
PHYSICAL REVIEW A 90, 013627 (2014)

Ground state of a homogeneous Bose gas of hard spheres
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The ground state of a homogeneous Bose gas of hard spheres is treated in self-consistent mean-field theory. It
is shown that this approach provides an accurate description of the ground state of a Bose-Einstein condensed gas
for arbitrarily strong interactions. The results are in good agreement with Monte Carlo numerical calculations.
Since all other mean-field approximations are valid only for very small gas parameters, the present self-consistent
theory is a unique mean-field approach allowing for an accurate description of Bose systems at arbitrary values
of the gas parameter.
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I. INTRODUCTION

The quantum hard-sphere model serves as a reference
or as an initial approximation for quantum systems with
more complicated interaction potentials because this model
is characterized only by a single interaction parameter com-
posed of the system density and the sphere diameter. The
interest in hard-sphere Bose systems, initiated by the works
of Bogoliubov [1], Lee, Huang, and Yang [2–4], Wu [5],
and others, has been connected with the attempt to give
a reasonable description for a quantum fluid with more
realistic potentials, especially for liquid helium. By extensive
numerical simulations, Kalos, Levesque, and Verlet [6] proved
that the hard-sphere reference fluid is able to provide a good
description even for liquid helium, whose atoms interact
through the Lennard-Jones potential. They showed that the
attractive forces change the liquid structure only a little [6].

The model characterizing the interactions in Bose systems
by a single gas parameter has become intensively employed
for low-temperature Bose gases, where at small values of
the gas parameter the system properties are shown to be
universal, being almost independent of the particular shapes
of interaction potentials [7]. Bose systems, whose atomic
interactions are characterized by a gas parameter, have been
extensively studied by Monte Carlo numerical calculations for
both trapped [8–11] and homogeneous gases [7,12–14].

It would, certainly, be good to have a theory of a mean-field
type, which could provide more or less simple formulas for
treating Bose systems with finite gas parameters. However,
there is a widespread consensus that there exists no theoretical
description, based on a mean-field approximation, that could
give reasonably accurate results outside of the region of very
small gas parameters, where the Bogoliubov approximation
is valid. Actually, the Bogoliubov approximation is often
identified with the mean-field theory [7,9,12].

The absence of Bose-condensed systems of a mean-field
approximation that could give at low temperatures a reasonable
description for finite or large interactions seems rather strange,
since for many other systems such mean-field approximations
do exist. For example, many magnetic materials, defined by
the Heisenberg or Ising models, at low temperatures can be
reasonably well described by the mean-field approximation.
Of course, a mean-field approximation can fail in the critical
region or for reduced dimensions, but in three dimensions at

very low temperatures, close to zero, such approximations do
catch the main properties of magnetic materials [15,16].

In the present paper, we show that the low-temperature
Bose systems are not outcasts enjoying no accurate mean-field
theory, but there exists a mean-field approach providing a
correct description of such systems for arbitrarily large gas
parameters and yielding results in close agreement with
numerical Monte Carlo calculations.

II. REPRESENTATIVE ENSEMBLE

Our consideration is based on the self-consistent approach
to Bose-condensed systems [17–20], employing representa-
tive ensembles [21,22]. This approach guarantees the self-
consistency of all thermodynamic relations, the validity of
conservation laws, and a gapless spectrum of collective
excitations.

The energy Hamiltonian for a Bose system of hard spheres
is written in the standard form

Ĥ =
∫

ψ̂(r)

(
− ∇2

2m

)
ψ̂(r) dr

+ 1

2
�0

∫
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r) dr, (1)

with the interaction strength

�0 ≡ 4π
as

m
(2)

characterized by scattering length as and atomic mass m.
The field operators satisfy the Bose commutation relations.
Generally, the operators depend on time which, for brevity, is
not shown explicitly. Here and in what follows, the Planck and
Boltzmann constants are set to 1.

Note that we take the interaction potential in the form
of a local pseudopotential, which is admissible when the
interaction radius is much shorter than the mean interatomic
distance. Strictly speaking, the scattering length represents the
hard-sphere diameter only when the scattering length as is
essentially shorter than the interatomic spacing a. In that case,
as is known [2–6,23], the results for the local pseudopotential
coincide with those for the hard-sphere system. The use of
the local pseudopotential for the finite values of the ratio
as/a can be justified by the following reasons. First of all,
this ratio for a liquid cannot be larger than about 0.6, since
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after this the liquid freezes [13]. More important is that the
approximations we employ are based on the possibility of
extrapolating the results obtained for small parameters to the
large values of these parameters. Thus, the self-consistent
mean-field approximation [18–20], which we use, can be
shown to be equivalent to a variational procedure with respect
to atomic correlations, which makes it possible to extend
the results from the region of weak interactions to that of
strong interactions. The self-similar approximation allows us
to extrapolate the expressions, derived in the limit of small
coupling parameters, to the region of large parameters, as has
been demonstrated for a number of quantum models [24,25].
These methods guarantee that the results obtained for the small
ratio as/a, where as well represents the hard-sphere diameter,
provide us good approximations for the finite values of this
ratio.

The necessary and sufficient condition for the occurrence
of Bose-Einstein condensation is the spontaneous breaking of
global gauge symmetry [26,27]. The symmetry breaking can
be explicitly realized by means of the Bogoliubov shift [28,29]
for the field operator

ψ̂(r) = η(r) + ψ1(r), (3)

where η(r) is the condensate wave function and ψ1(r) is the
field operator of uncondensed atoms. It is worth stressing that
the Bogoliubov shift (3) is not an approximation, but an exact
canonical transformation [30].

To avoid double counting, the condensate function and
the field operator of uncondensed atoms are assumed to be
orthogonal to each other,∫

η∗(r)ψ1(r) dr = 0. (4)

The operator of uncondensed atoms on average is zero,

〈ψ1(r)〉 = 0, (5)

so that the condensate function plays the role of an order
parameter

η(r) = 〈ψ̂(r)〉. (6)

By this definition, the condensate function and the field op-
erator of uncondensed atoms are treated as separate variables
[28,29], normalized, respectively, to the number of condensed
atoms,

N0 =
∫

|η(r)|2 dr, (7)

and to the number of uncondensed atoms,

N1 = 〈N̂1〉, (8)

where the operator of uncondensed atoms is

N̂1 ≡
∫

ψ
†
1(r)ψ1(r) dr,

and the total number of atoms in the system is N = N0 + N1.
The evolution equations for the variables are obtained

[17,18,22] by the extremization of the effective action,
under conditions (4)–(8), which yields the equation for the

condensate function,

i
∂

∂t
η(r,t) =

〈
δH

δη∗(r,t)

〉
, (9)

and the equation for the operator of uncondensed atoms,

i
∂

∂t
ψ1(r,t) = δH

δψ
†
1(r,t)

, (10)

with the grand Hamiltonian

H = Ĥ − μ0N0 − μ1N̂1 − �̂, (11)

in which

�̂ =
∫

[λ(r)ψ†
1(r) + λ∗(r)ψ1(r)] dr. (12)

The Lagrange multipliers μ0 and μ1 guarantee the validity of
the normalization conditions (7) and (8), while the Lagrange
multipliers λ(r) guarantee the conservation condition (5).
These evolution equations are proved [31] to be identical to
the Heisenberg equations of motion.

The system statistical operator in equilibrium is defined
by minimizing the information functional [31,32] uniquely
representing the system with the given restrictions. This results
in the statistical operator

ρ̂ = 1

Z
e−βH (Z ≡ Tr e−βH ), (13)

with the same grand Hamiltonian (11) and β ≡ 1/T being the
inverse temperature.

For a system of N atoms in volume V , the average density

ρ ≡ N

V
= ρ0 + ρ1 (14)

is the sum of the densities of condensed and uncondensed
atoms, respectively:

ρ0 ≡ N0

V
, ρ1 ≡ N1

V
. (15)

For a homogeneous system, η(r) = √
ρ0. The terms, con-

taining the operators of uncondensed atoms, are treated in the
Hartree-Fock-Bogoliubov approximation. The details of this
self-consistent mean-field approach for Bose systems have
been thoroughly exposed in Refs. [18–20,22,31], so that here
we omit the intermediate calculations, passing to the final
results. For the density of uncondensed atoms, we find

ρ1 =
∫ [

ωk

2εk

coth

(
εk

2T

)
− 1

2

]
dk

(2π )3
, (16)

where the notation

ωk ≡ k2

2m
+ mc2 (17)

is used, and the expression

εk =
√

(ck)2 +
(

k2

2m

)2

(18)

represents the spectrum of collective excitations. The sound
velocity c is defined by the equation

mc2 = (ρ0 + σ1)�0. (19)
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The anomalous average

σ1 = −
∫

mc2

2εk

coth

(
εk

2T

)
dk

(2π )3
(20)

describes the density |σ1| of pair-correlated atoms [31].

III. ZERO TEMPERATURE

To consider the ground state, we set temperature to zero.
Then the density of uncondensed atoms (16) becomes

ρ1 = (mc)3

3π2
(T = 0), (21)

while for the anomalous average, we have

σ1 = −mc2
∫

1

2εk

dk
(2π )3

. (22)

This integral [Eq. (22)] for the anomalous average is
divergent. This is why the often-used practice is to omit
the anomalous average entirely, just setting σ1 to zero. This,
however, is principally wrong, since the nonzero anomalous
average is the manifestation of the broken gauge symmetry, in
the same way as the nonzero condensate fraction. Omitting the
former would require to neglect the latter and, hence, would
prohibit the condensate’s existence. It is straightforward to
show that neglecting the anomalous average makes the system
with the Bose-Einstein condensate unstable [17,22,31,33].

The integral (22) can be regularized by invoking one of the
known regularization procedures, all of which are actually
equivalent to the dimensional regularization [34]. Such a
regularization is known to be asymptotically exact in the limit
of weak interactions. Therefore, regularizing the integral in
Eq. (22), one has to keep in mind the limit �0 → 0 in the
spectrum (18), which can be taken into account by replacing
there c with ceff, such that

ceff 	 cB (�0 → 0), (23)

where

cB ≡
√

ρ

m
�0 (24)

is the asymptotic value of the sound velocity for �0 → 0, that
is, the Bogoliubov sound velocity [1,28,29]. This yields∫

1

2εk

dk
(2π )3

= −m2

π2
ceff. (25)

Thus, the anomalous average (22) can be reduced to the form

σ1 = m3c2

π2
ceff (�0 → 0) (26)

that is asymptotically exact in the limit of weak interac-
tions [34].

Since we are interested in describing finite values of atomic
interactions, the next step would be an analytic continuation of
the form (26) to finite �0. Before defining this procedure, let us
pass to dimensionless quantities that are also more convenient
for numerical calculations.

Let us define the fractions of condensed and uncondensed
atoms, respectively, as

n0 ≡ ρ0

ρ
, n1 ≡ ρ1

ρ
, (27)

and the dimensionless anomalous average

σ = σ1

ρ
. (28)

And let us introduce the dimensionless sound velocity

s ≡ mc

ρ1/3
. (29)

As a dimensionless strength of atomic interactions, it is
natural to use the gas parameter

γ ≡ ρ1/3as, (30)

which is of order of the ratio as/a.
It is worth emphasizing that this parameter is natural, since

it describes the ratio of the effective potential energy of an
atom to its kinetic energy. Really, potential energy per atom
is proportional to ρas/m, while kinetic energy is of order
ρ2/3/m. The ratio of the former to the latter gives exactly the
gas parameter (30).

In dimensionless units, the fraction of uncondensed atoms
reads as

n1 = s3

3π2
. (31)

Equation (19) for the sound velocity transforms into

s2 = s2
B(n0 + σ ), (32)

with the dimensionless Bogoliubov velocity

sB ≡ mcB

ρ1/3
=

√
4πγ . (33)

The equation for the anomalous average, Eq. (26), reduces to

σ = s2

π2
seff (γ → 0), (34)

where seff = mceff/ρ
1/3.

The problem in extending the weak-interaction formula
(34) to finite interactions is the necessity of defining an analytic
continuation from asymptotically small γ → 0 to the finite
values of γ . Such an analytic continuation seems to be not
uniquely defined. For instance, if we set seff = sB in Eq. (34),
we come back to a Bogoliubov-type approximation that can
be accurate for small gas parameters γ < 0.1. Setting seff = s,
we get the approximation of Ref. [35], valid for γ < 0.2.

In order to extend the validity of approximations to larger
values of γ , it is useful to keep in mind that, as has been
stressed above, the nonzero anomalous average requires a
nonzero condensate fraction, as far as both of them arising
due to the global gauge symmetry breaking occurring under
Bose-Einstein condensation [26,27]. On the contrary, the zero
condensate fraction implies the zero anomalous average, which
is written as the condition

σ → 0 (n0 → 0). (35)

The mentioned approximations seff = sB and seff = s do not
satisfy condition (35), which explains why they do not allow
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for extending expression (34) to the values of the gas parameter
larger than γ < 0.2.

An approximation, satisfying condition (35), can be ob-
tained by defining seff from Eq. (32) by setting σ to zero in
the right-hand side of this equation, which gives seff = √

4πn0.
This approximation was employed in Ref. [19], which allowed
for the extension of the accurate results to γ < 0.4, as
compared with the Monte Carlo calculations [7,13].

Now we propose a better justified procedure for analytically
extending the anomalous average to higher values of the gas
parameter. For this purpose, we rewrite Eqs. (32) and (34) in
the form of the iterative equations

s(n+1) = sB

√
n0 + σ (n), σ (n+1) = s2

B

π2
s(n+1), (36)

in which n is an iteration number. Notice that these equations
can be combined into one iterative relation,

σ (n+1) = s3
B

π2

√
n0 + σ (n). (37)

The Bogoliubov approximation, with s(0) = sB and σ (0) =
0, can be accepted as the zero-order approximation for the
iterative procedure. Then the first iteration gives

s(1) = sB

√
n0, σ (1) = s3

B

π2

√
n0. (38)

This is equivalent to the approximation of Ref. [19] that,
hence, can be considered as the first iteration of the iterative
procedure. To second order, we obtain

s(2) = sB

(
n0 + s3

B

π2

√
n0

)1/2

,

σ (2) = s3
B

π2

(
n0 + s3

B

π2

√
n0

)1/2

. (39)

In what follows, we use the second-order iteration for σ .
Summarizing the above consideration, we thus come to the

system of equations

n0 = 1 − n1, n1 = s3

3π2
,

s2 = s2
B(n0 + σ ), (40)

σ = s3
B

π2

(
n0 + s3

B

π2

√
n0

)1/2

,

self-consistently defining the condensate fraction n0, fraction
of uncondensed atoms n1, sound velocity s, and the anomalous
average σ .

At small gas parameter γ → 0, we have

n0 	 1 − 8

3
√

π
γ 3/2 − 64

3π
γ 3 − 256

9π3/2
γ 9/2,

n1 	 8

3
√

π
γ 3/2 + 64

3π
γ 3 + 256

9π3/2
γ 9/2,

s 	
√

4πγ + 16

3
γ 2 − 64

9
√

π
γ 7/2 − 4480

27π
γ 5,

σ 	 8√
π

γ 3/2 + 64

3π
γ 3 − 1408

9π3/2
γ 9/2.

The first two terms in the expansion for the condensate fraction
n0 exactly reproduce the Bogoliubov behavior of n0. We may
notice that the anomalous average is larger than the fraction of
uncondensed atoms, n1, in particular

lim
γ→0

σ

n1
= 3.

It would, therefore, be mathematically incorrect to neglect
σ leaving the threefold smaller quantity n1. The anomalous
average is an important quantity, without which the description
would not be self-consistent and the system would be unstable.

The behavior at large γ can also be found from Eqs. (40).
However, strictly speaking, considering γ 
 1 is not applica-
ble to a stable system, since it freezes at γ = 0.653, as follows
from the Monte Carlo simulations [13]. But, keeping in mind
a metastable situation, we can formally study large values of
γ 
 1, which leads to

n0 	 4 × 10−5 1

γ 13
, n1 = 1 − n0,

s 	 (3π2)1/3 −
(

π

3

)2/3

n0, σ 	 (9π )1/3

4

1

γ
− n0.

In the case of cold trapped atoms, although the scattering length
can be made very large by means of Feshbach resonance, such
gases become unstable with respect to three-body recombina-
tion, leading to significant particle loss and heating [36].

We solve Eqs. (40) for arbitrary values of the gas parameter
γ and compare our results with the Monte Carlo simulations
by Rossi and Salasnich [13]. The latter confirm the earlier
Monte Carlo calculations [7] and provide essentially more
information for the larger values of the gas parameter.
In Fig. 1, the behavior of the condensate fraction n0 is
shown, demonstrating good agreement with the Monte Carlo
simulations [13] in the whole range of γ . The Bogoliubov

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

γ

n
0

n
B

FIG. 1. (Color online) Condensate fraction n0 (solid line) as a
function of the gas parameter γ , compared with the Monte Carlo
results by Rossi and Salasnich [13], shown by dots, and with
the Bogoliubov approximation nB (dashed line). The latter is not
applicable above γ = 0.1.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

1.2

γ

σ

n
1

FIG. 2. (Color online) Fraction of uncondensed atoms n1 (solid
line) and anomalous average σ (dash-dotted line) as functions of the
gas parameter γ . The anomalous average is everywhere larger than
the n1.

expression for the condensate fraction,

nB = 1 − 8

3
√

π
γ 3/2,

is also shown. As is evident, nB gives a good approximation
only for γ < 0.1 and for larger γ is not applicable, deviating
too strongly from the numerical data. Figure 2 presents the
fraction of uncondensed atoms, n1, and the anomalous average
σ . As is seen, the latter is larger than the former in the whole
range of the considered γ . In Fig. 3, the dimensionless sound
velocity s is compared with the Bogoliubov sound velocity sB .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

2.5

3

3.5

γ

s
B

s

FIG. 3. (Color online) Sound velocity s (solid line) in dimension-
less units, compared with the Bogoliubov sound velocity sB (dashed
line), as functions of γ . The Bogoliubov approximation essentially
deviates from s above γ = 0.1.

The former is larger than the latter, although their values are
close to each other.

There have been a number of attempts to measure the
condensate fraction in superfluid 4He with different experi-
ments [37–41]. The estimated values of n0 at zero temperature
are in the range between 2% and 10%. The most recent
rather precise experiments [42–44] give the zero temperature
value n0 = (7.25 ± 0.75)% at saturated vapor pressure and
n0 = (2.8 ± 0.2)% at the pressure close to solidification.
The latter value has also been confirmed by the diffusion
Monte Carlo calculations [44]. The atoms of 4He at saturated
vapor pressure can be well represented [6] by hard spheres
of diameter as = 2.203 Å, which corresponds to the gas
parameter γ = 0.59. At this value, we get the condensate
fraction about 3%.

IV. GROUND-STATE ENERGY

The system ground-state energy is the internal energy at
zero temperature,

E = 〈Ĥ 〉 (T = 0). (41)

It is customary to express this energy in units of �
2/2ma2

s . In
our notation, this gives the dimensionless ground-state energy

E0 ≡ 2ma2
s

E

N
. (42)

Calculating the energy, we meet the divergent integral∫
(εk − ωk)

dk
(2π )3

= 16m4

15π2
c5

eff,

which is again regularized, invoking dimensional regulariza-
tion [31]. Then for small gas parameters, we have

E0 = 4πγ 3

(
1 + n2

1 − 2n1σ − σ 2 + 4s5
eff

15π3γ

)
, (43)

which yields the asymptotic, as γ → 0, expansion

E0(γ ) 	 4πγ 3

(
1 + 128

15
√

π
γ 3/2 + 128

9π
γ 3 − 2048

9π3/2
γ 9/2

)
.

(44)

The first two terms on the right-hand side of Eq. (44)
exactly coincide with the Lee-Huang-Yang formula [2–4]. The
simplest way for extending this expression to the larger values
of the gas parameter is to use the extrapolation procedure based
on self-similar factor approximants [25]. To second order, we
find

E0(γ ) = 4πγ 3(1 + 2.93379γ 3/2)1.64103. (45)

This formula for γ � 1 reproduces exactly the Lee-Huang-
Yang expression [2–4]. The behavior of the ground-state
energy (45) is shown in Fig. 4, compared with the Monte
Carlo calculations by Rossi and Salasnich [13] and with the
Lee-Huang-Yang perturbative expression

ELHY = 4πγ 3

(
1 + 128

15
√

π
γ 3/2

)
.

The agreement of our results with the Monte Carlo data [13]
is good up to the values γ ≈ 0.6. Let us recall that, actually,
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γ
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FIG. 4. (Color online) Dimensionless ground-state energy E0

(solid line) as a function of the gas parameter γ , compared with
the Monte Carlo results by Rossi and Salasnich [13], shown by dots,
and with the Lee-Huang-Yang expression ELHY (dashed line). The
latter deviates from the numerical data after γ = 0.4.

the system freezes [13] at γ ≈ 0.65, so that to consider the
gas parameters larger than the freezing value of 0.65 is not of
much meaning. Let us emphasize that expression (45) has been
obtained without any fitting. The Lee-Huang-Yang values of
ELHY give a good approximation only for γ < 0.4, while our
formula (45) yields the values practically coinciding with the
Monte Carlo data [13] up to γ = 0.6.

V. CONCLUSION

We have considered the ground state of a homogeneous
Bose-condensed gas with a local pseudopotential imitating
the hard-sphere interactions. The consideration is based on a
self-consistent mean-field approximation developed earlier by
the authors. This approach allows one to extend the results
obtained for small gas parameters to finite values of the latter.
It is shown to be in good agreement with the accurate Monte

Carlo results by Rossi and Salasnich [13] for all finite values of
the gas parameter between zero and the point of freezing. The
importance of using a correct expression for the anomalous
average is emphasized. This explains why the previously
used approximations could not provide sufficiently accurate
behavior of the condensate fraction for finite gas parameters.

The main difference of the present paper from our previous
publications is that here we have suggested an iterative
procedure for defining the anomalous average. The zeroth
iteration of this procedure corresponds to the Bogoliubov
approximation, where the anomalous average is zero. This
approximation is reasonable for small gas parameters γ < 0.1,
but it is not applicable for larger values of γ , as is evident from
the comparison in the figures.

The first iteration (38) corresponds to the expression we
used in our earlier papers, which extends the applicability of
the results to γ ≈ 0.4. However, for a gas parameter larger than
0.4, our previous results do not provide a good approximation,
as has been thoroughly analyzed in the paper by Rossi and
Salasnich [13].

Now we have employed the second-order iteration (39),
which has allowed us to essentially improve the results, making
them very close to the numerical Monte Carlo data, as is
demonstrated in the presented figures.

Recently, we demonstrated [45] that the self-consistent
mean-field approach is the sole mean-field theory correctly
describing Bose-Einstein condensation as a phase transition
of second order for arbitrary values of the gas parameter. Now
we have also proved that this approach provides quite accurate
approximations for the condensate fraction and ground-state
energy of the Bose system, being in good agreement with
numerical Monte Carlo data [13].
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