 entangled state is [66]

E
′m,n,l
ab1|b2

= 〈
(a†)mam(b†1)nbn

1

〉〈
(b†2)lbl

2

〉 − ∣∣〈ambn
1b

l
2

〉∣∣2
< 0. (15)

Similarly, one can define the criteria for detection of a|b1b2 and
b1|ab2 entangled states and use them to obtain the criterion for
detection of fully entangled tripartite states. For example, using
(14) and (15), respectively, we can write that the three modes
of our interest are not biseparable in any form if any one of the
following two sets of inequalities is satisfied simultaneously:

E
1,1,1
ab1|b2

< 0, E
1,1,1
a|b1b2

< 0, E
1,1,1
b1|b2a

< 0, (16)

E
′1,1,1
ab1|b2

< 0, E
′1,1,1
a|b1b2

< 0, E
′1,1,1
b1|b2a

< 0. (17)

Further, for a fully separable pure state we always have

|〈ab1b2〉| = |〈a〉〈b1〉〈b2〉| �
[〈Na〉

〈
Nb1

〉 〈
Nb2

〉]1/2
. (18)

Thus a three-mode pure state that violates (18) (i.e., satisfies
〈Na〉〈Nb1〉〈Nb2〉 − |〈ab1b2〉|2 < 0) and simultaneously
satisfies either (16) or (17) is a fully entangled state as it is
neither fully separable nor biseparable in any form.

IV. NONCLASSICALITY IN CODIRECTIONAL
OPTICAL COUPLER

Using the perturbative solutions (2)–(3) we can obtain
spatial evolution of various operators that are relevant for the
detection of nonclassical characters. For example, we may use
(2)–(3) to obtain the number operators for various field modes
as follows:

Na = a†a = |f1|2a†(0)a(0) + |f2|2b†1(0)b1(0)

+ [
f ∗

1 f2a
†(0)b1(0) + f ∗

1 f3a
†(0)b†1(0)b2(0)

+ f ∗
1 f4a

†2(0)b2(0) + f ∗
2 f3b

†2
1 (0)b2(0)

+ f ∗
2 f4b

†
1(0)a†(0)b2(0) + H.c.

]
, (19)

Nb1 = b
†
1b1 = |g1|2a†(0)a(0) + |g2|2b†1(0)b1(0)

+ [
g∗

1g2a
†(0)b1(0) + g∗

1g3a
†(0)b†1(0)b2(0)

+ g∗
1g4a

†2(0)b2(0) + g∗
2g3b

†2
1 (0)b2(0)

+ g∗
2g4b

†
1(0)a†(0)b2(0) + H.c.

]
, (20)

Nb2 = b
†
2b2 = b

†
2(0)b2(0) + [

h2b
†
2(0)b2

1(0)

+h3b
†
2(0)b1(0)a(0) + h4b

†
2(0)a2(0) + H.c.

]
. (21)

The average value of the number of photons in the modes
a, b1, and b2 may now be calculated with respect to a given
initial state. We assume that the initial state is a product of
three coherent states: |α〉|β〉|γ 〉, where |α〉, |β〉, and |γ 〉 are
eigenkets of annihilation operators a, b1, and b2, respectively.
Field operator a(0) operating on such a multimode coherent
state yields a complex eigenvalue α. Specifically,

a(0)|α〉|β〉|γ 〉 = α|α〉|β〉|γ 〉, (22)

where |α|2,|β|2,|γ |2 is the number of input photons in the field
modes a, b1, and b2, respectively. For a spontaneous process,
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FIG. 2. (Color online) Amplitude squared squeezing is observed
in modes (a) a and (b) b1 for the initial state |α〉|β〉|γ 〉 with
k = 0.1, � = 0.001, �k = 10−4, α = 5, β = 2, and γ = 1. Nega-
tive parts of the solid line represent squeezing in quadrature variable
Y1,a (Y1,b1 ) and that of the dashed line represent squeezing in
quadrature variable Y2,a (Y2,b1 ).

the complex amplitudes should satisfy β = γ = 0 and α �= 0.

Whereas, for a stimulated process, the complex amplitudes are
not necessarily zero and it would be physically reasonable to
choose α > β > γ. In what follows, in all the figures (except
Fig. 3) that illustrate the existence of nonclassical character
in asymmetric nonlinear optical coupler we have chosen α =
5, β = 2, and γ = 1.

A. Higher-order squeezing

Using Eqs. (2)–(3), (19)–(21) in the criterion of amplitude
squared squeezing (6), we obtain[

A1,a

A2,a

]
= ±[

(f1f4 + f2f3)
(
f 2

1 α2γ + f 2
2 β2γ

+ 2f1f2αβγ
) + c.c.

]
, (23)

[
A1,b1

A2,b1

]
= ±[

(g1g4 + g2g3)
(
g2

1α
2γ + g2

2β
2γ

+ 2g1g2αβγ
) + c.c.

]
, (24)

and [
A1,b2

A2,b2

]
= 0. (25)

Clearly we do not obtain any signature of amplitude squared
squeezing in b2 mode using the present solution and mode a

(b1) should always show amplitude squared squeezing in one
of the quadrature variables as both A1,a and A2,a (A1,b1 and
A2,b1 ) cannot be positive simultaneously. To investigate the
possibility of amplitude squared squeezing in further detail in
modes a and b1 we have plotted the spatial variation of Ai,a

and Ai,b1 in Fig. 2. Negative regions of these two plots clearly
illustrate the existence of amplitude squared squeezing in both
a and b1 modes.

B. Higher-order antibunching

We have already described the condition of HOA as (7).
Now using Eqs. (2)–(3), (7), and (19)–(21) we can obtain
closed form analytic expressions for Di(n) for various modes
as follows:

Da(n) = nC2γ |(f1α + f2β)|2n−4

×{(f1α + f2β)2(f ∗
2 f ∗

3 + f ∗
1 f ∗

4 ) + c.c.}, (26)

Db1 (n) = nC2γ |(g1α + g2β)|2n−4

×{(g1α + g2β)2(g∗
2g

∗
3 + g∗

1g
∗
4 ) + c.c.}, (27)

Db2 (n) = 0. (28)

Clearly, the perturbative solution used here cannot detect
any signature of higher-order antibunching for the b2 mode.
However, in the other two modes we observe HOA for different
values of n as illustrated in Fig. 3. In Fig. 3, we have plotted the
right-hand sides of (26) and (27) along with the exact numerical
results obtained by integrating the z-dependent Schrödinger
equation corresponding to a given momentum operator by
using the matrix form of the operators. Close resemblance of
the exact numerical result with the perturbative result even for
the higher-order case clearly validates the perturbative solution
used here.

C. Intermodal entanglement

To apply the HZ-I criterion to investigate the existence
of intermodal entanglement between modes a and b1, i.e.,
compound mode ab1, we use Eqs. (2)–(3) and (19)–(21) and
obtain

E
1,1
ab1

= 〈NaNb1〉 − |〈ab
†
1〉|2

= (|g1|2f ∗
4 f1 + f ∗

3 f1g
∗
2g1)α2γ ∗

+ (|f1|2g∗
1g4 + f ∗

1 f2g
∗
1g3)α∗2γ

+ (|g2|2f ∗
3 f2 + f ∗

4 f2g
∗
1g2)β2γ ∗

+ (|f2|2g∗
2g3 + f ∗

2 f1g
∗
2g4)β∗2γ

+ (|g1|2 − |g2|2)((f ∗
4 f2 − f ∗

3 f1)αβγ ∗

− (g∗
2g4 − g∗

1g3)α∗β∗γ ). (29)

Similarly, applying the HZ-II criterion to the compound mode
ab1 we obtain

E
′1,1
ab1

= 〈Na〉〈Nb1〉 − |〈ab1〉|2

= −[(|g1|2f ∗
4 f1 + f ∗

3 f1g
∗
2g1)α2γ ∗

+ {|f1|2g∗
1g4 + f ∗

1 f2g
∗
1g3)α∗2γ
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FIG. 3. (Color online) HOA with rescaled interaction length �z

in mode (a) a and (b) mode b1 for n = 3 (smooth line) and n =
4 (dashed line), and squares and circles are for the corresponding
numerical results with the initial state |α〉|β〉|γ 〉 and k = 0.1, � =
0.001, �k = 10−4, α = 0.5, β = 0.2, and γ = 0.1.

+ (|g2|2f ∗
3 f2 + f ∗

4 f2g
∗
1g2)β2γ ∗

+ (|f2|2g∗
2g3 + f ∗

2 f1g
∗
2g4)β∗2γ

+ (|g1|2 − |g2|2)[(f ∗
4 f2 − f ∗

3 f1)αβγ ∗

− (g∗
2g4 − g∗

1g3)α∗β∗γ ]}. (30)

From Eqs. (29) and (30) we can easily observe that in
the present case E

1,1
ab1

= −E
′1,1
ab1

, which implies that at any
point inside the coupler either the HZ-I criterion or the HZ-II
criterion would show the existence of entanglement as both of
them cannot be simultaneously positive. Thus compound mode
ab1 is always entangled inside a codirectional asymmetric
optical coupler. The same is explicitly illustrated through
Fig. 4. Following the same approach we investigated the
existence of entanglement in other compound modes (e.g.,
ab2 and b1b2), but both the HZ-I and HZ-II criteria failed
to detect any entanglement in these cases. However, it does
not indicate that the modes are separable as both the HZ-I
and HZ-II inseparability criteria are only sufficient and not
essential. Further, the perturbative analytic solution used here
is an approximate solution and in recent past we have seen
several examples where the existence of entanglement not
detected by HZ criteria is detected by the criterion of Duan
et al. or vice versa [8,49]. Keeping these facts in mind, we
studied the possibilities of observing intermodal entanglement
using the criterion of Duan et al., too, but it failed to detect

0.02 0.04 0.06 0.08 0.10
z

0.2

0.1

0.1

0.2
Eab1
1,1 and Eab1

' 1,1

FIG. 4. (Color online) Hillery-Zubairy criterion I (solid line) and
criterion II (dashed line) for entanglement are showing intermodal
entanglement between modes a and b1. Here E

1,1
ab1

(solid line) and E
′1,1
ab1

(dashed line) are plotted with rescaled interaction length �z for mode
ab1 with the initial state |α〉|β〉|γ 〉 and k = 0.1, � = 0.001, �k =
10−4, α = 5, β = 2, and γ = 1.

any entanglement in the present case as we obtained

dab1 = dab2 = db1b2 = 0. (31)

We may now investigate the existence of higher-order
entanglement using Eqs. (12)–(18). To begin with we may
use (2)–(3) and (12) to obtain

E
m,n
ab1

= 〈a†mamb
†n
1 bn

1〉 − |〈amb
†n
1 〉|2

= mn|(f1α + f2β)|2m−2|(g1α + g2β)|2n−2E
1,1
ab1

. (32)

Similarly, using (2)–(3) and (13) we can obtain a closed form
analytic expression for E

′m,n
ab1

and easily observe that

E
′m,n
ab1

= −E
m,n
ab1

. (33)

Equation (33) clearly shows that higher-order entanglement
between the a mode and b1 mode would always be observed
for any choice of m and n as E

m,n
ab1

and E
′m,n
ab1

cannot
be simultaneously positive. Using (32) and (33) we can
easily obtain analytic expressions of E

2,1
ab1

,E
′2,1
ab1

, E
′1,2
ab1

, etc.
Such analytic expressions are not reported here as existence
of higher-order entanglement is clearly seen through (33).
However, in Fig. 5 we have illustrated the spatial evolution
of E

2,1
ab1

and E
′2,1
ab1

. Negative regions of this figure clearly
show the existence of higher-order intermodal entanglement in

0.02 0.04 0.06 0.08 0.10
z

1.5
1.0
0.5

0.5
1.0
1.5

Eab1
2,1 and Eab1

' 2,1

FIG. 5. (Color online) Higher-order entanglement is observed
using the Hillery-Zubairy criteria. The solid line shows spatial
variation of E

2,1
ab1

and the dashed line shows spatial variation of

E
′2,1
ab1

with the initial state |α〉|β〉|γ 〉 and k = 0.1, � = 0.001, �k =
10−4, α = 5, β = 2, and γ = 1.
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compound mode ab1. As expected from (33), we observe that
for any value of �z compound mode ab1 is higher-order entan-
gled. However, Hillery-Zubairy’s higher-order entanglement
criteria (12)–(13) could not show any signature of higher-order
entanglement in compound modes ab2 and b1b2. This is not
surprising as Hillery-Zubairy’s criteria are only sufficient, not
necessary, and we have already seen that these criteria fail to
detect lower-order entanglement present in compound modes
ab2 and b1b2.

There exists another way to study higher-order entan-
glement. To be precise, all multimode entanglements are
essentially higher-order entanglement. As there are three
modes in the coupler studied here, we may also investigate
the existence of three-mode entanglement. We have already
noted that a three-mode pure state that violates (18) (i.e., sat-
isfies 〈Na〉〈Nb1〉〈Nb2〉 − |〈ab1b2〉|2 < 0) and simultaneously
satisfies either (16) or (17) is a fully entangled state. Now
using (2)–(3) and (14)–(18) we obtain the following relations
for m = n = l = 1:

E
1,1,1
a|b1b2

= −E
′1,1,1
a|b1b2

= E
1,1,1
ab2|b1

= −E
′1,1,1
ab2|b1

= |γ |2E1,1
ab1

, (34)

E
1,1,1
ab1|b2

= E
′1,1,1
ab1|b2

= 0, (35)

and

〈Na〉
〈
Nb1

〉 〈
Nb2

〉 − |〈ab1b2〉|2 = −|γ |2E1,1
ab1

. (36)

From (34) we can see that three modes of the coupler are
not biseparable in the form a|b1b2 and ab2|b1 for any value
of �z > 0. Further, Eq. (36) and positive regions of E

1,1
ab1

shown in Fig. 4 show that the three modes of the coupler
are not fully separable. However, the present solution does
not show signature of a fully entangled three-mode state as
(35) does not show entanglement between coupled mode
ab1 and mode b2. To be specific, we observed three-mode
(higher-order) entanglement, but could not observe signature
of a fully entangled three-mode state. However, here we cannot
conclude whether the three modes of the coupler are fully
entangled or not as the criteria used here are only sufficient.

We have already observed different signatures of nonclassi-
cality in asymmetric nonlinear optical couplers of our interest.
If we now closely look into all the analytic expressions of
signatures of nonclassicality provided here through Eqs. (23)–
(36) we can find an interesting symmetry: All the nonvanishing
expressions of signatures of nonclassicality are proportional to
|γ |. Thus we may conclude that within the domain of validity
of the present solution, in the spontaneous process we would
not observe any of the nonclassical characters that are observed
here in the stimulated case.

V. CONCLUSIONS

We have observed various types of higher-order non-
classicalities in fields propagating through a codirectional
asymmetric nonlinear optical coupler prepared by combining
a linear waveguide and a nonlinear (quadratic) waveguide
operated by second harmonic generation. The observations are
elaborated in Sec. IV. In brief, we have observed higher-order
(amplitude squared) squeezing, higher-order antibunching,

and higher-order entanglement. None of these higher-order
nonclassical phenomena were reported in earlier studies on
the codirectional asymmetric nonlinear optical coupler ([25],
and references therein). In fact, till date neither entanglement
nor higher-order nonclassicalities are systematically studied
in optical couplers other than the Kerr coupler. The method
followed in the present paper is quite general and it can
be extended easily to other types of couplers, such as con-
tradirectional asymmetric nonlinear couplers, codirectional
and contradirectional Raman and Brillouin couplers [21], and
parametric couplers [22]. It is possible to experimentally verify
the existence of higher-order nonclassicalities reported here
as higher-order nonclassical effects can generally be detected
using higher numbers of detectors correlating their outcomes.
Alternatively, higher-order quantities can be calculated from
measured distributions. Specifically, all the criteria of higher-
order nonclassicalities reported here are expressed as the
expectation values of moments of annihilation and creation
operators and these expectation values can be measured using
different variants of homodyne measurements and time multi-
plexing. For example, Shchukin and Vogel clearly showed that
amplitude squared squeezing [67] and amplitude nth power
squeezing [67] can be detected using a technique based on
balanced homodyne correlation measurement [67,68]. Using
Shchukin and Vogel’s approach one can measure 〈a†kal〉 for
any values of k and l (cf., Fig. 1 of Ref. [67]). Thus if we
replace the source S in Fig. 1 of Ref. [67] by a field of specific
frequency (i.e., a field representing a particular mode) obtained
at the output of one of the waveguides that constitute the
coupler studied here, it would be possible to measure all the
single-mode correlations (including higher-order antibunching
and higher-order squeezing) reported in the present work.
However, with the increase in k and l, the requirement of
number of beam splitters, photodetectors, and measurements
increases considerably. This technical limitation of Shchukin
and Vogel’s approach is considerably circumvented in later
works of Prakash and Yadav [69] for nth-order amplitude
power squeezing and Prakash, Kumar, and Mishra’s work
on amplitude squared squeezing [70] where only one beam
splitter and one photodetector were used and the number of
measurements required was also reduced. In these interesting
works [69,70], higher-order moments of number operators
were obtained by using standard homodyne technique. Fol-
lowing an independent approach Prakash and Mishra [71]
showed that higher-order sub-Poissonian statistics can also
be used for detection of amplitude squared squeezing. The
proposals of detection of higher-order moments of the form
〈a†kal〉 is relatively new, but schemes for measurement of
higher-order moments of number operator (and thus higher-
order antibunching) was long in existence [72]. Beyond these
new and old schemes of experimental detection of the results
reported here what is more exciting is the fact that our
control over the field, quality of source, detector, and other
devices required for the experimental detection have been
considerably improved in recent past, and as a consequence
a set of very interesting experimental works demonstrat-
ing higher-order nonclassicality have been recently reported
[39–41]. Specifically, using a hybrid photodetector Allevi
et al. [39,40] experimentally measured 〈a†j

1 a
j

1a
†k
2 ak

2〉, which
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can be used to fully characterize bipartite multimode states.
Clearly their method can be directly used to detect higher-order
entanglement using the HZ-I and HZ-II criteria described
by Eqs. (12)–(18), and the higher-order antibunching and
higher-order squeezing reported in the present work. Further,
Avenhaus et al. [41] have also experimentally measured
〈a†j

1 a
j

1a
†k
2 ak

2〉 using time multiplexing. Thus, in brief there
exist a large number of alternative paths that may be used
to experimentally verify the existence of nonclassical states
reported in the present work.

It is even possible to investigate the existence of Hong-
Mandel [44,45] type higher-order squeezing and Agarwal-Tara
parameter An [73] for higher-order nonclassicality using the
present approach. It is also possible to study lower-order
and higher-order steering using the present approach and
the strategy adopted in Ref. [74]. However, we have not
investigated steering as recently it is shown that every pure
entangled state is maximally steerable [75]. Since the com-
bined states of three modes of the asymmetric codirectional
nonlinear optical coupler is a pure state, the findings of
Ref. [75] and the intermodal entanglement observed in the

present paper imply that the compound mode ab1 is maximally
steerable. The importance of entanglement and steering in
various applications of quantum computing and quantum
communication and the easily implementable structure of the
coupler studied here indicate the possibility that the entangled
states generated through the coupler of the present form would
be useful in various practical purposes.
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