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Nonlinear potential of a quantum oscillator induced by single photons
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Experimental investigation of the nonlinear dynamics of a quantum oscillator is a long-standing goal of
quantum physics. We propose a conditional method for inducing an arbitrary nonlinear potential on a quantum
oscillator weakly interacting with light. Such an arbitrary nonlinear potential can be implemented by sequential
repetition of an elementary conditional X gate. To implement the X gate, a single photon is linearly coupled to
the oscillator and is subsequently detected by optical homodyne detection.
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I. INTRODUCTION

In quantum physics it is crucial to be able to precisely
manipulate quantum systems. This ability is the key both to
experimental tests of fundamental natural principles and to
the actual development of quantum technology. The ultimate
aim in this direction is the implementation of a variety
of nonlinear transformations. One way of approaching this
daunting task lies in disassembling general operations into
elementary building blocks. For two-level (qubit) quantum
systems, such building blocks are the single-qubit rotations and
the two-qubit controlled NOT operation [1]. In a similar vein,
the basic building blocks for continuous-variable harmonic
oscillator systems [2,3] are the operations imposing quadratic
and cubic potentials [4,5]. The quadratic potential inducing
Gaussian operations can be considered readily available. A
general method of achieving any form of quadratic potential
uses squeezed states of light which interact with the oscillator
and are subsequently measured by an optical homodyne
detection [6–9].

However, squeezed states of light and optical homodyne
detections are not sufficient resources to induce highly nonlin-
ear potentials, such as the cubic one. Since fully deterministic
implementation of cubic nonlinearity is a very challenging
task [10], it is important to be able to induce a nonlinear
potential on a quantum oscillator at least conditionally, as it
is currently the only feasible way for studying the nonlinear
quantum dynamics. A straightforward, but complicated, way
is to use the typical decomposition of quantum operations
relying on annihilation â and creation a† operators [11–16].
These operators with clear Fock-state interpretation play an
important role in phase-insensitive applications [17], such as
entanglement distillation [18,19] or a version of the noiseless
amplification [20–22].

In this article we present a complementary approach which
allows inducing an arbitrary nonlinear potential V (X̂) on a
quantum oscillator by sequential application of the position
operator X̂ = (â + â†)/

√
2, which was also denoted as the

orthogonalizer [23], by an operation which we will call the X

gate. An optical scheme to achieve an operation m∗â + n∗â†

was also proposed in [24] using a standard approach with
nonlinear resources, while our scheme is more compact and
suitable for sequential application. The main benefit of using
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X gate instead of the annihilation or creation operators is
that the former can be naturally extended to physical systems
other than light, such as mechanical oscillators or clouds of
atoms, and that the exact form of the potential can be adjusted
at will. As the resource for the X gate we are going to use
single-photon guns [25–32], which were recently extensively
developed for a broad class of applications. We analyze the
performance and feasibility of this methodology with regard
to realistic experimental tools and emphasize two exemplary
applications: generation of the cubic nonlinearity and efficient
state preparation of non-Gaussian states.

In Sec. II, we analyze how to implement the X gate in
various ways. We investigate the performance of our gate in
realistic situations in Sec. III. Applications of our gates are
summarized in Sec. IV. In Sec. V we conclude.

II. IMPLEMENTATION OF X GATE

A. Oscillator in a nonlinear potential

The quantum oscillator with a Hamiltonian operator Ĥ =
�ω(â†â + 1

2 ) + V (X̂), where X̂ is the position operator and
V (X̂) is a nonlinear potential, contains a mixture of free
linear evolution with frequency ω and nonlinear dynamics
induced by V (X̂). To obtain the pure effect of a nonlinear
potential on a quantum system, we assume the limit ω → 0 of
a low-frequency oscillator evolving very slowly. In this limit,
the unitary evolution operator U (X̂,τ ) = e− i

�
V (X̂)τ , where τ

is the time duration of evolution in the potential, preserves
the statistics of position and affects only the statistics of the
complementary variable described by the momentum operator
P̂ = (â − â†)/

√
2i.

The evolution operator can be approximated by a Tay-
lor series U (X̂,τ ) = ∑∞

k=0
U (k)(X̄)

k! (X̂ − X̄)k around the initial
mean position X̄ of the oscillator. The finite truncation of this
Taylor series can be expanded as U (X̂,τ ) = ∏N

k=0(1 + λkX̂)
using the general theorem of algebra, where λk are related
to the complex roots of the polynomial, U (−λ−1

k ,τ ) = 0.
Any dynamics imposed purely by the nonlinear potential can
therefore be decomposed to a sequence of the nonunitary X
gates ÂX(λk) = 1 + λkX̂ controlled by complex parameters
λk . For a purely imaginary λk with the magnitude close to
zero, the operation ÂX(λk) is close to a unitary displacement
operator. For a larger magnitude of purely imaginary or real
λk , however, the X gate is inherently probabilistic, and its
action is nontrivial. Our approach suggests how to implement

1050-2947/2014/90(1)/013804(7) 013804-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.90.013804


KIMIN PARK, PETR MAREK, AND RADIM FILIP PHYSICAL REVIEW A 90, 013804 (2014)

the individual X gates which are applied sequentially with
variable complex parameters λk to mimic the behavior of
slowly evolving quantum oscillators in the nonlinear potential.

B. Coupling an oscillator to light

Implementation of an individual X gate exploits one of two
kinds of coupling between a quantum oscillator and a single
mode of electromagnetic radiation. Under the approximation
of weak coupling for which the time duration is short enough,
the interaction can be represented by a unitary operator derived
from one of two possible interaction Hamiltonians. The beam
splitter (BS) interaction with ĤBS = iκBS(â†b̂L − b̂

†
Lâ), where

â is the annihilation operator of the quantum oscillator and
b̂L is the annihilation operator of the single mode L of
radiation, represents a natural coupling between different
modes of radiation varying in polarization, spatial properties,
or frequency [33]. It can also be used to describe coupling
with a continuous-wave or semicontinuous-wave regime of a
mechanical oscillator [34,35]. The second kind of coupling
is the quantum nondemolition (QND) coupling given by
ĤQND = iκQND(â† + â)(b̂†L − b̂L)/2. This type of interaction
naturally appears for the coupling with spin ensembles [36,37]
and the pulsed regime of mechanical oscillators [23,38,39].

C. Elementary X gate based on BS coupling

We shall start by explaining the implementation of the X

gate for the BS coupling because it plays a prominent role
in all-optical implementations, which are in turn a natural
platform for experimental tests of the method. For reasons
which will become clear later, we generalize the X gate
ÂX(λ) = 1 + λX̂θ to a more general class of operations:

Â(λ−,λ+) = 1 + λ−â + λ+â†, (1)

where â and â† are the annihilation and creation operators,
respectively. Here λ+ and λ− are complex numbers which can
be adjusted at will. The conceptual scheme for implementing
the ideal operation (1) is depicted in Fig. 1. This scheme
is a measurement-induced operation which is composed of
the main implementation step and the correction step. In the
first step, the input oscillator mode interacts with the ancillary
mode L in the single-photon state |1〉L. The ancillary mode
L is subsequently measured by a setup which contains beam
splitters and homodyne detectors, and the state of the oscillator
mode is postselected when specific values are detected. This
process can be expressed as the projection onto a Gaussian
state |ζ 〉, which is represented by an operator L〈ζ |UBS|1〉L.
Here ÛBS = exp(−iĤBSt) = T n̂e−R∗b̂†LâeRb̂Lâ†

T −n̂L stands for
the unitary operator of the beam splitter with transmission
coefficient T = cos κtBS, which couples the ancillary mode to
the oscillator. Here n̂ = â†â and n̂L = b̂

†
Lb̂L.

The projection |ζ 〉L〈ζ | can be implemented by an unbal-
anced heterodyne detection: the ancillary mode L is split at
an unbalanced beam splitter with transmission and reflection
coefficients T and R, and optical homodyne detections of
complementary quadratures X̂L = (b̂L + b̂

†
L)/

√
2 and P̂L =

(b̂L − b̂
†
L)/

√
2i are performed on each output port. Such a
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FIG. 1. (Color online) (a) Concept of the implementation of a
nonlinear potential by single-photon guns, (b) X gate for a single
mode of light using BS-type coupling, (c) X gate for a collective spin
of cloud of atoms in magnetic field, and (d) X gate for the vibration
mode of a mechanical oscillator.

measurement can be represented by the projection onto a state:

L〈x|L′ 〈p|UBS|0〉′L
=L 〈0| exp

[
−x2 + p2

2
+

√
2(xT + ipR∗)bL

+ R∗2 − T 2

2
b2

L

]

∝L 〈0| exp
[
A∗bL + B∗b2

L

] ≡L 〈A,B|, (2)

where A = √
2(xT − ipR) and B = 2−1(R2 − T 2) are com-

plex measurement parameters with −1/2 < |B| < 1/2, whose
phases arg A and arg B can be chosen arbitrarily.

The full operation by the homodyne detection looks like

L〈xθ |UBS|1〉L ∝ T n̂ exp

[
−

√
2xθe

−iθR∗â − R∗2e−2iθ â2

2

]

×
(√

2

T
xθ + R∗e−iθ

T
â + Reiθ

T
â†

)
, (3)

and the complete operation by the heterodyne measurement is
summarized as

L 〈A,B| UBS|1〉L = exp

[
A∗ R

T
â + B∗ R2

T 2
â2

]

× T n̂−1(A∗ + 2B∗R∗â + Râ†). (4)

The operator (4) is composed of three parts: the ideal
operation A∗ + 2B∗R∗â + Râ† consisting of the proper
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superposition of annihilation and creation operators, the error
operator exp[A∗Râ + B∗R2â2], and another error operator
T n̂−1, which we will denote as pure attenuation. These two
sources of error need to be considered separately, as each
of them possesses very different properties. The error term
exp[A∗Râ + B∗R2â2] can be compensated by a correction
operation using optical ancilla L′ in the vacuum state:

L′
〈
A′,B ′∣∣UBS|0〉L′ = T ′n̂ exp[A′∗R′â + B ′∗R′2â2], (5)

which is implemented in the same way as the main gate in
Eq. (4), only with a replacement of a single photon by the
vacuum state in the ancillary mode. With A′ = −A/T , B ′ =
−B/T 2, and R′ = R we can erase the error and obtain an
approximate version,

ÂBS = (T ′T )n̂(A∗ + 2B∗R∗â + Râ†), (6)

of the generalized X gate (1) using the BS coupling. The de-
sired gate is accompanied by an increased noiseless attenuation
(T ′T )n̂ as an unavoidable cost of transforming an ill-behaved
error into a well-behaved one. It should be noted that in the
case of a highly transmissive beam splitter R � 1, all sorts of
errors become less prominent even up to the point when the
correction step is not necessary. The cost of this strategy is the
diminished success rate and a high sensitivity to the quality of
ancilla.

The noiseless attenuation error caused by (T ′T )n̂ becomes
significant when the elementary X gates are combined into a
more complicated function. For this purpose we have to apply
the relations T n̂â = âT n̂−1 and T n̂â† = â†T n̂+1 to move the
attenuation term. As a consequence, an arbitrary polynomial∏N

i=0(1 + λiX̂) needs to be implemented as

∏
i

T n̂
i

(
1 + λi

Ti â + T−1
i â†

√
2

)
=

[
N∏
i

(1 + λiX̂)

]
Tn̂

N , (7)

whereTi = ∏i
j=1 Tj . As can be seen, the noiseless attenuation

is effectively applied only once, solely on the initial state.
In principle it can be approximatively compensated by the
noiseless amplification conditionally approaching operation
Gn̂ with G > 1 [40]. On the other hand, the noiseless
attenuation has a very clear Fock space interpretation, and it
is always acting in a predictable manner. In many experiments
it can therefore be taken into account and compensated by
manipulating the measured data.

D. Elementary X gate based on QND coupling

Although the QND coupling can be established between
different modes of radiation [6,8], it is much more important
in experiments with atomic spin ensembles [36,37] or a pulsed
regime of mechanical oscillators [23,38,39], where it appears
naturally. Adapting the X gate for this coupling therefore
allows expanding the methods of quantum optics even to
these systems. For the QND coupling, represented by the
unitary operator ÛQND = e−iκX̂P̂L , where X̂ = (â + â†)/

√
2

and P̂L = (b̂L − b̂
†
L)/

√
2i, of optical mode L to the oscillator

the complete gate can again be expressed as

L〈A,B|UQND|1〉L ∝ exp

[
Aκ√

2
X̂ +

(
B

2
− 1

4

)
κ2X̂2

]

×
{
A + κ

(
2B − 1√

2

)
X̂

}
, (8)

where A and B are the same as before and κ = κQNDt . In
a similar manner as for the BS interaction, the correction
operation required to eliminate the error term exp[ Aκ√

2
X̂ +

(B
2 − 1

4 )κ2X̂2] is L〈−A, − B|ÛQND|0〉L = exp[−A κ√
2
X̂ −

(B/2 + 1/4)κ2X̂2], which is implemented using another QND
interaction with the optical mode being in vacuum state.
The redundant exp[−κ2X̂2/4] can be in part compensated by
squeezing the ancillary state, whose effect can be described by
exp[tanh rκ2X̂2/4]. In contrast to the BS type of coupling to
the optical mode, after erasing the error term, we approach
the ideal X gate without the noiseless attenuation errors.
Moreover, the X gate can also be implemented by replacing the
homodyne detection by a photon-number-resolving detector
and changing the ancilla. The resulting gate,

L〈0|UQND(|0〉L + c1|1〉L) = exp

[
−κ2X̂2

4

] (
1 + c1

κ√
2
XA

)

(9)

always has a nonzero probability of success. This approach
will become fully feasible with the advent of efficient photon-
number-resolving detectors.

III. REALISTIC CONSIDERATIONS

A. Requirements on the quality of single photons

The single photons employed by the X gate are an
experimental resource sensitive to imperfections. They usually
do not appear in the pure form |1〉L, but rather in a mixture
η|1〉L〈1| + (1 − η)|0〉L〈0| [41], which may reduce the quality
of the gate. To quantify the quality of a single photon that is
necessary for successful implementation of the X gate, we
compare the performance of the gate with methods using
coherent-state ancillae. The required quality of the single-
photon gun is then characterized by the critical efficiency ηc,
the value of η for which the fidelity of the gate is equal to the
classical threshold.

B. Performance analysis and the classical threshold

For the analysis of performance, we apply the X gate to a set
of quantum states and compare their fidelities. For this analysis
it is advantageous to consider quantum states which are
orthogonalized by the X operation because then the operation
1 + λX effectively creates a qubit whose fidelity has a good
operational meaning. The states which satisfy this criterion
are the coherent states with purely imaginary amplitudes |β〉,
with β = i|β|; single-photon state |1〉; and the squeezed state
|ξ 〉 = exp[−ξ/2â2† + ξ/2â2]|0〉. For these states, the fidelities
are compared to the classical benchmark which is obtained by
considering the gate with only a classical state used as an
ancilla. As any classical state can be represented as a mixture
of coherent states, it is sufficient to consider a coherent state
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as the ancilla and maximize over its amplitude. The operation
with the classical resource can be written as

2〈x = 0|ÛBS|α〉2

∝ T n̂ exp[αRT −1â†] exp

[
−R2

2
â2

]
exp[αRT â]

= exp[αRâ†] exp[αRâ] exp

[
− R2

2T 2
â2

]
T n̂. (10)

Note that it is simply impossible to obtain the desired X

operation perfectly with a classical resource regardless of any
correction we may apply.

Another benchmark is obtained by trying to achieve the
target operation by using only unitary Gaussian operations:
displacement and squeezing. These operations are experi-
mentally feasible, but on their own they are not sufficient for
obtaining any kind of higher-order nonlinearity. For the target
single-photon input state, the Gaussian benchmark is 0.82,
which leads to ηc ≈ 0.7 for T ≈ 0.734. For the other input
states we are considering, these unitary Gaussian operations
give a lower benchmark and do not need to be considered.

With a realistic resource single photon, the full gate (with
the correction) transforms the input state |ψ〉 into

ρ ∝ T n̂[ηR2/λ2T 2(1 + λâ ± λa†)|ψ〉〈ψ |(1 + λâ† ± λa)

+ (1 − η)|ψ〉〈ψ |]T n̂. (11)

We notice that for a very small T � 1, the effect of lower
η in single-photon generation can be completely ignored,
and a perfect target operation is achieved regardless of η,
but only at the cost of a significant noiseless attenuation.
This can be seen as a conditional transformation of the
resource state’s impurity to noiseless attenuation, which
does not significantly reduce the purity of the state. This
is a valuable strategy if the noiseless attenuation does not
play an important role. However, if this is not the case
or if the attenuation cannot be very well compensated by
a suitable noiseless amplification, the efficiency η remains
important.

In Fig. 2 we show the analysis of a trial gate operation
1 + λâ − λâ† applied to selected quantum states for various
levels of quality of the single-photon ancilla, where their
fidelities with the ideal states are compared to the classical
threshold. When λ is as small as 0.1, the operation is generally
well simulated by a displacement operator, and the classical
threshold fidelity is typically as high as 0.99. For large λ = 1.5,
on the other hand, ηc ≈ 0.55 for a coherent state |β = 0.1〉,
and ηc ≈ 0.35 for a coherent state |β = 1〉. For a single-mode
squeezed vacuum state input |ξ 〉 = Ŝ(ξ )|0〉, ηc ≈ 0.7 for
|ξ = 0.1〉, and ηc ≈ 0.6 for |ξ = 1〉. For single-photon input
|1〉, for T ≈ 0.45 we can achieve ηc = 0.12. Therefore, with
the current quality of the single-photon gun our scheme can
surpass classical resources rather easily. It is therefore feasible
to experimentally observe the nonclassical performance of
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FIG. 2. (Color online) Fidelity vs transmission coefficient T for operation 1 + 1.5â − 1.5â† on coherent-state inputs (a) |β = 0.1〉 and (b)
|β = 1〉, squeezed state inputs (c) |ξ = 0.1〉, and (d) single photon |1〉, with imperfect single-photon ancilla η|1〉L〈1| + (1 − η)|0〉L〈0|. Near
T ≈ 1, the fidelity is high for η = 1 (blue solid line) but drops rapidly when the ancilla is imperfect [η = 0.8 (red dashed line), 0.6 (green
dot-dashed line) and 0.4 (orange double-dot-dashed line)] below the classical benchmark (black dotted line). The values for the classical
benchmark are 0.79 for coherent states and squeezed states and 0.52 for the single-photon state.
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FIG. 3. (Color online) F (ε) vs P (ε) for (a) single-photon input |1〉 and (b) coherent-state input |β = 1〉 for the operation 1 + 1.5â − 1.5â†

with (blue solid line) a perfect single-photon ancilla and (red dashed line) an imperfect single photon with η = 0.8 for the homodyne
measurement window 10−3 � ε � 1. The setup is optimized for the largest F . Here no correction is considered. F = 0.95 and P = 0.10 are
achieved for a perfect single-photon input, and F = 0.91 and P = 0.10 are achieved for a coherent-state input.

the elementary X gate with limited |λ|. Note that the per-
formance of the gate for large λ can be used as a very strict
operational measure of single-photon states, as in this case
even resource states with significant negativity in the Wigner
function [41] might not be sufficient to beat the classical
threshold.

C. Success rate vs fidelity

So far we have been concerned with ideal projections onto
quadrature eigenstates. This is just an idealization, and in prac-
tice such a projection onto a quadrature eigenstates has a zero
probability of success. In practice it needs to be approximated
by performing a homodyne detection and postselecting upon
detecting a value which falls closely into a small interval ε

around the sharp target value x0, which necessarily reduces the
quality of the gate as a cost. The fidelity with the target state
|ψt 〉 of this realistic gate applied to state ρIN can be expres-
sed as F (ε) = ∫ x0+ε

x0−ε
dxTr[(|ψt 〉〈ψt | ⊗ |x〉L〈x|)UBSρIN ⊗

|1〉L〈1|U †
BS]/P (ε), where the probability of success is

P (ε) = ∫ x0+ε

x0−ε
dxTr[L〈x|UBSρIN ⊗ |1〉L〈1|U †

BS|x〉L]. In Fig. 3,
the fidelity and the probability of success of the operation
1 + 1.5â − 1.5â† applied to a single photon and to a coherent
state are plotted both for a perfect ancilla η = 1 and a realistic
ancilla η = 0.8. We can see that although there is a visible
drop of fidelity for a perfect single-photon ancilla when we
increase ε, the fidelity still remains quite high and obviously
above the classical threshold. Furthermore, the reduction of
fidelity is less prominent for the imperfect ancilla, which is
very promising for the eventual experimental implementation.

Our scheme can be compared to the previous one proposed
in [24], which employs inline coupling into a parametric down-
converter, interferometer, and two single-photon detectors.
Apart from the feasibility, our scheme can exhibit success rates
of around 0.05, while the previous proposal did not surpass
10−12, mainly due to the low rate of the downconversion
process.

IV. MULTIPLE GATES FOR APPLICATIONS

A. Conditional generation of cubic nonlinearity

As a prominent example, a non-Gaussian cubic Hamilto-
nian up to the quadratic expansion can be achieved as

exp[iχX̂3] ≈ 1 + iχX̂3 − χ2

2
X̂6

∝
[

1 −
(

χ

−1 + i

)1/3

X̂

][
1 +

(
χ

1 − i

)1/3

X̂

]

×
[

1 − (−1)−2/3

(
χ

−1 + i

)1/3

X̂

][
1 −

(
χ

1 + i

)1/3

X̂

]

×
[

1 +
(

χ

−1 − i

)1/3

X̂

][
1 − (−1)−2/3

(
χ

1 + i

)1/3

X̂

]
,

(12)

where χ is the nonlinearity strength and the attenuation
is omitted for simplicity. This second-order expansion is
sufficient to achieve the cubic nonlinearity for a general
purpose [10]. Exploiting the emerging single-photon guns, it
will be the first step towards controlled nonlinear dynamics of
a quantum oscillator. The identification of hidden nonclassical
features of quantum states produced by the cubic nonlinearity
has been proposed [42].

B. Arbitrary wave-function generation

It is well known that any quantum state can be approximated
with an arbitrarily high precision by a finite superposition of
Fock states up to N th order as |ψ〉 = ∑N

n=0 cnâ
†n/

√
n!|0〉. We

observe that this state can be constructed by a polynomial of â†

applied to the vacuum state [12]. This operation is achieved by
the repeated application of the elementary operation 1 + λâ†,
which is a special case of Eq. (6) with B = 0. Complementary
to this approach, we can also use the continuous-variable
operators to build not the discrete Fock state expansion of the
state but rather the continuous-variable wave function of
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FIG. 4. (Color online) Fidelity of the ideal coherent-state super-
position Nc(|β〉 + | − β〉) with the generated cat states. Depending
on the highest photon number nmax which coincides the repetition
number of the X gate, we can achieve the approximate cat state very
efficiently. Green (light gray), blue (dark gray), and red (medium
gray) bars correspond to β = 1,2,3, respectively.

the state. The wave function of the general state in the
coordinate representation can be simply expressed as

ψ(x) = 〈x|ψ〉 =
N∑

n=0

cnHn(x)

π1/4
√

2nn!
e−x2/2 ≡ G(x)〈x|0〉, (13)

where G(x) = ∑N
n=0

cnHn(x)√
2nn!

and Hn(x) are Hermitian poly-

nomials. Therefore, we can write |ψ〉 = G(X̂)|0〉. This is
simply a wave function of the vacuum state multiplied by
an N th-order polynomial of x, which is exactly obtained by
N -fold application of the X gates. The number of required
operations can be reduced by attempting to generate a suitably
squeezed version of the target state and then manipulating
the Gaussian envelope by another squeezing operation [43].
Therefore, the X gate can be seen as a universal elementary
gate sufficient for general state preparation, the continuous
counterpart of the particle-like single-photon addition.

To demonstrate the state generation aspect of our scheme,
let us attempt to generate an equal superposition of coherent
states, Nc(|β〉 + | − β〉), where Nc = (2 + 2e−2β2

)−1/2 is the
normalization factor. This quantum state is an important
resource in quantum information processing and funda-
mental tests of quantum mechanics [44–47] and has been
realized experimentally for β � 2 [48–51]. It alternatively
can be written as Nce

−β2/2(exp[βâ†] + exp[−βâ†])|0〉 =
N ′

c(nmax)
∑nmax

n=even 2(βâ†)n/n!|0〉, where N ′
c(nmax) is a normal-

ization factor for a finite expansion up to the maximum photon
number nmax in a truncated form. This state is generated

by the following polynomial of â† on the vacuum state:∑nmax
n=even 2(βâ†)n/n!. The dependence of the fidelities on nmax

with the exact even cat state is drawn in Fig. 4. We note that
for nmax = 16, we can achieve the fidelity of 0.993 for β = 3.
An odd cat state can be constructed in a completely equivalent
way. We also note that no attenuation effect exists in the state
generation due to the initial vacuum state the scheme acts on.

C. Multiple X gates in a single-shot operation

Implementing a potential F (x̂) by the sequential application
of X gates is accompanied by an exponential decrease of the
probability of success. This issue can be overcome by applying
the total potential consisting of several X gates directly in a
single step. First, a specific ancillary state f (X̂L)|0〉L, where
f (x̂) = F (−x̂/κ), can be generated off-line using X gates,
as in [10]. After a QND coupling between the ancilla and
the oscillator, the ancillary mode is measured by homodyne
detection, and the target operation is achieved:

L〈x0 = 0|UQNDf (X̂L)|0〉L =L 〈x0 = 0|f (−κX̂)UQND|0〉
= f (−κX̂)L〈x0 = 0|UQND|0〉 = F (X̂) exp

[ − 1
2κ2X̂2

]
.

(14)

The factor exp[−κ2X̂2/2] can be compensated by a suitable
squeezing of the ancilla as before. The same approach can be
applied to the operations based on the beam splitter interaction.
In this scheme the unavoidable attenuation is suppressed as a
side benefit.

V. CONCLUSIONS

We have presented a methodology for the conditional in-
duction of various nonlinear potentials in quantum oscillators
and conditional preparation of wave functions of the quantum
oscillators. This method is based on the sequential application
of the elementary X gates supplied by the single-photon guns.
Based on a wide class of emerging single-photon guns [25–32],
it is broadly applicable for various quantum oscillators
(optical, atomic, or mechanical). The presented operation will
therefore open a broad area of very anticipated investigation
of controllable nonlinear dynamics of quantum oscillators.
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