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Analysis of a Veselago lens in the quasistatic regime
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The resolution of conventional optical lenses is limited by the wavelength. Materials with a negative refractive
index have been shown to enable the generation of an enhanced resolution image where both propagating
and nonpropagating waves are employed. We analyze such a Veselago lens by exploiting some exact one-
dimensional integral expressions for the quasistatic electric potential of a point charge in that system. These were
recently obtained by expanding that potential in the quasistatic eigenfunctions of a three-flat-slabs composite
structure. Numerical evaluations of those integrals, using realistic values for physical parameters like the electric
permittivities of the constituent slabs and their thickness, reveal some surprising effects: For example, the
maximum concentration of the electric field occurs not at the geometric optics foci but at the interfaces between
the negative permittivity slab and the positive permittivity slabs. The analysis provides simple computational
guides for designing such structures to achieve enhanced resolution of an optical image.
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I. INTRODUCTION

The resolution limit in conventional optical imaging is
known to be inversely proportional to the wavelength of the
light. In 1967, a theoretical analysis by Veselago, based upon
geometric optics, suggested that a flat slab with a negative
refractive index can focus at a point the radiation from a
point source [1]. At that time, materials possessing a negative
refractive index did not exist, but recent developments in
metamaterials have made the production of such materials
possible [2–4]. In 2000, another important analysis by Pendry
showed that materials with a negative refractive index can
amplify evanescent waves, and thus enable the generation
of an image by both propagating and nonpropagating waves,
theoretically leading to unlimited resolution [5].

In the quasistatic regime, when the typical length scales
are much smaller than the wavelength, Maxwell’s equations
reduce to static equations in which the electric and the
magnetic fields are decoupled. Hence, the optical constant
of relevance in this regime is the electric permittivity rather
than the refractive index. The imaging of an electric point
charge was recently analyzed by expanding the local electric
potential in a series of the quasistatic eigenfunctions of
a three-flat-slabs composite structure. This analysis yielded
exact one-dimensional integral expressions for the quasistatic
electric potential of a point charge in that system [6,7].

In this paper we first derive exact expressions for the
electric field in a two-constituent three-flat-slabs composite
structure in the form of one-dimensional integrals. These are
obtained from the classical Maxwell equations in a continuous
medium. The electromagnetic properties of that medium are
characterized by a position and frequency-dependent but
k-vector-independent electric permittivity. We further assume
that this permittivity has a constant value in each constituent
and changes discontinuously at any interface.

We then perform numerical computations for such a setup
using realistic values for the physical parameters like the
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electric permittivities and the thickness of the intermediate
slab. In these computations we vary both the location of the
point charge and the constituent permittivities of the medium.
These computations reveal surprising results among which is
that the best imaging is obtained at the interfaces between the
intermediate slab and the surrounding medium rather than at
the geometric optics foci.

The structure of the paper is as follows. In Sec. II we present
a summary of the basic theory for the analysis of such a setup.
In Sec. III we derive exact expressions for the local electric
field and validate our results. In Sec. IV we present results
of the numerical computations for various charge locations
and for various permittivity values. In Sec. V we discuss our
results.

II. SUMMARY OF THE BASIC THEORY

In this section we describe the derivation of the exact results
for the local electric potential field ψ(r) in the quasistatic limit
for the case of a point electric charge q in a two-constituent
composite medium [6,7]. In these references a two-constituent
composite structure, composed of three infinitely wide parallel
slabs, is considered. The intermediate slab, with an electric
permittivity ε1, is placed between two slabs with an electric
permittivity ε2 (see Fig. 1).

In the static limit Maxwell’s equations reduce to Poisson’s
equation for ψ(r):

−4πρ(r) = ∇ · (ε1θ1 + ε2θ2)∇ψ, (1)

which can be rewritten as

∇2ψ = −4πρ(r)/ε2 + u∇ · (θ1∇ψ), (2)

θ1(r) ≡ 1 − θ2(r) =
{

1 if ε(r) = ε1,

0 if ε(r) = ε2,

}
, u ≡ 1 − ε1

ε2
,

where θ1 and θ2 ≡ 1 − θ1 are step functions that characterize
the microstructure of the composite medium. The function ρ(r)
which appears in these equations represents a charge density
distribution, including the possibility that ρ(r) = qδ3(r − r0),
i.e., a point charge at r0. The capacitor plates at z = −L2 and
z = L′

2 are included in order that the appropriate boundary
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FIG. 1. A three-parallel-slabs microstructure that fills the entire
volume of a large parallel-plate capacitor. The upper layer (Region
III), where ε = ε2, includes a point charge q located at r0 = (0,0,z0).
In the left part z0 < L1/2 while in the right part z0 > L1, where L1 is
the thickness of the intermediate ε1 layer (Region II). Even when all
the other linear sizes of this structure tend to ∞, this configuration
is still unsolvable in any simple fashion. The diagonal dashed lines
show how a geometric optics or light rays description would lead to
a focusing of the original point charge in Region III at new points
in Regions I and II when ε2 = −ε1. The vertical dot-dashed line
indicates the regions where ψ(r) then diverges in the case shown on
the left side, while the vertical solid line shows where the dissipation
rate diverges (after Ref. [6]).

conditions may be imposed there so as to result in a unique
solution for ψ(r). At the end of the calculation we will take
the limits L2 → ∞ and L′

2 → ∞.
We reformulate Eq. (2) as an integrodifferential equation

for ψ(r) [8]

ψ(r) = ψ0(r) + u�̂ψ,
(3)

�̂ψ ≡
∫

dV ′θ1(r′)∇′G0(r,r′) · ∇′ψ(r′),

where G0(r,r′) is Green’s function for Laplace’s equation with
zero boundary conditions defined as follows:

∇2G0(r,r′) = −δ3(r − r′),

G0(r,r′) = 0 for z = −L2 and z = L′
2,

and ψ0(r) is the solution of Poisson’s equation in a uniform
medium with a permittivity ε2.

In the case of no charges and vanishing boundary condi-
tions, Eq. (3) reduces to

sψ(r) = �̂ψ, s ≡ 1

u
.

Defining the scalar product of two scalar functions ψ(r),φ(r)
by

〈ψ |φ〉 ≡
∫

d3rθ1∇ψ∗ · ∇φ

makes �̂ a Hermitian operator [8]. Therefore it has a complete
set of eigenfunctions φn and eigenvalues sn

snφn(r) = �̂φn.

By using the expansion of the unity operator Î in Eq. (3),
we can expand the potential in a series of the eigenfunctions
φn

Î =
∑

n

|φn〉〈φn|

=⇒ ψ(r) = ψ0(r) +
∑

n

sn

s − sn

〈φn|ψ0〉φn(r). (4)

We now set the charge distribution to be that of a point charge
located at r0 = (0,0,z0). This means that

ψ0(r) = q/ε2

|r − r0| . (5)

The eigenfunctions that satisfy Laplace’s equation with van-
ishing boundary conditions are

φ±
k (r)

= eik·ρ ·

⎧⎪⎨
⎪⎩

A±
k sinh[k(z + L2)], z ∈ I,

B±
k sinh(kz) + B ′±

k sinh[k(z + L1)], z ∈ II,

C±
k sinh[k(z − L′

2)], z ∈ III.

(6)

One might think that these eigenfunctions cease to be valid
when |k|L1, |k|L2, |k|L′

2 are not very small. That is not so: In
fact, it is only necessary that Maxwell’s equations for the local
physical field E(r) be reducible, approximately, to Poisson’s
equation for the local electric potential field ψ(r) [Eq. (1)]. The
subsequent calculation of the eigenstates of the homogeneous
version of that equation is a purely mathematical exercise and
the resulting expansion of Eq. (4) for that approximate qua-
sistatic physical potential field is exact. By imposing continuity
of the potential and the perpendicular component of D, we get
the eigenvalues and the coefficients in these expressions

s±
k = 1 ∓ e−kL1

2
, A±

k = −B±
k

sinh(kL1)

sinh[k(L2 − L1)]
,

B ′±
k = ∓B±

k , C±
k = ±B±

k
sinh(kL1)

sinh(kL′
2)

.

Note that in the above expression for s±
k we already

took the limits L′
2,L2 → ∞. The normalization condition

〈φ±
k |φ±

k 〉 = 1 leads to

1 = 2kLxLy |B±
k |2 sinh(kL1)[cosh(kL1) ∓ 1].

The eigenvalues have a single accumulation point at s = 1/2
which is therefore a very singular point of Eq. (4). That equa-
tion leads to the following expressions for the electric potential
in the three regions in the form of one-dimensional integrals [6]

ψ = 4s(1 − s)q

ε2

∫ ∞

0
dk J0(kρ)

e−k(z0−z)

e−2kL1 − (2s − 1)2

= 4qε1

∫ ∞

0
dk J0(kρ)

e−k(z0−z)

(ε2 − ε1)2e−2kL1 − (ε2 + ε1)2
in I,

(7)
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ψ = 2sq

ε2

∫ ∞

0
dk J0(kρ) e−k(z0−z) e

−2k(z+L1) − 2s + 1

e−2kL1 − (2s − 1)2

= 2q

∫ ∞

0
dk J0(kρ) e−k(z0−z)

× (ε2 − ε1)e−2k(z+L1) − (ε2 + ε1)

(ε2 − ε1)2e−2kL1 − (ε2 + ε1)2
in II, (8)

ψ = ψ0 + q(2s − 1)/ε2√
ρ2 + (z + z0)2

− 4s(1 − s)(2s − 1)q

ε2

×
∫ ∞

0
dk J0(kρ)

e−k(z0+z)

e−2kL1 − (2s − 1)2

= q/ε2√
ρ2 + (z − z0)2

+ ε2 + ε1

ε2 − ε1

q/ε2√
ρ2 + (z + z0)2

+ 4qε1
ε2 + ε1

ε2 − ε1

×
∫ ∞

0
dk J0(kρ)

e−k(z0+z)

(ε2 − ε1)2e−2kL1 − (ε2 + ε1)2
in III.

(9)

These expressions for the potential, as well as the local
dissipation rate, defined by Im(ε) |E|2 /8π , were analyzed
for the case of s = 1/2 (i.e., ε1 = −ε2) [6]. This analysis
showed that the potential diverges in the range of positions
z0 − 2L1 < z < −z0. Moreover, when the location of the point
charge satisfies z0 < L1/2, the local dissipation rate diverges
for z in the range [z0 − 3L1/2, − z0 − L1/2] (see Fig. 1).

When s = 1/2 these expressions for the potential take the
following exact closed forms in those regions of z where it is
nondiverging

ψ(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q/ε2√
ρ2+(z−z0+2L1)2

, r ∈ I,
q/ε2√

ρ2+(z+z0)2
, r ∈ II,

q/ε2√
ρ2+(z−z0)2

, r ∈ III.

This means that the potential above the top geometric optics
image at r = (0,0,−z0) and below the bottom geometric
optics image at r = (0,0,z0 − 2L1), is that of a point charge
located at these points. In the intermediate z values between
these expected images, the potential diverges (see Fig. 1).
Since there are no point charges located at these points, the
surface integration over the electric field perpendicular to an
arbitrary envelope surrounding one of these points gives zero
according to Gauss’ law. This is fulfilled since the contribution
to the surface integral from where the potential diverges
cancels out with the contribution from where the potential
is finite (for a spherical surface centered around one of these
points, the first and second contributions give −q/2 and q/2,
respectively).

III. EXACT EXPRESSIONS FOR THE ELECTRIC FIELD
AND VERIFICATION OF THE RESULTS

We calculated exact expressions for the electric fields by
differentiating the expressions for the potentials derived in
Ref. [6] and reproduced in Eqs. (7) to (9) with respect to ρ

and z. The expressions for the z and ρ components of E are as
follows, where we substituted s ≡ 1/2 + 
s:

Region I

EI ρ = C1

∫ ∞

0
dkkJ1(kρ)

e−k(z0−z)

e−2kL1 − 4(
s)2
, (10)

EI z = −C1

∫ ∞

0
dkkJ0(kρ)

e−k(z0−z)

e−2kL1 − 4(
s)2
, (11)

where

C1 ≡ q[1 − 4(
s)2]

ε2
.

Region II

EII ρ = C2

∫ ∞

0
dkkJ1(kρ)ek(z−z0) e

−2k(z+L1) − 2
s

e−2kL1 − 4(
s)2
, (12)

EII z = C2

∫ ∞

0
dkkJ0(kρ)ek(z−z0) e

−2k(z+L1) + 2
s

e−2kL1 − 4(
s)2
, (13)

where

C2 ≡ (1 + 2
s) q

ε2
.

Region III

EIII ρ = q

ε2

ρ

[ρ2 + (z − z0)2]3/2
+ 2q
s

ε2

ρ

[ρ2 + (z + z0)2]3/2

− 2C1
s

∫ ∞

0
dkkJ1(kρ)

e−k(z0+z)

e−2kL1 − 4(
s)2
, (14)

EIII z = q

ε2

(z − z0)

[ρ2 + (z − z0)2]3/2
+ 2q
s

ε2

(z + z0)

[ρ2 + (z + z0)2]3/2

− 2C1
s

∫ ∞

0
dkkJ0(kρ)

e−k(z0+z)

e−2kL1 − 4(
s)2
. (15)

To verify the expressions for the potential and the electric
field we checked the continuity of the potential and the
perpendicular component of D at the interfaces. This was done
by substituting z = −L1 in the expressions for Regions I and
II and z = 0 in the expressions for Regions II and III, yielding
the same expressions in both cases (see the Appendix for more
details).

IV. NUMERICAL COMPUTATIONS

We computed the one-dimensional integrals in the expres-
sions for the potential and the electric field using MATLAB. We
verified the computations of these integrals by checking the
continuity of the potential and the perpendicular component
of D at the interfaces for a set of ρ values (numerical values
were compared). In addition, we calculated the field intensity
I (r) as well as the dissipation rate W (r) in the three regions
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using the following definitions:

I (r) ≡ |Eρ(r)|2 + |Ez(r)|2, (16)

W (r) ≡ Im[ε(r)](|Eρ(r)|2 + |Ez(r)|2). (17)

These are in fact the expressions for the intensity and the
dissipation in which c/8π and ω/8π were not included,
respectively, for simplicity.

We then placed another charge horizontally shifted from
the original charge to find the charge separation that is needed
for resolution of the images. We varied that separation until
the field intensity at the midpoint between the two images was
1/e1/2 of the intensity at the images. We defined this distance
as the separation distance needed to resolve the two images. To
estimate the resolution in each horizontal layer we normalized
the local intensity in Region I by dividing it by the intensity
at the horizontal coordinates of the images in that layer (see
Figs. 4, 7, 10, 13, 16).

Throughout the computations we used q = e, where e is
the electron charge. We present the results for ψ, I , and W

without specifying units. Thus, in order for those results to
be in units of statV, erg/(s cm2), and erg/(s cm3), one has to
multiply them by q/e, q2c/8πe2, and q2ω/8πe2, respectively.

A. Polymethyl methacrylate-silver-photoresist setup
for different vertical charge locations

We modeled a polymethyl methacrylate (PMMA)-silver-
photoresist setup that is similar to the one used by the authors
of Ref. [9] by a two constituents setup in which the two external
slabs have the average permittivity value of PMMA and the
photoresist, and the permittivity of the intermediate slab is
that of metallic silver. We used the values for the permittivities
suitable for a free-space wavelength of 365 nm [9]

εsilver = −2.55 + 0.24i,

εPMMA = 2.25 + 0.12i,

εPR = 2.886 + 0.059i,

which lead in the two constituents setup to the following
permittivity values:

ε1 = −2.55 + 0.24i, ε2 = 2.57 + 0.0896i.

The silver slab thickness was set to L1 = 35 nm as in Ref. [9]
and the external slabs in the calculation are assumed to have
infinite thickness. We performed the computations for several
locations of the point charge object on the vertical axis. The
first location was z0 = 40 nm = 8L1/7 which agrees with the
setup in Ref. [9]. We then placed the charge closer to the top
interface at z = 3L1/4 and z = 3L1/8.

1. Charge located at z0 = 40 nm = 8L1/7

We first placed the charge at z0 = 40 nm = 8L1/7 as in
Ref. [9]. In Fig. 2 we present the real and imaginary parts of
the potential in all the regions. The potential is of course time
dependent according to

Re(ψeiωt ) = Re(ψ) cos(ωt) − Im(ψ) sin(ωt).
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FIG. 2. (Color online) Real and imaginary parts of the potential
for a charge located at z0 = 40 nm = 8L1/7.

The white circle denotes the object and, where applicable
in the subsequent figures, the image expected according to
geometrical optics. It can be seen that Re(ψ) has high values
at the z = −L1 interface and that Im(ψ) has high (absolute)
values at the z = 0 interface. In this figure, as well as in
subsequent figures that display all the regions, we used a linear
color scale. To present an informative figure we mapped all
the values higher than a certain value to this value. Thus, in
all the locations which exhibit the highest value, the actual
values are often much higher than the apparent value. In Fig. 3
we present the intensity and the dissipation in all the regions.
It can be seen that the intensity is high at the interfaces and
has a higher value at the bottom interface. The dissipation in
Region II is higher than in Region I due to the fact that the
imaginary part of the permittivity is higher in Region II. Note
that the amplification of the electric field and the intensity
starts even before the top interface. This adds to the picture
described by the author of Ref. [5], where the amplification of
the evanescent waves only in the silver slab was discussed.

In Fig. 4 we show the intensity and the horizontally
normalized intensity in Region I for two horizontally displaced
charges. It can be seen that the maximal resolution is at the
interface z = −L1. The distance between the charges that
enables the images to be resolved as previously explained
is 82.4 nm, which is in good agreement with the results found
in Ref. [9] [see Fig. 4(d) there].
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FIG. 3. (Color online) Intensity and dissipation for a charge
located at z0 = 40 nm = 8L1/7.

2. Charge located at z0 = 26.25 nm = 3L1/4

In Fig. 5 we present the real and imaginary parts of the
potential in all regions for a charge located at z0 = 26.25 nm =
3L1/4. Here also Re(ψ) and Im(ψ) (in absolute value) peak
at the bottom and top interface, respectively.

In Fig. 6 we present the intensity and the dissipation in all
regions. Here we originally expected that the intensity would
have high values at the geometric optics foci z = −3L1/4
and at z = z0 − 2L1. However, the intensity is actually
concentrated at the z = 0 and z = −L1 interfaces. In this case
the peak intensity is higher at the top interface. The intensity
in Region I is almost one order of magnitude higher than in
the previous case.

In Fig. 7 the intensity and the horizontally normalized
field intensity in Region I for two horizontally displaced
charges are presented. The white circles denote the focal
points. The separation exhibited is the smallest for which the
images are still resolved as previously defined. Surprisingly,
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FIG. 4. (Color online) Intensity and horizontally normalized in-
tensity in Region I for two charges located at z0 = 40 nm = 8L1/7,
x1 = 0, x2 = 82.4 nm.

the separation of the images is best not at the expected focal
plane but at the interface. Thus, both in terms of intensity
and resolution the image formed at the interface z = −L1 is
optimal. In addition it can be seen that the separation distance
in this case is 72 nm, which is better than the previous one.
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FIG. 5. (Color online) Real and imaginary parts of the potential
for a charge located at z0 = 26.25 nm = 3L1/4.
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FIG. 6. (Color online) Intensity and dissipation for a charge
located at z0 = 26.25 nm = 3L1/4.

3. Charge located at z0 = 13.125 nm = 3L1/8

Here we calculate the potential, intensity and dissipation
for a setup with a charge located at z0 = 3L1/8. In this case if
s were equal to half the dissipation rate should have diverged
in the range z0 − 3L1/2 < z < −z0 − L1/2. However, since
s �= 1/2 we expect that the dissipation rate will increase in that
range compared to the previous case where z0 = 3L1/4.

In Fig. 8 we present the real and imaginary parts of the
potential for a charge located at z0 = 13.125 nm = 3L1/8.
Here again Re(ψ) and Im(ψ) peak at the bottom and top
interfaces, respectively.

In Fig. 9 we present the intensity and dissipation in the three
regions. Here also the intensity is maximal at the interfaces
rather than at the geometric optics foci. It can be clearly seen
that the intensity is higher at the top interface. The intensity and
the dissipation at the bottom interface in this case are almost
one order of magnitude higher than in the previous case.
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FIG. 7. (Color online) Intensity and horizontally normalized in-
tensity in Region I for two charges located at z0 = 26.25 nm = 3L1/4,
x1 = 0,x2 = 72 nm.

In Fig. 10 we present the intensity and the horizontally
normalized intensity in Region I for two horizontally separated
charges. It can be seen that the separation distance in this case
is 63.2 nm which is better than in the previous cases.

It can be concluded that for the three object locations, the
best images are formed at the interfaces. As we moved the
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FIG. 8. (Color online) Real and imaginary parts of the potential
for a charge located at z0 = 13.125 nm = 3L1/8.

013806-6



ANALYSIS OF A VESELAGO LENS IN THE . . . PHYSICAL REVIEW A 90, 013806 (2014)

z
(n

m
)

Im[ (r)] |E|2

−80

−60

−40

−20

0

20

−1

0

1

2

3

x 10
4

ρ (nm)

z
(n

m
)

|E|2

0 20 40 60

−80

−60

−40

−20

0

20

−1

0

1

2

3

4

x 10
5

FIG. 9. (Color online) Intensity and dissipation for a charge
located at z0 = 13.125 nm = 3L1/8.

point charge closer to the z = 0 interface, the image formed at
the z = −L1 interface became better in terms of both intensity
and resolution.

B. Computations for other permittivities

We repeated our computations for other values of s for a
charge located at z = 3L1/4. First, we performed computa-
tions with a setup in which the real part of 
s remained the
same as in Sec. IV A and the imaginary part was divided by
100. Then, we performed a computation in which both the real
and imaginary parts of 
s were divided by 100.

1. �s with Im (�s) divided by 100

In Fig. 11 Re(ψ) and Im(ψ) are presented. It can be seen
that the potential now has an alternating sign as argued by the
authors of Ref. [7]. In Fig. 12 the intensity and the dissipation
are presented. The intensity at both interfaces is higher than in
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FIG. 10. (Color online) Intensity and horizontally normalized
intensity in Region I for two charges located at z0 = 13.125 nm =
3L1/8, x1 = 0,x2 = 63.2 nm.

the PMMA-silver-photoresist setup. In addition the intensity
here is higher at the bottom interface as opposed to the previous
setup with z0 = 3L1/4, where it was higher at the top interface.
The same is true regarding the local dissipation rates, despite
the fact that Im(
s) is smaller (which can be satisfied when
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FIG. 11. (Color online) Real and imaginary part of the potential
z0 = 3L1/4, 
s = 0.0014 + 0.00032i.
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FIG. 12. (Color online) Intensity and dissipation for z0 =
3L1/4, 
s = 0.0014 + 0.00032i.

the imaginary part of the permittivity is small everywhere in
the system). This is due to the fact that ψ and E tend to ∞ as

s → 0 only at the lower interface.

In Fig. 13 the intensity and the horizontally normalized
intensity for two charges in Region I are presented. In this
case the minimum separation distance between two objects
for resolution of the images is 44.8 nm, which is significantly
better than when Im(
s) was not decreased by a factor of 100.

2. �s with both Re (�s) and Im (�s) divided by 100

In Fig. 14 Re(ψ) and Im(ψ) are presented. They peak (in
absolute value) at the bottom and top interfaces, respectively,
and they have alternating signs. In Fig. 15 the intensity and
dissipation for all the regions are presented. It can be seen
that I and W at the bottom interface are higher compared to
the case when we decreased just the imaginary part of 
s. In
Fig. 16 the intensity and the horizontally normalized intensity
in Region I for two separated charge objects are displayed.
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FIG. 13. (Color online) Intensity and horizontally normalized
intensity for 2 charges z0 = 3L1/4, x1 = 0, x2 = 44.8 nm.

The minimum separation distance for this 
s value is 32 nm.
It can be seen that when we also decrease Re(
s) we have
better separation between the images.

We can conclude that when the value of 
s is lowered,
the optimal image locations are also at the interfaces. As we
decrease the real and imaginary parts of 
s both the intensity
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FIG. 14. (Color online) Real and imaginary part of the potential
z0 = 3L1/4, 
s = 0.000014 + 0.00032i.
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FIG. 15. (Color online) Intensity and dissipation for z0 =
3L1/4, 
s = 0.000014 + 0.00032i.

and the resolution become better for imaging. The analysis
suggests that in the quasistatic regime for a setup with a
small value of 
s, very high intensity and resolution can be
reached (this occurs when ε1 ≈ −ε2). It would be interesting
to investigate whether such a pair of materials exists or can be
engineered.

C. Analysis for a definite value of k

The expressions for the potential and the electric field can
be easily decomposed into their k components. Thus, in Region
II, the component associated with a specific k = |k| is simply
the integrand in Eqs. (8), (12), and (13). Using this, we can
easily calculate the contribution of each k component to the
potential and the electric field.

It was interesting, in the case where 
s → 0, to calculate
the amplitude of the electric field for given ρ and k values
at the top interface and compare it to the same quantity
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FIG. 16. (Color online) Intensity and horizontally normalized
intensity in Region I for 2 charges z0 = 3L1/4,x1 = 0,x2 =
32 nm ,
s = 0.000014 + 0.00032i

at the bottom interface. To that end we substituted z =
0 and z = −L1 in the integrands of Eqs. (12) and (13)
and took the limit 
s → 0. This leads to the following
results:

lim
s→0EII ρ(z = −L1)

lim
s→0EII ρ(z = 0)
= C2kJ1(kρ)e−z0keL1k

C2kJ1(kρ)e−z0k
= eL1k,

lim
s→0EII z(z = −L1)

lim
s→0EII z(z = 0)
= C2kJ0(kρ)e−z0keL1k

C2kJ0(kρ)e−z0k
= eL1k.

These k-dependent ratios are the same as the transmission
coefficient of the slab derived from the multiple scattering
calculation in Ref. [5]. This is another confirmation of the
validity of our results.

V. DISCUSSION

We analyzed a two-constituents setup of three dielectric
slabs, in which an electric point charge is located in the top
slab. We first derived exact expressions for the local electric
field in the form of one-dimensional integrals and verified
our results. We then performed numerical computations of
the electric potential, intensity, and dissipation for a setup
that was previously tested in experiments. We calculated these
quantities of interest for several charge locations and several
permittivity values. Finally, we showed that our results agree
with previous analytic results.

The computations reveal several important effects. The best
images are formed at the interfaces between the slab and the
surrounding medium rather than at the geometric optics foci.
This optimality is in terms of both intensity and resolution. In
addition the computations confirm previous analysis in which
it was stated that the dissipation rate diverges when ε1 = −ε2.
This can occur either when this quantity is real, in which case
the constituents are free of any dissipation, or when they have
imaginary parts with opposite signs. In the latter case one of the
constituents exhibits dissipation while the other exhibits gain.
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As was explained in that analysis, this counterintuitive effect
originates from the fact that s = 1/2 is the accumulation point
of all the eigenvalues and is therefore a very singular point
of Maxwell’s equations [6,7]. The computations for several

charge locations show that when the object is closer to the
interface with the intermediate slab, the imaging is better. The
computations for several permittivity values show that as ε1 →
−ε2 the imaging becomes better.

APPENDIX: VERIFICATION OF THE ANALYTIC RESULTS

Calculations of ψ(r) and D(r) at the two interfaces lead to

ψI(z = −L1) = ψII(z = −L1) = 4qs(1 − s)

ε2

∫
ek(−L1−z0)

[
1

e−2kL1 − (1 − 2s)2

]
J0(kρ)dk, (A1)

ψII(z = 0) = ψIII(z = 0) = q(2
s + 1)

ε2

∫ ∞

0
dkJ0(kρ)e−k(z0) e−2kL1 − 2(
s)

e−2kL1 − 4(
s)2
, (A2)

ε1EIIz (z = −L1) = ε2EIz (z = −L1) = ε1
4q

(
1
2 + 
s

)2

ε2

∫ ∞

0
dkkJ0(kρ)ek(−L1−z0) 1

e−2kL1 − 4(
s)2
, (A3)

ε1EIIz (z = 0) = ε2EIIIz (z = 0) = ε1
(1 + 2
s)q

ε2

∫ ∞

0
dkkJ0(kρ)e−kz0

e−2kL1 + 2
s

e−2kL1 − 4(
s)2
, (A4)

where we used ε1
ε2−ε1

= ε1
ε2

( 1
2 + 
s) = −( 1

2 − 
s) from the definition of s.
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