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We study the properties of a Bose-Einstein-condensate (BEC)–impurity mixture at finite temperature employing
the time-dependent Hartree-Fock Bogoliubov (TDHFB) theory which is a set of coupled nonlinear equations
of motion for the condensate and its normal and anomalous fluctuations on the one hand and for impurity
on the other. The numerical solutions of these equations in the static quasi-one-dimensional regime show that
the thermal cloud and the anomalous density are deformed as happens to the condensate and the impurity
becomes less localized at nonzero temperatures. Effects of the BEC fluctuations on the self-trapping state are
studied in homogeneous weakly interacting BEC-impurity at low temperature. The self-trapping threshold is
also determined in such a system. The formation of solitons in the BEC-impurity mixture at finite temperature is
investigated.
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I. INTRODUCTION

During recent years, a revived interest in Bose-Einstein-
condensate (BEC)–impurity mixtures has been stimulated by
the experimental works of the authors of Refs. [1–4]. In
particular, it has been proven that single atoms can get trapped
in the localized distortion of the BEC that is induced by the
impurity-BEC interaction [5–7]. Recently, Catani et al. [8]
created a harmonically trapped impurity suspended in a sepa-
rately trapped Bose gas and they studied the dynamics of such a
system following a sudden lowering of the trap frequency of the
impurity. Very recently, an important experimental study of the
quantum dynamics of a deterministically created spin-impurity
atom propagated in a one-dimensional (1D) lattice system has
been realized in Ref. [9].

Theoretically, the self-trapping impurities in BEC with
strong attractive and repulsive coupling have been studied in
homogeneous and harmonically trapped condensate [10,11].
The quasiparticle excitation spectrum and quantum fluctua-
tions around the product state that describes the entanglement
of the impurity and boson degrees of freedom have been
calculated in a homogeneous case [12]. In such a system,
the formation of a parametric soliton behavior has also
been predicted [10]. Moreover, it has been shown that the
self-localized BEC-impurity state resembles that of a small
polaron which has been described successfully in the strong
coupling limit using both the Landau-Pekar treatment [13]
and the Fröhlich-Bogoliubov Hamiltonian within the Feynman
path integral [14,15]. Then, this study was generalized to two
polaron flavors and multi-impurity polarons in a dilute BEC by
Tempere et al. [14] and Blinova et al. [16]. Furthermore, the
dynamics and the breathing oscillations of a trapped impurity
as well as the impurity transport through a strongly interacting
bosonic quantum gas are investigated in Refs. [17,18]. Addi-
tionally, the properties of the impurity-BEC in a double-well
potential are discussed in Ref. [19].

Although these theories give good results at zero tem-
perature, they completely ignore the behavior of the BEC-
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impurity at finite temeprature. The effects of the temperature
are so important, in particular on the fluctuations, on the
expansion of the condensate, and on the thermodynamics
of the system. Certainly, the dynamics of the BEC-impurity
at nonzero temperatures is a challenging problem as for
example the Bogoliubov approximation becomes invalid, at
least at large times, and large thermal phase fluctuations have
to be taken into account even at low temperatures where
density fluctuations are small. It is therefore instructive to
derive a self-consistent approach to describe the static and
the dynamic behavior of BEC-impurity mixtures at finite
temperature especially because all experiments actually take
place at nonzero temperatures.

Our approach is based on the time-dependent Balian-
Véréroni (BV) variational principle [20]. This variational
principle requires first the choice of a trial density operator.
In our case, we consider a Gaussian time-dependent density
operator. This ansatz belongs to the class of the generalized
coherent states. The BV variational principle is based on the
minimization of an action which involves two variational
objects: one is related to the observables of interest and
the other is akin to a density matrix [21]. This leads to
a set of coupled time-dependent mean-field equations for
the condensate, the noncondensate, the anomalous average,
and the impurity. This approach is called time-dependent
Hartree-Fock-Bogoliubov (TDHFB).

The original numerical implementation of this theory [22]
successfully addressed the issue of the condensate and the
thermal cloud formation at finite temperature. Likewise, the
TDHFB equations have been used to study the properties of
the so-called anomalous density in three- and two-dimensional
homogeneous and trapped Bose gases [23,24]. The results
of this analysis present an overall good agreement with
recent experimental and theoretical works and highly coincide
with the Monte Carlo simulation. The TDHFB theory yields
also remarkable agreement with various experiments, e.g.,
hydrodynamic collective modes and vortex nucleation at finite
temperature [25].

The rest of this paper is organized as follows. In Sec. II,
we review the main steps used to derive the TDHFB equations
from the BV variational principle. In Sec. III, the TDHFB
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equations are applied to a trapped BEC-impurity system to
derive a set of coupled equations governing the dynamics of the
condensate, the noncondensate, the anomalous average, and
the impurity. We then restrict ourselves to solve these equations
numerically in a static quasi-1D case and we therefore look at
how much the impurity enhances the condensate fluctuations
and how much it may be localized. In Sec. IV, we discuss
the effects of the condensate fluctuations on the self-trapping
impurity using the linearized TDHFB equations in a homo-
geneous quasi-1D case. Formulas of some thermodynamic
quantities of such a system are also given. Section V is devoted
to studying the behavior and the formation of solitons in
BEC-impurity mixtures in quasi-1D geometry. In this section
we analyze numerically the different scenarios that emerge in
our model, as well as the temperature effects on the depth and
on the creation of solitons. Finally we present our conclusions
in Sec. VI.

II. TDHFB EQUATIONS

The Gaussian density operator D(t) is completely charac-
terized by the partition function Z(t) = TrD(t), the one boson
field expectation value 〈ψ̂〉(r,t) = Tr ψ̂(r)D(t)/Z(t), and the
single-particle density matrix is defined as

ρj (r,r′,t) =
(

〈 ˆ̄ψ+ ˆ̄ψ〉 −〈 ˆ̄ψ ˆ̄ψ〉
〈 ˆ̄ψ+ ˆ̄ψ+〉 −〈 ˆ̄ψ ˆ̄ψ+〉

)
j

(r,r′,t), (1)

where j refers to the BEC atoms as B and to the impurity
neutral atoms as I.

In the preceding definitions, ψ̂j and ψ̂+
j are the boson

destruction and creation field operators (in the Schrödinger
representation), respectively, satisfying the usual canonical
commutation rule [ψ̂j (r),ψ̂+

j (r′)] = δ(r − r′), and ˆ̄ψj (r) =
ψ̂j (r) − �j (r) is the noncondensed part of the field operator
with �j = 〈ψ̂j (r)〉.

Upon introducing these variational parameters into the BV
principle, one obtains dynamical equations for the expectation
values of the one- and two-boson field operators [21–23]:

i�
d�j

dt
= dE

d�j

, (2)

i�
dρj

dt
=

[
ρj ,

dE
dρ+

j

]
. (3)

One of the most noticeable properties of these equations
is the unitary evolution of the one-body density matrix ρj ,
which means that the eigenvalues of ρj are conserved. This
immediately leads to the expression

ρj (ρj + 1) = (Ij − 1)/4, (4)

where I known as the Heisenberg invariant. Therefore, Eq. (4)
involves the conservation of the von Neumann entropy S =
TrD lnD. Indeed, parameter (4) is related to the degree of
mixing (see Appendix A of Ref. [26]). For pure state and at
zero temperature, I = 1.

Among the advantages of the TDHFB equations is that
they should yield the general time, space, and temperature
dependence of the various densities. Furthermore, they satisfy
the energy and number conserving laws. Interestingly, our

TDHFB equations can be extended to provide self-consistent
equations of motion for the triplet correlation function by using
the post-Gaussian ansatz.

III. APPLICATION TO THE BEC-IMPURITY SYSTEM

We consider NI impurity atoms of mass mI in an external
trap VI (r) and identical bosons of mass mB trapped by
an external potential VB(r). The impurity-boson interaction
and boson-boson interactions have been approximated by the
contact potentials gBδ(r − r′) and gIBδ(r − r′), respectively.
We neglect the mutual interactions of impurity atoms under
the assumption that their number and local density remains
sufficiently small [10,11]. The many-body Hamiltonian for
the combined system which describes bosons, impurity, and
impurity-boson gas coupling is given by

Ĥ = ĤB + ĤI + ĤIB

=
∫

drψ̂+
B (r)

[
− �

2

2mB

� + VB(r)+gB

2
ψ̂+

B (r)ψ̂B(r)

]
ψ̂B(r)

+
∫

drψ̂+
I (r)

[
− �

2

2mI

� + VI (r)

]
ψ̂I (r)

+ gIB

∫
drψ̂+

I (r)ψ̂I (r)ψ̂+
B (r)ψ̂B(r), (5)

where ψ̂B(r) and ψ̂I (r) are the boson and impurity field
operators.

The total energy E = EB + EI + EIB = 〈Ĥ 〉 can be easily
computed yielding the following:

EB =
∫

dr
(

− �
2

2mB

� + VB

)
(|�B |2 + ñ)

+ gB

2

∫
dr

(|�B |4 + 4ñ|�B |2

+ 2ñ2 + |m̃|2 + m̃∗�2
B + m̃�∗

B
2)

, (6a)

EI =
∫

dr
[(

− �
2

2mI

� + VI

)
(|�I |2 + ñI )

]
, (6b)

EIB = gIB

∫
dr(|�I |2 + ñI )(|�B |2 + ñ), (6c)

where �B and �I stand for the condensate and the impurity
wave functions, respectively. The noncondensed density ñ

and the anomalous density m̃ are identified, respectively,
with 〈 ˆ̄ψ+

B
ˆ̄ψB〉 and 〈 ˆ̄ψB

ˆ̄ψB〉 and ñI = 〈 ˆ̄ψ+
I

ˆ̄ψI 〉 is the impurity
fluctuation.

Expressions (6) for the energy allow us to write down
Eqs. (2) and (3) more explicitly as

i��̇B =
(

− �
2

2mB

� + VB + gB(|�B |2 + 2ñ)

+ gIB(|�I |2 + ñI )

)
�B + gBm̃�∗

B, (7a)

i��̇I =
(

− �
2

2mI

� + VI + gIB(|�B |2 + ñ)

)
�I , (7b)

i� ˙̃n = gB

(
m̃∗�2

B − m̃�∗
B

2)
, (7c)
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i� ˙̃nI = 0, (7d)

i� ˙̃m = gB(2ñ + 1)�2
B + 4

(
− �

2

2mB

� + VB + 2gBn

+ gB

4
(2ñ + 1) + gIB(|�I |2 + ñI )

)
m̃, (7e)

where n = |�B |2 + ñ is the total density in the BEC. Putting
gIB = 0 (i.e., neglecting the mean-field interaction energy
between bosons and impurity components) one recovers the
usual TDHFB equations [22–25] describing a degenerate
Bose gas at finite temperature and the Schrödinger equations
describing a noninteracting impurity system. In the case when
ñ = m̃ = 0, Eqs. (7) becomes similar to those derived in
Ref. [27] for Bose-Fermi mixtures with fermions playing the
role of the impurity.

Interestingly, we see from Eq. (7d) that the noncondensed
density of the impurity is constant while the anomalous density
which describes correlations between pairs does not exist in
such a system. Indeed, the absence of the anomalous density
in the impurity is due to the neglect of the interaction between
impurity atoms. One should mention also at this level that
Eq. (7e), which describes the behavior of the anomalous
density-impurity, has no analog in the literature.

A useful link between the noncondensed and the anomalous
densities of BEC can be given via Eq. (4):

IB = (2ñ + 1)2 − 4|m̃|2. (8)

Equation (8) clearly shows that m̃ is larger than ñ at low
temperature, so the omission of the anomalous density in this
situation is principally an unjustified approximation and wrong
from the mathematical point of view.

Notice that for a thermal distribution, Ik = coth2(εk/T ),
where εk is the excitation energy of the system. The expression
of I allows us to calculate in a very useful way the dissipated
heat for the d-dimensional BEC-impurity mixture as Q =
(1/n)

∫
EkIkd

dk/(2π )d with Ek = �
2k2/2m [24]. It is nec-

essary to stress also that our formalism provides an interesting
formula for the superfluid fraction ns = 1 − 2Q/dT [24],
which reflects the importance of the parameter I .

Equations (7) in principle cannot be used as they stand since
they do not guarantee to give the best excitation frequencies.
Indeed it is well know [23,28,29] that the inclusion of the
anomalous average leads to a theory with a (unphysical) gap in
the excitation spectrum. The standard treatment in calculations
for trapped gases has been to neglect m̃ in the above equations,
which restores the symmetry and hence leads to a gapless
theory. This is often reminiscent of the Popov approximation.
In addition, one finds that the anomalous average is divergent
if one uses a contact interaction. To go beyond Popov, one
has to renormalize the anomalous average to circumvent this
ultraviolet divergence. Following the method described in
Ref. [28], we get from Eq. (7a):

gB |�B |2�B + gBm̃�∗
B = gB

(
1 + m̃/�2

B

)|�B |2�B

= U |�B |2�B. (9)

This is similar to the so-called G2 approximation based on the
T -matrix calculation [28].

At very low temperature where m̃/�2
B � 1, the new

coupling constant U reduces immediately to gB . Inserting
U in Eqs. (7a) and (7b) and using 2ñ + 1 ≈ 2m̃ [25], this
approximation is valid at very low temperature where m̃ � ñ

as we have mentioned above. After some algebra we obtain

i��̇B =
{
− �

2

2mB

� + VB + gB[β|�B |2

+ 2ñ + γ (|�I |2 + ñI )]

}
�B, (10a)

i� ˙̃m =
{
− �

2

2mB

� + VB + gB[2Gm̃

+ 2n + γ (|�I |2 + ñI )]

}
m̃, (10b)

where β = U/gB , G = β/4(β − 1), and γ = gIB/gB .
Let us now reveal the significance of parameter β. First

of all, β accounts for finite-temperature effects (dissipation);
it scales with temperature T according to the formula (8).
Futhermore, for β = 1, i.e., m̃/�2

B = 0, Eq. (10a) reduces to
the well-known HFB-Popov equation, which is safe from all
ultraviolet and infrared divergences and thus provides a gapless
spectrum. For 0 < β < 1, G is negative, while for β > 1, G is
positive. At this level, we note that for large values of β, one
gets a BEC with strong interactions and high correlations. So,
in order to guarantee the diluteness of the system, β should
vary as β = 1 ± ε with ε being a small value.

In what follows we consider a single impurity NI = 1,
which means that there is no impurity fluctuation (ñI = 0),
immersed in elongated (along the x direction) BEC and
confined in a highly anisotropic trap (such that the longitudinal
and transverse trapping frequencies are ωBx/ωB⊥ � 1). In
such a case, the system can be considered as quasi-1D
and, hence, the coupling constants of the Hamiltonian (5)
effectively take their 1D form, namely, gB = 2�ωB⊥aB and
gIB = 2�ωB⊥aIB , where aB and aIB are the scattering lengths
describing the low-energy boson-boson and impurity-boson
scattering processes.

The time-independent TDHFB equations can be eas-
ily obtained within the transformations: �B(x,t) =
�B(x) exp(−iμBt/�), m̃(x,t) = m̃(x) exp(−iμm̃t/�), and
�I (x,t) = �I (x) exp(−iμI t/�), where μB , μm̃, and μI are,
respectively, the chemical potential of the condensate and of
the anomalous density and of the impurity. Strictly speaking
μm̃ is also associated with the thermal cloud density since ñ

and m̃ are related to each other by Eq. (8). Then the static
TDHFB equations read

μB�B =
[
− �

2

2mB

� + 1

2
mBω2

Bxx
2

+ gB(β|�B |2 + 2ñ + γ |�I |2)

]
�B, (11a)

μm̃m̃ =
[
− �

2

2mB

� + 1

2
mBω2

Bxx
2

+ gB(2Gm̃ + 2n + γ |�I |2)

]
m̃, (11b)
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μ̄I�I =
[
− �

2

2mI

� + 1

2
mIω

2
Ixx

2 + gB(γ |�B |2 + γ ñ)

]
�I .

(11c)

To gain insight into the behavior of the thermal cloud and
the anomalous densities in the BEC-impurity system at finite
temperature, we solve numerically Eqs. (11) using the finite-
differences method. In the numerical investigation, we use
a0 = √

�/mBωBx and �ωBx as the length (the ground state
extent of a single BEC-boson particle) and the energy units,
respectively, and we end up with α = mB/mI being the ratio
mass and � = ωBx/ωIx . The parameters are set to NI = 1 of
85Rb impurity atom, N = 105 of 23Na bosonic atoms, aB =
3.4 nm, aIB = 16.7 nm, the transverse trapping frequency is
ωB⊥ = 2π × 500 Hz [10], the longitudinal trapping frequency
is ωBx = 2π × 5 Hz, γ = 4.91, and � = 0.2.

Our numerical simulations show that for repulsive interac-
tions, the condensate is distorted by the impurity and forms a
dip near the center of the trap. The impurity is focused inside
the condensate forming a self-localized state as is illustrated
in the left panel of Fig. 1 which is in good agreement with
existing theoretical results. One can see also from Fig. 1 (right
panel) that the density of the condensate and of the impurity is
lowered for β = 1.1. In addition, the thermal cloud is deformed
away from the impurity, as happens to the condensate cloud.
The density of the impurity reduces and becomes less localized
when the temperature grows as shown in the same figure.
Indeed, this decay arises from the fact that at nonzero temper-
atures the condensate coexists with both a noncondensed cloud
and an anomalous density composed of thermally excited
quasiparticles. Therefore, interactions between condensed and
noncondensed atoms on the one hand and interactions of the
impurity with atoms of the surrounding condensate on the other
hand lead to dissipation, so that the impurity loses energy and
delocalizes.

A qualitative difference can be observed between anoma-
lous density with impurity and anomalous density without
impurity. Figure 2, shows that the dip in the neighbor-
hood of the center of the trap, which arises from the
interactions between atoms of the condensate and those of
the thermal cloud [23], becomes deeper in the presence
of the impurity. This clearly confirms that the anomalous
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FIG. 1. (Color online) Condensed (gray lines), noncondensed
(red-dashed lines), and impurity (blue-dotted lines) densities as
functions of the radial distance for β = 0 (left panel) and for β = 1.1
(right panel) for the above parameters.
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FIG. 2. Anomalous density as a function of the radial distance
for β = 1.1 with the same parameters as in Fig. 1. Solid lines: in the
presence of the impurity. Dotted lines: without impurity.

density is also distorted in an analogous manner with the
condensate.

IV. EFFECTS OF BEC FLUCTUATIONS ON THE
SELF-TRAPPING IMPURITY

In order to study effects of BEC fluctuations on the
self-trapping problem of weakly BEC-impurity interactions
in the homogeneous case (VB = VI = 0), it is convenient
to linearize Eqs. (11a) and (11b) by considering the small
deformations [14] δ�B = �B − 1 and δm̃ = m̃ − 1 of the
condensate and of the anomalous density, respectively. Assume
that δ�B and δm̃ are real for simplicity. The linear equations
take the following forms:(

−1

2
� + A

)
δ�B = −C|�I |2, (12a)

(
−1

2
� + B

)
δm̃ = −C|�I |2, (12b)

[
−1

2
� + γ

α
(2δ�B + δm̃)

]
�I = ε̄�I , (12c)

where A = 2 + 2(β − 2) + μ̄B , B = 2 + 4G + μ̄m̃, C =
γ /ξn, ξ = �/

√
mBngB is the healing length, ε̄ = (μ̄I −

3γ /2)/α, μ̄B = μB/ngB , μ̄m̃ = μm̃/ngB , and μ̄I = μI/ngB .
Equation (12c) constitutes a natural extention of that used

in the literature [11,14] since it contains the condensate and its
fluctuation. The solution of this equation allows us to study not
only the self-localizing problem at finite temperature but also
enables us to see how the condensate fluctuation enhances the
thermodynamics of the impurity such as the chemical potential
and the compressibility.

It can be seen from Eqs. (12a) and (12b) that the lineariza-
tion of Eqs. (11) is valid in the regime C � 1. The solution of
Eqs. (12a) and (12b) is given in terms of the Green’s function
G(x). Inserting this solution into Eq. (12c) with the assumption
that δm̃/δ�B � 1 at low temperature, one finds that �I obeys
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the nonlocal nonlinear Schrödinger equation[
−1

2
� − 2ζ

∫
dz′G(z,z′)|�I (z′)|2

]
�I = ε̄�I , (13)

where ζ = γC/α is the self-trapping parameter.
Multiplying Eq. (13) by �∗

I (z), integrating over z, and
making use of the normalization condition, we obtain

ε̄ = ε̄kin + ε̄def

= −1

2

∫
dz�∗

I (z)��I (z)

− ζ

∫
dz

∫
dz′|�I (z)|2G(z,z′)|�I (z′)|2, (14)

where ε̄def is the energy gained by deforming the BEC.
To estimate the critical parameters for which self-trapping

occurs, we insert the normalized Gaussian wave function
�I (z) = (1/

√
πq2)1/4 exp(−z/2q)2. A straightforward calcu-

lation yields

ε̄ = 1

4q2
− ζf (q), (15)

where f (q) = (1/2) exp(−2q2)erfc(
√

2q) with erfc(x) being
the complementary error function. Equation (15) provides a
useful expression for the impurity chemical potential

μ̄I = α

4q2
+ γ

[
3

2
− Cf (q)

]
. (16)

It is clearly seen from Eq. (16) that, for q > 1, μ̄I is
linearly increasing with γ . Importantly, Eq. (16) shows that
the variational impurity chemical potential differs by a factor
of 3/2 compared to the ordinary zero temperature case, i.e.,
without fluctuations. We then infer that the presence of thermal
fluctuations of the condensate leads to corrections of the
chemical potential of the impurity.

The above chemical potential implies the following expres-
sion for the impurity compressibility κ−1

I = n2∂μ̄I /∂n:

κ−1
I = 1

2

γ 2

ξ
f (q). (17)

The compressibility (17) remains finite and increases with γ .
If q 
 1, we can Taylor-expand f as f ≈ 1/2 − √

2/πq.
In this limit, the impurity energy ε̄ = 1/(4q2) + ζq/

√
2π −

ζ/2 attains a minimum at q = 0.85 ζ−1/3. Therefore, the
self-trapping occurs for small ζ in quasi-1D BEC-impurity,
which is in agreement with the theoretical results of Ref. [11].
We conclude that the condensate fluctuations do not have
considerable effects on the occurrence of the self-tapping at
low temperature. It is worth noting that our model is also
applicable in harmonically trapped BEC.

V. SOLITONS IN THE BEC-IMPURITY SYSTEM

Our aim in this section is in a sense twofold. On the
one hand, we aim to study the formation of matter-wave
solitons in BEC-impurity mixtures at finite temperature in
an experimentally relevant and realizable setting. On the
other hand, we are aiming to see what are the effects of the
temperature or the dissipation on the generation of solitons.
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FIG. 3. (Color online) Density profiles for solitons in the BEC-
impurity mixture with the same parameters as in Fig. 1. Solid lines:
ordinary soliton. Red-dashed lines: impurity soliton. Blue-dotted
lines: anomalous soliton.

What is advantageous in our model (11) is that the anoma-
lous density is treated dynamically on the same footing as the
condensate, which leads us to predict a new kind of soliton,
namely, an anomalous soliton. This soliton occurs generically
in the thermal equilibrium state of a weakly interacting Bose
gas irrespective of the presence or not of the impurity. At
this point, one should mention that the previous analysis of
parameter β highlights the emergence of, at least, two different
cases for BEC with repulsive interactions(gB > 0): bright
anomalous soliton for 0 < β < 1 and dark anomalous soliton
for β > 1.

To investigate in more detail the formation of solitons
in a weakly repulsive BEC-impurity under the presence of
thermal fluctuations, we consider a quasi-1D (elongated along
the x direction) geometry which is the most favorable for the
appearance of solitons. Again, we solve numerically Eqs. (11),
employing appropriate boundary conditions with the same
experimental values corresponding to Fig. 1.

Figure 3 depicts clearly the formation of dark solitons in the
condensed and the impurity components and a bright soliton
in the anomalous density for β = 0.9. The situation is inverted
for β = 1.1 where a spontaneous dark anomalous soliton is
generated, without any external forcing or perturbations, which
is in good accordance with our previous analysis. This soliton
becoming widespread and deep as temperature rises unlike
to the condensed (ordinary) and impurity solitons where they
become narrower and deeper at higher temperatures because
they lose energy due to the dissipation. A similar behavior has
been predicted in Ref. [30] for thermal solitons in a quasi-1D
Bose gas. Also, a careful observation of the same figure shows
that the impurity soliton is deeper than the condensed one
and the depth of these three solitons increases with increasing
temperature. Another important remark is that the impurity
soliton is localized inside the ordinary one especially for values
of β > 1 and both solitons are localized in the core of the
anomalous soliton. Consequently, the width of the anomalous
soliton is larger than that of the ordinary soliton whatever
the range of the temperature. This is in fact natural since the
anomalous soliton is related to the thermal cloud and this
latter surrounds the condensate as it was shown in earlier BEC
experiments.

It is understood also that for the BEC-impurity with
attractive interactions (gB < 0), bright anomalous solitons can
be produced at higher temperature (for β > 1).

We turn now to analyze the dynamics of the anomalous
solitons. Usually, solitons can be moved by shaking slightly the
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FIG. 4. (Color online) Evolution of the anomalous soliton for
β = 0.9 with the same parameters as in Fig. 3. Here we measure
time in units of ω−1

Bx , the position in units of a0, and the density of
a−1
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trapping potential. In such a situation, the anomalous soliton
obeys the time-dependent TDHFB equations. For β = 0.9, we
observe from Fig. 4 that a bright anomalous soliton propagates
with almost constant amplitude reflecting the robustness and
the stability of this soliton during its evolution. This behavior
persists also for dark anomalous solitons.

An interesting question that begs to be asked is what
kind of solitons will exist in the BEC-impurity mixture
with attractive boson-boson interactions and repulsive boson-
impurity interactions or inversely? For example, for Bose-
Fermi gas mixtures, it has been shown that bright solitons are
produced as a result of a competition between two interparticle
interactions: boson-boson repulsion versus boson-fermion
attraction [27]. The response to this question and others related
to the formation and the behavior of soliton molecules in
BEC-impurity systems will be given elsewhere.

VI. CONCLUSION

In this paper we have derived from the time-dependent
BV variational principle a set of coupled equations for the
BEC-impurity mixture. These equations govern in a self-
consistent way the dynamics of the condensate, the thermal

cloud, the anomalous average, and the impurity. The numerical
simulations of the TDHFB equations in the harmonically
trapped quasi-1D model showed that the thermal cloud and
the anomalous density are distorted by the impurity as happens
with the condensate. Additionally, the impurity is reduced and
becomes less localized with increasing temperature.

Furthermore, we have investigated effects of BEC fluctu-
ations on the self-trapping impurity in homogeneous weak
interaction regimes at low temperature. We have found that
these fluctuations may enhance the chemical potential and
the compressibility of the impurity, while they do not affect the
occurrence of the self-trapping state. We have shown that the
self-trapping takes place for small values of ζ in agreement
with the case of zero temperature.

Moreover, we have studied the formation of matter-wave
solitons in repulsively quasi-1D BEC-impurity mixtures in
the presence of thermal effects. Our formalism reveals the
formation of stable solitons. Depending of parameter β,
the system contains much more than the standard picture.
A dark soliton is created in condensed and impurity parts
of the system, whereas a bright soliton is formed in the
anomalous density. A dark anomalous soliton is willingly
generated at higher temperatures without the need of any
external perturbations or squeezing of the geometry. This
anomalous soliton is shown to be stable and robust during
its time evolution. Our formalism allows us to explain the
temperature dependence of the appearance of deep solitons in
the BEC-impurity.

An important step for future theoretical studies in the
finite-temperature regime is to fully include the interaction
part of the impurity atoms in the total Hamiltonian of the
system [31]. This permits us to study in a self-consistent way,
within the TDHFB formalism, fluctuations of the impurity and
their effects on the formation of solitons and vortices in such
a system.
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