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Quenching small quantum gases: Genesis of the orthogonality catastrophe
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We study the dynamics of two strongly interacting bosons with an additional impurity atom trapped in a
harmonic potential. Using exact numerical diagonalization we are able to fully explore the dynamical evolution
when the interaction between the two distinct species is suddenly switched on (quenched). We examine the
behavior of the densities, the entanglement, the Loschmidt echo, and the spectral function for a large range
of interspecies interactions and find that even in such small systems evidence of Anderson’s orthogonality
catastrophe can be witnessed.

DOI: 10.1103/PhysRevA.90.013617 PACS number(s): 67.85.−d, 03.75.Kk, 03.75.Mn

I. INTRODUCTION

Ultracold quantum gases are currently a leading candidate
for studying interesting quantum phenomena in interacting
many-body systems. One of their key features is the co-
existence of a large set of high level experimental control
techniques with unmatched isolation from unwanted environ-
mental noises. For this reason they have already been used for
experimental implementations of quantum information proto-
cols [1] as well as quantum simulators of many condensed-
matter systems [2]. In addition, the physics of these systems is
interesting in its own right, and small ensembles of ultracold
atoms have been used to study nonequilibrium dynamics [3],
interferometry [4], and other fundamental phenomena [5–8].

Similarly the study of multicomponent and hybrid systems
is currently raising a great deal of interest. Although inherently
more complicated, mixtures of ultracold quantum gases signif-
icantly extend the range of new quantum phenomena and quan-
tum states of matter that can be studied. One recent example is
studies in non-Markovianity where a range of environmental
effects can be simulated by controlling the scattering properties
between the two components of a quantum gas [9].

The establishment of correlations between the multicom-
ponents can also lead to interesting effects, and one of the
most striking is the existence of phase-separation processes
beyond the ones known from mean-field Gross-Pitaevskii
physics [10–12]. For example, it was recently shown that in
bosonic mixtures in one-dimensional (1D) traps the presence
of a large and repulsive intercomponent interaction leads
to a composite fermionized state in which the densities
of both components overlap while strong anticorrelations
between them exist [13–15]. Moreover, increasing then the
intracomponent interaction in one of the components leads to
a sharp crossover to a fully phase-separated state [12].

Other examples of studies on multicomponent systems in-
clude the tunneling of a lighter component through the material
barrier formed by a second heavier component [16,17], the
miscible-immiscible dynamics in systems with large particle
number imbalances [18], and the dynamics after an interaction
quench in an optical lattice [19]. Furthermore, the analytical
study of the static properties of small ensembles of atoms,
including mixtures with up to three atoms has recently received

a large amount of attention [20–31]. Here, we go beyond
the aforementioned papers and look at the exact dynamics
after a sudden switch in the interaction between two distinct
species. This will allow us to understand the dynamical
features and correlations in such a system and give insight
into the emergence of the fundamental many-body phenomena
of Anderson’s orthogonality catastrophe (OC). To this end
we will quantify the many-body excitations of the system
through entanglement, via the von Neumann entropy (vNE),
and the Loschmidt echo (LE), which have been successfully
used to probe dynamical instabilities [32,33], critical spin
systems [34], and explore the frequency spectrum through the
spectral function of the system [35]. The numerical complexity
of the exact approach, however, requires us to restrict the
system to one-dimensional dynamics. Note that related studies
for fermions have also recently been carried out [36,37].

Our presentation is organized as follows. In Sec. II we
motivate and introduce the model we study, and in Sec. III we
explore the dynamics resulting from a quench in the interaction
between the two different components. These include the
behavior of the densities of each species, the entanglement
between them, the Loschmidt echo, and the spectral function.
We then show that the obtained results relate to the emergence
of Anderson’s OC and conclude in Sec. IV.

II. THE MODEL

We consider a 1D harmonic trap, which contains a small
number of ultracold bosonic atoms of species A (NA) and a
single atom of a second component B. Such a mixture can be
described by the many-body Hamiltonian H = HA + HB +
HAB with

HA =
NA∑
j=1

[
− �

2

2m

∂2

∂x2
j

+ V (xj )

]
+

NA∑
j<j ′

vA
int(xj ,xj ′ ), (1a)

HB = − �
2

2m

∂2

∂y2
+ V (y), (1b)

HAB =
NA∑
j=1

vAB
int (xj − y), (1c)
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where the positions of the atoms in component A are given
by the coordinate xj and the position of the single atom in
component B is given by y. We assume that both components
have the same mass m and that they are trapped in the same
harmonic potential V (x) = 1

2mω2x2. At low temperatures
we can assume contact interactions between the atoms in
component A, vA

int = gAδ(xj − xj ′ ) and between species A
and the single atom in B, vAB

int = gABδ(xj − y). As usual,
gA and gAB are the 1D intra- and interspecies coupling
constants, respectively, and can be tuned independently by
means of Feshbach or confinement-induced resonances [38].
In the following, we use harmonic-oscillator units and scale
all lengths by aho = √

�/(mω) and all energies by �ω. Note
that if the mass of atom B was much larger or if it was
trapped in a much tighter trapping potential, its kinetic energy
could be neglected and the above model can be reduced
to a single component being trapped in a δ-split harmonic
oscillator [39–41].

To investigate the dynamics given by Hamiltonian (1) we
employ an exact numerical diagonalization algorithm, whose
details are given in Ref. [11]. However, since the numerical
resources required grow exponentially with the numbers of
atoms involved, in the following we will limit ourselves to
small systems and will consider NA = 2. This drawback is
offset by the fact that the exact diagonalization method allows
us to investigate quantities beyond the standard mean field,
for example, classical and quantum correlations. Also recent
experiments have developed unprecedented control to trap
small samples of atoms where the exact number of atoms
can be precisely chosen [42–45]. In particular the experimental
setup of Ref. [46] closely resembles the setting considered here
and demonstrates many of the necessary ingredients required
to realize the proposed system. With these advances it is now
feasible to investigate small ensembles, such as the one we
discuss in this paper, which would also allow one to observe
the differences between using an odd or an even number of
atoms in such systems [40,47].

III. DYNAMICALLY EVOLVING QUANTUM
GAS MIXTURES

Since we are especially interested in the dynamics of the
correlations in the system, we will in the following focus on
the situation where the two atoms of species A are strongly

correlated, i.e., experience a strong repulsive interaction gA =
25aho�ω. This is sufficient to ensure they are effectively
in the Tonks-Girardeau (TG) limit [48,49] while initially
completely decoupled from the atom of species B. At t = 0 a
repulsive interaction between the single atom and the diatomic
TG gas is switched on, and the whole system is allowed
to evolve in the harmonic trap. We examine the ensuing
nonequilibrium dynamics over a wide range of interspecies
interaction strengths gAB ∈ [0,gA], which cover the transition
between the weakly and the strongly correlated regimes.
Note that when gAB = gA = 25�ωaho both interactions, i.e.,
between the two atoms in A and between the atoms of A and
the single atom of B, are large enough to guarantee that the
system is in the infinite interaction TG limit [49].

A. Densities

We begin by studying how the densities for each species
evolve after the interspecies interaction has been switched
on. In Figs. 1(a) and 1(b) we show the time evolution of
the densities for a weak quench that adjusts the interaction
to gAB = 0.05gA. We see that the distribution of species A
is initially of TG form and the one for the atom of species
B is Gaussian. Although the comparatively small interaction
between A and B has only a small effect on the density profiles,
the repulsion between components A and B still leads to
oscillations of the atom pair of species A away and towards the
center, whereas the single atom of B remains in the trap center.
The effect on B is a periodical squeezing in the density so that
it becomes more localized when the two atoms of A are closer
to each other. The whole process conserves the symmetry of
the initial state.

Increasing gAB further enhances this behavior, and in
Figs. 1(c) and 1(d) we show the density dynamics for
gAB = 0.25gA. Even though the harmonicity of the external
potential is now significantly disturbed by the intercomponent
interaction, the density evolution can still be seen to be
approximately periodic with a fine structure appearing for
longer times. The two atoms in A separate further than before
due to the increased repulsive interaction with the single atom,
which in turn stays mainly localized in the trap center and
loses its Gaussian shape. In fact, it stays strongly localized
with small but extensive wings developing each oscillation
period. Comparing this behavior to the case where the kinetic
energy of atom B is neglected (i.e., where it is modeled by a

FIG. 1. (Color online) Evolution of the densities after a quench in gAB. (a) and (b) show the densities for components A and B, respectively,
for gAB = 0.05gA. (c) and (d) show the densities for gAB = 0.25gA. (e) and (f) show the densities for gAB = 0.5gA. In all cases, gA = 25aho�ω.
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δ-function potential in the trap center) shows that the feedback
of the A atoms on B plays a significant role in the dynamical
evolution with effects being visible at short time and length
scales.

Finally, panels (e) and (f) show the densities when the two
species interact strongly with gAB = 0.5gA. The qualitative
behavior of the interacting atoms remains the same as before,
and the increased repulsive interaction with the single atom
forces the A atoms to repel even further from the center of the
trap. Although qualitatively the dynamics here look similar
for all interaction strengths, we will show below that there are
profound differences in the behavior for gAB smaller or larger
than ≈0.4gA.

B. von Neumann entropy

Interactions between the two species will necessarily lead
to correlations between them, and in the following we will
investigate the behavior of the entanglement created in the
system. If the total state is pure, as is the case for our system,
the entanglement between two components can be quantified
using the vNE, which is found by tracing out one component
of the system such that

S(ρ) = −Tr[ρ log2 ρ] = −
∑

i

λi log2 λi . (2)

Here ρ is the density matrix of the reduced state of one
component, and λi is its eigenvalues. For our purposes the
vNE between the two components SAB is most conveniently
calculated from the single atom of B as its reduced state
corresponds exactly to the reduced single-particle density
matrix (RSPDM). In Fig. 2(a), we show the behavior of SAB

for three exemplary values of the interspecies interaction. For
small gAB = 0.05gA (black line) we see that a small amount
of entanglement is generated, the numerical value of which
periodically dips to almost zero and revives with approxi-
mately the trap frequency. As gAB increases the qualitative
features remain, however the amount of entanglement quickly
increases to large values and performs fast small amplitude
oscillations around an almost stationary state value. One can
see that for larger interaction the dips at the approximate

FIG. 2. (Color online) (a) vNE between A and B as a function
of time when gA = 25aho�ω and gAB = (0.05,0.5,1)gA for the black
(lowest), blue (middle), and red (top) lines, respectively. (b) vNE of
the reduced state of species A, red (lighter) line and species B, black
(darker) line as a function of gAB/gA.

FIG. 3. (Color online) Natural orbital occupations λ0 (upper
three thin lines) and λ1 (lower three thick lines) for (a) species A
and (b) species B. Each different color (shade) corresponds to the
same color convention as in Fig. 2(a), i.e., gAB = (0.05,0.5,1)gA for
black, blue, and red lines, respectively, and gA = 25aho�ω.

trapping frequencies become less prominent and in particular
do not reach zero. This can be understood by realizing that
the decrease in entanglement comes from an approximate
refocusing on the initial product state of the two-component
system at multiples of the trapping frequency. This is a feature
of the harmonic trapping potential; however with stronger
interactions the system becomes increasingly anharmonic, and
this feature fades away.

This behavior is mirrored in the occupation numbers of
the natural orbitals of both species, which are given by the
eigenvalues of the RSPDMs. In Fig. 3 we show the largest
two values corresponding to the lowest and first excited
natural orbitals for species A in panel (a) and for species B
in panel (b). For small interactions (black lines) the atoms
in A are still effectively a TG gas, hence the occupations
remain fairly constant, whereas the B atom continues to
occupy predominantly a single orbital. As the interactions are
increased the occupations are affected more significantly: The
occupation numbers of the ground and first excited states of
the TG pair are moving closer to each other as the two atoms
are now experiencing an effective potential that includes the
interaction with atom B. This is consistent with the behavior
for two atoms in a δ-split trap where the two lowest-lying
eigenstates become degenerate if the interaction strength of
the barrier goes to infinity [39,40]. At the same time the
correlations with the A atoms affect the occupation numbers
of the B atom, and a finite occupation of the first excited orbital
indicates the loss of coherence due to the interaction and the
creation of entanglement. In the limit of gAB → gA the two
subsystems have features common with a three-atom TG gas
as there are very large repulsive interactions between all three
atoms. However, the fact that species B is distinguishable from
species A leads to differences from a single-component TG
gas [26,30] as the symmetrization requirement is different.
Nevertheless, in our case the system goes into a highly
entangled state in this limit, and tracing out any two atoms
results in the same amount of entanglement. This can be seen
in Fig. 2(b) where we show the entropies (averaged over time
between the trap revivals in the interval 1.25 < tω/π < 1.75)
obtained from the RSPDM for an atom of species A (by tracing
out one atom of A and the single atom of B) and from the
RSPDM for atom B (when both atoms of species A are traced
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out) as a function of gAB. For large values of gAB the difference
between the entropies approaches zero.

C. Loschmidt echo

The LE is a metric for quantifying the reversibility of a given
dynamical evolution. In its original formulation the measure
was used to assess the differences in states arising due to
imperfect time reversal, and it is therefore closely linked with
the notion of the thermodynamic arrow of time. Measuring
the LE is well within the current experimental capabilities,
in particular with NMR setups, and recently a closely related
quantity, the coherence echo, has been experimentally studied
in cold atom systems [50]. It is also a valuable tool in studying
the nonequilibrium thermodynamics of quantum systems as
its definition is closely related to the characteristic function
of the work distribution for quenched systems [51]. More
recently it has proven extremely useful in understanding
decoherence in complex systems [52] and was also used to
study phenomena, such as quantum phase transitions [53] and
Anderson’s OC [6,52]. It is defined as

L(t) = |〈�0|eiHi t e−iHf t |�0〉|2, (3)

where �0 and Hi are the initial state and Hamiltonian,
respectively, andHf describes the Hamiltonian after a quench.
In our case, the LE allows us to assess how the dynamics
changes when the interaction between the two components
is switched on. Therefore the initial Hamiltonian is simply
the free evolution of the two components with no interaction
between them, i.e., gAB = 0, whereas the final Hamiltonian
Hf is the one which incorporates the finite interspecies
interaction.

To study the LE of the individual species, the expression in
Eq. (3) cannot be used as we do not have the wave functions
of the individual species available. It is possible however to
calculate the LE using the reduced states of the composite
system as these contain all of the information for the dynamics
of �(t). In this way the LE is defined as

LA,B(t) =
∑
m

ωm|〈ψm|eiρt e−iρ ′t |ψm〉|2

=
∑
m

ωm

⎡
⎣(∑

n

cos(ω′
nt)|〈ψm|φ′

n〉|2
)2

+
(∑

n

sin(ω′
nt)|〈ψm|φ′

n〉|2
)2

⎤
⎦ , (4)

where ρ and ρ ′ are the reduced density matrices of species
A or B from the respective Hamiltonians Hi and Hf with
corresponding eigenvalues ωm and ω′

n and eigenvectors ψm

and φ′
n [54].

In Figs. 4(a) and 4(b) we show the LE of the individual
species as a function of time after the quench for three distinct
values of the interspecies interaction strength. For small gAB

the LE does not deviate much from unity for both species, but
for a larger interaction the dynamics of each species can be
seen to be quite different. Periodic revivals, which occur with
roughly the trap frequency, become visible in LA, whereas
at the same points the LE deviates from unity for species B.

FIG. 4. (Color online) (a) and (b) Time evolution of the LE of the
individual species for A and B when gAB = 0.05gA (topmost black
line), 0.5gA (darker blue line), and gA (lighter red line). (c) Time
evolution of the LE for the total system versus time for the whole
range of gAB ∈ [0,gA]. (d) same as (c) for three particular values
gAB = 0.25gA (topmost black line), 0.5gA (middle blue line), and gA

(bottom red line). The inset shows a zoom over the first period. In all
panels gA = 25aho�ω.

This confirms the earlier observation that the main effect of
the quench on the state of B is to get squeezed whenever the
two A atoms come close. Note that this behavior shows that
the correlations that are built up in the entanglement between
the two components lead mainly to a real-space distortion of
component B at multiples of the trap frequency.

In Fig. 4(c) we show the time evolution of the LE for
the total state of both species for the whole range of gAB.
Again, periodic revivals at multiples of the trap frequency are
clearly visible, and stronger values of gAB quickly lead to a
deviation in the LE from 1. A particular sharp drop in the LE
can be seen in the interval gAB/gA ∈ [0,0.4], after which the
LE does not reach any values close to unity anymore and has a
minimum value of 0.043 when gAB/gA → 1. This indicates
that the initial and the evolved states exhibit a vanishing
overlap, which can be interpreted as a precursor of the OC that
can be expected in larger samples. At these large interactions
the LE also acquires high-frequency oscillations, which are
shown in Fig. 4(d) for gAB = 0.5 and 1 and which are also
present in LA and LB [see Figs. 4(a) and 4(b)]. From the inset
it can be seen that the amplitude of these oscillations increases
with increasing gAB, which indicates that this is related to the
increased kinetic energy of B in the effective potential provided
by the A atoms.

Interestingly, even for such a small sized system the
qualitative features here are similar to large fermionic systems
interacting with a single qubit impurity [6]. This implies that
even in small bosonic systems the emergence of Anderson’s
OC can be witnessed.
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FIG. 5. (Color online) Spectral function A(ω) as a function of
gAB/gA. The quasiparticle peak moves from ω = 0 to more negative
finite frequencies as gAB is increased until gAB/gA � 0.4, after which
the dynamics of the system does not drastically change. Also visible
at more negative finite ω is a cusp which is a consequence of the
oscillating behavior of species B as seen in Fig. 4. Cuts of the spectral
function are shown for gAB/gA = 0.1,0.3,1 and gA = 25aho�ω.

D. Spectral function and orthogonality catastrophe

In condensed matter, observing the OC is often achieved
by studying the behavior of the spectral function, which offers
insight into the fundamental excitations of a system [35]. The
spectral function is given by

A(ω) = 2 Re
∫ ∞

−∞
eiωtν(t)dt, (5)

where ν(t) = 〈�0|eiHi t e−iHf t |�0〉 is the time-dependent over-
lap of the initial and the postquench states, which is related
to the LE through L(t) = |ν(t)|2. In the case of the OC the
spectral function exhibits an asymmetric broadening which
decays with a power-law distribution highlighting the sudden
change in the excitations in the system. We calculate Eq. (5)
by taking a suitably large time window so as to capture all the
relevant dynamics occurring in the long-time limit.

In Fig. 5 we show the spectral function for the entire system
as a function of the interspecies interaction gAB. We see that
with increasing interaction the quasiparticle frequency shifts
away from the origin until it reaches a constant value for gAB �
0.4gA where it then remains. This indicates that the system
has gone from a composite two-species system to a strongly
correlated many-particle system, which has several properties
in common with a single-component TG gas. Furthermore,
we see that the spectrum becomes asymmetric for increased
interactions as the system has been pushed out of equilibrium
and tries to settle into a new state. The decay of the spectral

function for negative ω is consistent with that seen in Ref. [6]
and is an indication of the OC. However, in this paper the
full dynamics of the impurity is taken into account, which can
be seen to lead to the appearance of a cusp for large gAB. It
is the same effect that manifests itself in the high-frequency
oscillations in the LE of the single atom LB in Fig. 4(b) and
in the LE of the composite state L in the inset of Fig. 4(d).
Similar features have also been observed in Ref. [55] when
impurities in fermions approach criticality.

IV. CONCLUSIONS

We have investigated the dynamics of a small two-
component quantum gas, consisting of a strongly interacting
Tonks-Girardeau pair and a single impurity, after a sudden
quench in the interspecies interaction. The resulting repulsion
between the impurity atom and the TG pair drives the system
out of equilibrium and initiates an interesting and fundamental
dynamical evolution. By examining the von Neumann entropy
and the Loschmidt echo we have found distinct low- and
high-frequency dynamics, which stem from the trap and
kinetic behavior of the impurity, respectively. Furthermore we
have found that the LE acquires near-vanishing values for large
interspecies scattering, implying the emergence of Anderson’s
orthogonality catastrophe, which is remarkable as the OC is
mainly considered to be a phenomenon only observed in large
ensembles. Indeed, in such large ensembles a power-law decay
in the spectral function is a clear signature of the OC. Although
achieving such a power law is not possible due to the small
system size considered here, we have shown that a second
dominant peak appears in the spectral function visible at large
frequencies for suitably large interspecies interaction, and
we have proposed that it is due to the dynamic behavior of the
impurity atom in the system, which oscillates in an effective
potential given by the trap and the TG pair. The resulting
asymmetry in the spectral function and the near-vanishing
value of the LE suggests that even in small bosonic systems
the first signs of the OC can manifest themselves. Finally, we
expect our results to be applicable to studying in more detail
the nonequilibrium thermodynamics of small bosonic systems
along the lines of those presented for fermions in Ref. [36].
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