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Optical-lattice implementation scheme of a bosonic topological model with fermionic atoms
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We present a scheme to implement a Fermi-Hubbard-like model in ultracold atoms in optical lattices and
analyze the topological features of its ground state. In particular, we show that the ground state for appropriate
parameters has a large overlap with a lattice version of the bosonic Laughlin state at filling factor one-half.
The scheme utilizes laser assisted and normal tunneling in a checkerboard optical lattice. The requirements on
temperature, interactions, and hopping strengths are similar to those needed to observe the Néel antiferromagnetic
ordering in the standard Fermi-Hubbard model in the Mott insulating regime.
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I. INTRODUCTION

Topological states have many interesting features with
possible practical applications, and they are currently one of
the main topics in strongly correlated many-body systems.
The fractional quantum Hall (FQH) states of electrons in
solids play a central role in this respect, because they are
among the few cases where topological states have been
prepared experimentally, and because there is a quite detailed
analytical understanding of the physics. After the discovery
of the quantum Hall effect in solids [1], much work has
been done to find similar behavior in other systems, in
particular in lattices [2–8], where much less is currently
known. The aim is to get a more detailed understanding of the
nature of quantum Hall physics and to find alternative routes
to realize it experimentally. Lattice systems are natural to
investigate because they have long been used as toy models for
understanding phenomena in condensed-matter systems, and
numerical computations are easier to accomplish on lattices.
Another important motivation is the ongoing experimental
progress in simulating quantum lattice models with ultracold
atoms in optical lattices [9–11]. Realizing FQH states in
such systems would be very interesting, because the systems
allow for a high degree of tunability, and with sophisticated
techniques it is even possible to access the states at the
single-particle level [12].

A main strategy used so far to search for quantum-Hall-like
states in lattices is to mimic characteristic features of the
continuum setting, in which the quantum Hall effect was
first observed, i.e., to find lattice replacements for the strong
magnetic field, the quantized Hall conductivity, and the Landau
levels [13,14]. A first step in this direction is to notice that
the Aharonov-Bohm phase of charged particles moving in a
magnetic field can be mimicked in lattice systems by introduc-
ing hopping terms in the Hamiltonian with complex hopping
amplitudes that vary in space in such a way that a particle
acquires a certain phase factor when it hops around some
closed loop on the lattice [15]. In the quasicontinuum limit,
in which the number of lattice sites is much larger than the
number of flux lines and much larger than the number of atoms,
such ideas are sufficient to achieve FQH-like behavior [16–18].
The Hall conductivity in the continuum has turned out [19–21]
to be closely related to a topological quantity called the (first)
Chern number, and the Chern number can also be computed

for lattice models [22]. Haldane proposed a model [15] with
a nonzero Chern number and integer band filling that can be
seen as a lattice version of the integer quantum Hall effect.
The energy bands of this model are not flat like Landau
levels, but this is not important as long as the bands are
either completely filled or empty. To achieve FQH-like states,
however, it is natural to expect that at least the partially filled
band should be flat. Flattening can be achieved by fine tuning
local hopping amplitudes [23–25], and theoretical studies for
fractional filling predict that FQH-like states indeed appear
if interactions are added [25–28]. Very recently proposals
for how to implement such models experimentally have also
appeared [29,30].

In the present paper, we give a detailed description of a
scheme [31] to implement a lattice version of the bosonic
Laughlin state at filling factor ν = 1/2 in ultracold fermionic
atoms in optical lattices. We do this by showing that the state
appears as the ground state of a Fermi-Hubbard-like model in
the Mott insulating regime, which can be realized by using a
combination of laser assisted [32–35] and normal tunneling
in a checkerboard optical lattice. We also analyze the Fermi-
Hubbard-like model and find that it is of a different type than
the models described above, which suggests that FQH-like
behavior can be obtained by other mechanisms than mimicking
the continuum FQH setting.

The proposed setup requires eight laser beams for the
trapping in the xy plane and three additional standing-wave
laser fields to accomplish the hopping terms and the trapping in
the z direction. A particularly convenient feature of the scheme
is that we do not need to implement interactions between
atoms on different sites, since only on-site interactions are
present. The requirements regarding temperatures, tunneling
strengths, and interactions are the same as those needed to
observe the Néel antiferromagnetic ordering in the normal
Fermi-Hubbard model in the Mott insulating regime. More
groups are already working on the latter, due to its expected
relation to high-Tc superconductivity and to observe quantum
magnetism [36–41]. Our proposal can thus be implemented
with present or planned technologies.

In Sec. II, we introduce the Fermi-Hubbard-like model,
show how it is related to a lattice version of the ν = 1/2
Laughlin state, and compute flatness and Chern number of the
kinetic-energy part of the model. The implementation scheme
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is described in Sec. III, where we first give an overview
of the ideas and then describe the implementation of the
required optical lattice, the hopping terms, and the interaction
terms in more detail. Section IV concludes the paper, and the
appendixes provide further mathematical details.

II. MODEL

A. Fermi-Hubbard-like model

We consider fermions with spin on an Lx × Ly square
lattice. We shall assume throughout that Lx is even and
that there are N/2 spin-up fermions and N/2 spin-down
fermions, where N = LxLy is the number of lattice sites. The
Fermi-Hubbard-like Hamiltonian

HFH =
∑

σ∈{↓,↑}
Hkin,σ + Hint (1)

that we consider consists of independent kinetic-energy hop-
ping terms

Hkin,σ =
∑
〈n,m〉
〈〈n,m〉〉

(t̃mna
†
nσ amσ + t̃∗mna

†
mσanσ ) (2)

for spin up and spin down and an on-site, repulsive interaction
term

Hint = U

N∑
n=1

a
†
n↑an↑a

†
n↓an↓. (3)

Here, t̃mn are the (complex) hopping amplitudes specified in
Fig. 1, anσ is the annihilation operator of a fermion with spin
σ on site number n (we number the sites row-wise starting
from the lower left corner of the lattice as in Fig. 1), the sum
in (2) is over all pairs of nearest and next-nearest neighbors on

1 2 . . . Lx

LxLy − Lx + 1 LxLy

m n

Line t̃mn

it
t
t
−t

FIG. 1. (Color online) Amplitudes t̃mn of the hopping terms (2)
in the Fermi-Hubbard-like Hamiltonian (1). The (green) bullets are
the lattice sites, and each line combining two sites represents that a
fermion can hop between the sites with the amplitude given in the table
on the right, where t and t ′ are real numbers. The rule for choosing
the phases is that the product of the three t̃ factors appearing in the
hopping terms that move a fermion in the counterclockwise direction
around a triangle consisting of one horizontal line, one vertical line,
and one diagonal line (i.e., any triangle that is a lattice translation
of any of the four triangles marked in the figure) should always
be −it2t ′. Unless otherwise specified, we number the lattice sites
row-wise starting from the lower left corner as shown.

the lattice (using open boundary conditions), and U is a real,
positive constant.

Let us note that (1) is SU(2) invariant. This can be seen by
writing

a
†
n↑an↑a

†
n↓an↓ = 1

2

(∑
σ

a†
nσ anσ

∑
σ ′

a
†
nσ ′anσ ′ −

∑
σ

a†
nσ anσ

)
.

(4)

All terms in the Hamiltonian can thus be expressed in terms
of
∑

σ a
†
nσ amσ . If the operators a

†
1σ , a

†
2σ , . . ., a

†
Nσ are all

transformed by the same unitary transformation acting on the
index σ , then the action on a

†
nσ and amσ cancel each other, and

this gives the SU(2) invariance.

B. Connection to the ν = 1/2 Laughlin state

In the present paper, we are particularly interested in the
limit of strong interactions, i.e., |t | 	 U and |t ′| 	 U , and
we assume half filling of both spin up and spin down. In
this case, it costs a lot of energy to put two fermions (with
opposite spins) on the same site, and the low-energy states are
thus those with precisely one fermion on each lattice site. The
low-energy physics of the model is then given by an effective
Hamiltonian Heff acting on the low-energy subspace, which
can be derived by applying the Schrieffer-Wolff transformation
(see Appendix A). The effective model is a spin model because
the basis states in the low-energy subspace can be written as
|σ1σ2 . . . σN 〉, where σn ∈ {↑,↓} is the spin of the fermion
at site n. We can also define spin operators 
Sn = (Sx

n ,S
y
n ,Sz

n)
acting on the spin at site n with standard spin commutation
relations [Sa

n,Sb
m] = iδnm

∑
c εabcS

c
n, where εabc is the Levi-

Civita symbol and a,b,c ∈ {x,y,z}.
The derivation of the effective Hamiltonian is done in

Appendix B and to third order in t/U and t ′/U it gives

Heff = 2t2

U

∑
〈n,m〉

(
2
Sn · 
Sm + 1

2

)

+ 2t ′2

U

∑
〈〈n,m〉〉

(
2
Sn · 
Sm + 1

2

)

− 6t2t ′

U 2

∑
〈n,m,p〉�

4
Sn · (
Sm × 
Sp) + const. (5)

The first sum is over all pairs of nearest neighbors, the second
sum is over all pairs of next-nearest neighbors, and the third
sum is over all triangles that are lattice translations of one of
the four triangles marked in Fig. 1. Each triangle is included
only once and n, m, p label the lattice sites at the vertices of
the triangle in the counterclockwise direction as indicated with
the arrow �.

The action of the terms in Heff is to permute spins since(
2
Sn · 
Sm + 1

2

)| . . . σn . . . σm . . .〉 = | . . . σm . . . σn . . .〉 (6)

and

4
Sn · (
Sm × 
Sp)| . . . σn . . . σm . . . σp . . .〉
= i| . . . σp . . . σn . . . σm . . .〉 − i| . . . σm . . . σp . . . σn . . .〉.

(7)
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FIG. 2. Overlap per site |〈ψ0|ψ〉|1/N between the lowest energy eigenstate ψ0 of the Hamiltonian in (5) (with U > 0) and the FQH-like
state ψ in (8) as a function of t/U and t ′/t for (a) a 4 × 3 lattice, (b) a 4 × 4 lattice, and (c) a 4 × 5 lattice. The Schrieffer-Wolff transformation
leading from (1) to (5) is valid when |t |/U 	 1 and |t ′|/U 	 1, and we note that part of the area displaying an almost perfect overlap is within
this region.

Therefore Heff is also SU(2) invariant, as it should be. The
three-body term in (5) breaks time-reversal symmetry, and we
note that the chirality is built into the model by following the
rule given in Fig. 1 for choosing the phases of the hopping
amplitudes.

The Hamiltonian Heff can be seen as a short-range version
of the Hamiltonian presented in [5]. The latter is an exact
parent Hamiltonian for the state

ψ(s1,s2, . . . ,sN ) = δs

N∏
n=1

(−1)(n−1)(sn+1)/2

×
∏
n<m

(zn − zm)(snsm+1)/2, (8)

where sn = +1 (−1) when σn = ↑ (↓), zn is the position
of lattice site number n written as a complex number, and
δs = 1 for

∑
n sn = 0 and δs = 0 otherwise. As discussed

in [5,31,42], (8) is a slightly modified version of the Kalmeyer-
Laughlin state [43,44], which, up to some phase factors, is the
ν = 1/2 Laughlin state with the possible particle positions
limited to the sites of a square (or triangular) lattice. In
fact, (8) reduces exactly to the Kalmeyer-Laughlin state in
the thermodynamic limit [5,42]. Several topological properties
of (8) have been analyzed in [31] and are in agreement with
those of the ν = 1/2 Laughlin state in the continuum.

For small systems, the ground state ψ0 of the Hamilto-
nian (5) can be obtained from exact diagonalization [45]. In
doing so, we use the conservation of the total spin in the z

direction, the symmetry under simultaneous rotation of all the
spins by 180◦ around the x axis, and the symmetry under
rotation of the lattice by 180◦ to rewrite the Hamiltonian into
block-diagonal form, which reduces the size of the matrices
that need to be diagonalized. In Fig. 2, we compare ψ0 to
the wave function (8) by computing the overlap per site
|〈ψ0|ψ〉|1/N for different lattice sizes. We use here the overlap
per site rather than the overlap because the overlap per site
is more suitable for comparing results obtained for different
lattice sizes. This is because the overlap generally decreases
exponentially with system size in many-body systems due to
the exponential increase in Hilbert space dimension, and the
exponent 1/N appearing in the overlap per site counteracts
this effect. The figure shows that the overlap per site is

very close to unity for appropriately chosen parameters, and
that the results are similar for all of the considered lattices.
The region where the overlap per site is high also includes
parameters with |t |/U and |t ′|/U small. It is thus possible
to create the state (8) with high fidelity by implementing
the Fermi-Hubbard-like Hamiltonian in (1) for appropriate
parameters.

To further establish the connection to the bosonic Laughlin
state at half filling, one could also look for gapless edge
excitations in the spectrum of (5) in the thermodynamic
limit. The system sizes that we can investigate with exact
diagonalization for open boundary conditions are, however,
too small to draw conclusions about the presence or absence
of such states.

C. Properties of Hkin,σ

The Fermi-Hubbard-like Hamiltonian in (1) consists of
two kinetic-energy terms describing free fermions hopping
on a lattice and an interaction term, and one may therefore
ask if the model can be seen as a flat band model with a
partially filled and very flat energy band with nonzero Chern
number plus interactions as described in the Introduction.
To investigate this question, we compute the band filling,
the flatness parameter, and the Chern number for Hkin,σ in
the following. As these quantities are properties of the band
structure, we shall consider periodic boundary conditions in
this section and take the limit of an infinite lattice.

The band structure of Hkin,σ consists of two bands because
Hkin,σ is periodic with period-2 lattice constants in the x

direction and one lattice constant in the y direction as can
be seen by inspection of Fig. 1. To compute the band structure,
we use a slightly modified notation, in which an,m,σ is the
annihilation operator of a fermion with spin σ on lattice site
(n,m) with n = 1,2, . . . ,Lx and m = 1,2, . . . ,Ly and define
the momentum space annihilation operators

ap,q,σ =
√

2

N

Lx/2∑
n=1

Ly∑
m=1

a2n,m,σ e−i(4π/Lx )pne−i(2π/Ly )qm, (9)

bp,q,σ =
√

2

N

Lx/2∑
n=1

Ly∑
m=1

a2n−1,m,σ e−i(4π/Lx )pne−i(2π/Ly )qm.

(10)
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Reexpressing Hkin,σ in terms of these, we get

Hkin,σ =
Lx/2∑
p=1

Ly∑
q=1

( a
†
p,q,σ b

†
p,q,σ )Hpq

(
ap,q,σ

bp,q,σ

)
, (11)

where

Hpq =
[

2t sin
( 2πq

Ly

)
it(ei(4π/Lx )p − 1) + i2t ′(ei(4π/Lx )p + 1) cos

( 2πq

Ly

)
−it(e−i(4π/Lx )p − 1) − i2t ′(e−i(4π/Lx )p + 1) cos

( 2πq

Ly

) −2t sin
( 2πq

Ly

)
]

. (12)

Let kx = 4πp/Lx and ky = 2πq/Ly . The eigenvalues of Hpq then take the form

λ±,kx ,ky
= ±

√
4t2 sin2(ky) + 2t2[1 − cos(kx)] + 8t ′2[1 + cos(kx)] cos2(ky). (13)

The bands do hence not overlap, and the N/2 fermions with spin σ precisely fill the lowest of the two bands.

The flatness parameter is defined as

F ≡ min(En+1) − max(En)

max(En) − min(En)
, (14)

where En is the set of energies of the nth energy band and
band number n is the highest energy band that is not completely
empty at zero temperature. Since λ+,kx ,ky

= −λ−,kx ,ky
� 0, we

get in our case

F = 2 min(λ+,kx ,ky
)

max(λ+,kx ,ky
) − min(λ+,kx ,ky

)
, (15)

where the maximum and minimum are with respect to kx and
ky . The extrema of λ+,kx ,ky

can be derived analytically, and
from this we get

F =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
√

2t ′

t−√
2t ′

for t ′
t

∈ [
0, 1

2

[
2√
2−1

for t ′
t

∈
[

1
2 , 1√

2

]
2t

2t ′−t
for t ′

t
∈
]

1√
2
,∞
[ . (16)
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FIG. 3. Flatness F [see (14)] of the lowest energy band of Hkin,σ

[see (2)] as a function of the ratio of the two hopping strengths t ′

and t .

The constant value of F for t ′/t between 1/2 and 1/
√

2 appears
because max(λ+,kx ,ky

) and min(λ+,kx ,ky
) depend on t ′/t through

the same (t ′/t)-dependent factor in this interval. Note that F

is symmetric around t ′/t = 0 since λ+,kx ,ky
does not depend

on the signs of t and t ′. It follows that the flatness, which
is plotted in Fig. 3, never exceeds 2/(

√
2 − 1) ≈ 4.83. Using

(12) in [46], we find numerically that the Chern number of the
lowest energy band is plus or minus 1 for all nonzero t and t ′.

The above results show that the band filling in the free
fermion model Hkin,σ is not fractional and that the flatness
is moderate compared to flat band models that may have
flatness 20–50 [26], even though a flatness of 5 or 7 may
also suffice [25]. In addition, we use fermions and not bosons
to implement a lattice version of a bosonic FQH state. The
Fermi-Hubbard-like model is thus not of the flat band type,
but nevertheless leads to a FQH state on a lattice.

III. IMPLEMENTATION

Before going into the details of the proposed implementa-
tion scheme, we give here a brief summary explaining the main
ideas. Let us first briefly recall the setting used to simulate the
standard Fermi-Hubbard model with real hopping amplitudes
on a square lattice in ultracold fermionic atoms in optical
lattices [37,38,47,48]. The first ingredient is to create an optical
lattice from counterpropagating laser beams. The interference
between the laser fields gives rise to an intensity pattern that
varies sinusoidally in space, and for the atoms this translates
into a potential landscape of the same shape if the frequency
is chosen appropriately. At low temperatures the atoms are
trapped at the potential minima, which form a square lattice.
If the difference between the potential minima and maxima is
not too large, there is a non-negligible probability for an atom
to tunnel through the potential barrier between two sites. This
gives rise to the kinetic-energy terms in the Hubbard model. If
two atoms sit on the same site, their wave functions overlap,
and they interact with each other. This gives rise to the on-site
interaction terms.

To implement the Fermi-Hubbard-like model in (1) we need
some modifications of the above approach. First, we need to be
able to print spatially varying phase factors on the tunneling
amplitudes between nearest-neighbor sites, and second, we
need to also have tunneling between next-nearest-neighbor
sites. We propose to achieve this in the following way. We
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)b()a(

a

FIG. 4. (Color online) Checkerboard optical-lattice potential.
Fermions in the red spin-up or in the red spin-down state see the dark
gray (red) potential in (a) and are hence trapped on the lattice sites
that belong to the dark gray (red) sublattice shown in (b). Fermions
in the blue spin-up or in the blue spin-down state see the light gray
(blue) potential in (a) and are hence trapped on the light gray (blue)
lattice sites in (b). A hop between light gray (blue) and dark gray
(red) lattice sites can be accomplished via a Raman transition that
changes the internal state of the fermion as illustrated schematically
in part (a) of the figure.

encode the spin degree of freedom in four internal hyperfine
states of the fermions. We shall refer to these four states as the
blue spin-up state, the blue spin-down state, the red spin-up
state, and the red spin-down state, respectively. We would like
the blue states and the red states to see two different potential
landscapes, and we shall refer to these as the blue and the red
potential, respectively. This can be achieved by choosing the
hyperfine states such that the blue (red) states interact more
strongly with right (left) circularly polarized light than with
left (right) circularly polarized light, and then create different
intensity patterns in space for the two polarizations.

In particular, we would like the potential seen by the blue
(red) states to have minima at the white (black) squares of a
checkerboard as illustrated in Fig. 4. In this setting, tunneling
events can happen between next-nearest-neighbor sites on the
lattice, since this corresponds to tunneling events between
nearest-neighbor minima in either the blue or the red potential.
To move an atom between nearest-neighbor sites on the lattice,
on the other hand, we need to also change the internal state
of the atom. This relation between internal state and position
allows us to use laser assisted tunneling [32] to implement
the nearest-neighbor hopping terms. The idea is to use two
laser fields to drive Raman transitions between internal states
with different color labels but the same spin labels. Since the
potential energy would change drastically if the atom stayed
at the same site during the transition, it can be forced to
hop to a neighboring site during the transition by choosing
the laser frequencies appropriately. This is also illustrated in
Fig. 4. The advantage of implementing the nearest-neighbor
hopping terms in this way is that the relative phase of the two
Raman lasers is printed on the hopping amplitudes. As we
shall see below, it is possible to choose the spatial variation
of the phases of the lasers in such a way that the desired
phases on the hopping amplitudes are obtained. The lasers
used for the Raman transitions also give a second contribution
to the next-nearest-neighbor hopping terms. Finally, the on-site
interaction terms appear in the same way as for the standard
Fermi-Hubbard model implementation.

Let us finally give an overview of the needed laser
configuration. We shall show in the more detailed sections

x
y

z

FIG. 5. (Color online) Schematic illustration of the laser beams
needed for the implementation. The laser beams originating from the
eight dark gray boxes produce the checkerboard optical lattice in the
xy plane, and the laser beams originating from the six light gray
boxes implement the hopping terms and take care of trapping in the
z direction.

below that the desired checkerboard optical lattice can be
created by eight laser beams coming from skew directions,
and the laser assisted hopping terms and the trapping in the
direction perpendicular to the plane of the lattice can be
implemented with three standing-wave laser fields along the
axes of the setup. This is illustrated very schematically in
Fig. 5.

A. Checkerboard optical-lattice potential

We now turn to a detailed explanation of how one can create
the optical-lattice potential in Fig. 4(a).

1. Atomic levels

We shall here consider the case where the ground state
manifold of the atoms has term symbol 2S1/2 and the trapping
laser fields couple the ground states off-resonantly to a 2P1/2

excited-state manifold. This situation can be achieved with
alkali-metal atoms. Since the light fields do not interact with
the spin of the nuclei of the atoms, and since we shall assume
that the detuning is much larger than the hyperfine splitting,
it is sufficient at this stage to consider the fine structure
displayed in Fig. 6. The ground-state manifold then consists of

|g− |g+

|e− |e+

ΔL

ωe
εzεz

ε−ε+

FIG. 6. (Color online) The atoms are assumed to have a 2S1/2

ground-state manifold and a 2P1/2 excited-state manifold, which
gives the fine-structure states shown in the figure. The drawing also
displays the transitions driven by off-resonant left and right circularly
polarized light and linearly z-polarized light, respectively.
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the states

|g+〉 ≡ |0,1/2,1/2〉J = |0,0,1/2〉LS,
(17)

|g−〉 ≡ |0,1/2,−1/2〉J = |0,0,−1/2〉LS.

The kets with subscript J give the state in the form |L,J,mJ 〉
and the kets with subscript LS give the state in the form
|L,mL,mS〉. Here, S is the spin, L is the orbital angular
momentum, J is the momentum obtained by coupling S and
L, and mS , mL, and mJ are the z components of the angular
momenta [49]. The excited-state manifold consists of the two
states

|e+〉 ≡
∣∣∣∣1,

1

2
,
1

2

〉
J

=
√

1

3

∣∣∣∣1,0,
1

2

〉
LS

−
√

2

3

∣∣∣∣1,1,−1

2

〉
LS

,

|e−〉 ≡
∣∣∣∣1,

1

2
,−1

2

〉
J

=
√

2

3

∣∣∣∣1,−1,
1

2

〉
LS

−
√

1

3

∣∣∣∣1,0,−1

2

〉
LS

.

(18)

In the following, we denote the energy of |e±〉 relative to the
energy of |g±〉 by �ωe.

2. Light fields

The light fields needed to implement the optical lattice are
summarized in Table I. The first row, e.g., represents the field


E1a(
r,t) = Re

{
Eeikx (x+y)+ikzze−iω1t

×
[

ε+ + αi
ε− + 1√

2β
(1 + i)(1 − α)
εz

]}
, (19)

where

kx = k√
2 + β2

, kz = kβ√
2 + β2

, k = 2π

λ
, (20)

λ is the wavelength of the fields, 
ε+ is the polarization vector of
right circularly polarized light, 
ε− is the polarization vector of
left circularly polarized light, and 
εz is the polarization vector

of linearly z-polarized light, i.e.,


ε± = 1√
2

⎛
⎝∓1

−i

0

⎞
⎠ , 
εz =

⎛
⎝0

0
1

⎞
⎠ . (21)

Let us first consider the fields in the first two rows of the
table. The wave vectors are chosen such that the fields produce
a standing-wave pattern along the (x + y) direction and both
fields have the same z component of the wave vector. The
z component must be nonzero in order to be able to choose
different phases and amplitudes of the left and right circularly
polarized components of the fields. Specifically, the phases of
the numbers multiplying 
ε+ and 
ε− in the last column of the
table are chosen such that the spatial variation in the xy plane
after adding the two fields is given by cos[kx(x + y)] for the
right circularly polarized component and by sin[kx(x + y)] for
the left circularly polarized component. This ensures that the
intensity maxima of the right circularly polarized component
are displaced relative to the intensity maxima of the left
circularly polarized component as desired. The α is included
to be able to adjust the relative strengths of the left and right
circularly polarized components. Finally, the factors multiply-
ing 
εz are fixed by the requirement that the wave vectors of the
fields should be orthogonal to the polarization vectors.

As illustrated in Fig. 6, the 
ε± polarized component of the
light interacts with atoms in the |g∓〉 state. If the field is red
(blue) detuned, this interaction reduces (increases) the energy
of |g∓〉 in regions of space, where the intensity of 
ε± polarized
light is high. This is what gives the desired trapping. The
fact that there is also a z-polarized component of the field,
however, leads to undesired Raman transitions between the
states in the ground-state manifold for the level structure we are
considering as can be seen from Fig. 6. This undesired effect
can be canceled by adding the fields in the third and the fourth
rows of the table. These fields are obtained from the first two by
changing the sign of the z component of both the wave vectors
and the polarization vectors. The frequency is also changed
slightly such that the second pair of fields do not interfere
coherently with the first pair of fields. Note that this can be done
without any significant change of the wavelength. The last four
fields in the table similarly produce a standing-wave pattern in

TABLE I. The eight light fields used to produce the checkerboard optical lattice. Here, kx and kz are defined in (20), x̂, ŷ, and ẑ are unit
vectors in the x, y, and z directions, respectively, E is a complex number that adjusts the amplitudes of the fields, 
ε± and 
εz are polarization
vectors defined in (21), and α and β are real, adjustable parameters. The frequencies ω1, ω2, ω3, and ω4 are almost the same but differ sufficiently
to ensure that there is no coherent interference. Note that the required differences are small enough that the lengths of the wave vectors are
practically the same for all the beams.

Label Frequency Wave vector Amplitude × polarization

1a ω1 +kxx̂ + kxŷ + kzẑ E
ε+ + αEi
ε− + E√
2β

(1 + i)(1 − α)
εz

1b ω1 −kxx̂ − kxŷ + kzẑ E
ε+ − αEi
ε− − E√
2β

(1 + i)(1 + α)
εz

2a ω2 +kxx̂ + kxŷ − kzẑ E
ε+ + αEi
ε− − E√
2β

(1 + i)(1 − α)
εz

2b ω2 −kxx̂ − kxŷ − kzẑ E
ε+ − αEi
ε− + E√
2β

(1 + i)(1 + α)
εz

3a ω3 −kxx̂ + kxŷ + kzẑ E
ε+ + αEi
ε− − E√
2β

(1 − i)(1 + α)
εz

3b ω3 +kxx̂ − kxŷ + kzẑ E
ε+ − αEi
ε− + E√
2β

(1 − i)(1 − α)
εz

4a ω4 −kxx̂ + kxŷ − kzẑ E
ε+ + αEi
ε− + E√
2β

(1 − i)(1 + α)
εz

4b ω4 +kxx̂ − kxŷ − kzẑ E
ε+ − αEi
ε− − E√
2β

(1 − i)(1 − α)
εz
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the (x − y) direction. The frequencies ω3 and ω4 differ slightly
from ω1 and ω2 such that the fields do not interfere coherently.

Adding up all the fields in the table, we get the total electric
field


E(
r,t) =
4∑

n=1


En(
r,t), (22)

where


E1(
r,t) = Re
[
2Eeikzze−iω1t (c+
ε+ − αs+
ε− + d+
εz)

]
,


E2(
r,t) = Re
[
2Ee−ikzze−iω2t (c+
ε+ − αs+
ε− − d+
εz)

]
,


E3(
r,t) = Re
[
2Eeikzze−iω3t (c−
ε+ + αs−
ε− + d−
εz)

]
,


E4(
r,t) = Re
[
2Ee−ikzze−iω4t (c−
ε+ + αs−
ε− − d−
εz)

]
,

and

c± = cos [kx(x ± y)] , s± = sin [kx(x ± y)] ,
(23)

d± = 1√
2β

(1 ± i)(is± − αc±).

Let us finally note that a small geometric consideration
shows that the wavelength of the light fields is related to β2

through the relation

λ = 4a√
2 + β2

, (24)

where a is the lattice constant as illustrated in Fig. 4(b).
Therefore the wavelength is approximately the same as the
wavelength of the fields needed to induce the hopping terms if
β2 ≈ 2. This is convenient because it is then possible to use the
same set of excited states for the trapping and for the Raman
transitions.

3. Light-atom interaction

Within the dipole approximation and ignoring all states that
are not within the subspace spanned by |g±〉 and |e±〉, we can
write the Hamiltonian of an atom interacting with the field

E(
r,t) as

H̃ = �ωe(|e+〉〈e+| + |e−〉〈e−|)
− (P0 + Q0) 
d · 
E(
r,t)(P0 + Q0), (25)

where 
d = −e
η is the dipole operator of the atom, −e is
the charge of an electron, 
η is the position of the electron
interacting with the field with respect to the nucleus of the
atom, 
r is the position of the nucleus, and

P0 = |g+〉〈g+| + |g−〉〈g−|,
(26)

Q0 = |e+〉〈e+| + |e−〉〈e−|.
We now move into a rotating frame defined by the

Hamiltonian HRF = �ω1Q0. In this frame, the Hamiltonian
of the system is

H = eiHRFt/�H̃ e−iHRFt/� − HRF, (27)

where

eiHRFt/� = eiω1tQ0 + P0. (28)

Writing H = H0 + V , we get

H0 = −�L(|e+〉〈e+| + |e−〉〈e−|), (29)

with L = ω1 − ωe, and

V = 2eEQ0[eikzz(
η · 
ε+c+ − α
η · 
ε−s+ + 
η · 
εzd+)

+ e−ikzze−i(ω2−ω1)t (
η · 
ε+c+ − α
η · 
ε−s+ − 
η · 
εzd+)

+ eikzze−i(ω3−ω1)t (
η · 
ε+c− + α
η · 
ε−s− + 
η · 
εzd−)

+ e−ikzze−i(ω4−ω1)t (
η · 
ε+c− + α
η · 
ε−s− − 
η · 
εzd−)]P0

+ H.c., (30)

where H.c. is the Hermitian conjugate and we have used
the rotating-wave approximation to drop terms oscillating as
e±i(ωn+ω1)t with n = 1,2,3,4 and used P0 
ηP0 = Q0 
ηQ0 = 0,
which follows from the inversion symmetry of atoms. Note
that L is negative for red detuning, which is typically what
we shall consider.

The matrix elements of 
η · 
ε± and 
η · 
εz can be computed
by noting that the angular part of the atomic wave functions
are spherical harmonics. Let ψ0(η) [ψ1(η)] be the radial wave
function of the states in the ground- (excited-) state manifold.
The nonzero matrix elements are then

〈e±|(
η · 
εz)|g±〉 = ±R/3,

〈e±|(
η · 
ε±)|g∓〉 = ∓
√

2R/3, (31)

where

R =
∫ ∞

0
ψ∗

1 (η)ψ0(η)η3dη, (32)

and therefore

Q0(
η · 
εz)P0 = R

3
|e+〉〈g+| − R

3
|e−〉〈g−|,

(33)

Q0(
η · 
ε±)P0 = ∓
√

2R

3
|e±〉〈g∓|,

which we insert into (30).

4. Effective Hamiltonian

When |L| is large compared to the Rabi frequency, we can
use the Schrieffer-Wolff transformation (see Appendix A) to
eliminate the excited states of the system. In this case, both the
zeroth-, first-, and third-order terms of the effective Hamilto-
nian (A1) are zero, and the second-order term simplifies such
that

Heff = (Q0V P0)†Q0V P0

�L

. (34)

Since the four terms in the potential (30) have different
frequencies, they can be treated independently, which amounts
to dropping fast oscillating terms in (34). The contribution to
Heff coming from the term in the potential that is due to the
fields in the first two rows of Table I is

Heff,1 = 4e2|E|2|R|2
9�L

[2|g−〉〈g−|c2
+ + 2α2|g+〉〈g+|s2

+

+ |d+|2P0 +
√

2|g+〉〈g−|(−c+d∗
+ + αs+d+)

+
√

2|g−〉〈g+|(−c+d+ + αs+d∗
+)]. (35)

013606-7



NIELSEN, SIERRA, AND CIRAC PHYSICAL REVIEW A 90, 013606 (2014)

The fields in the third and the fourth row give the same
contribution except that d+ is changed to −d+. Therefore the
undesired terms giving rise to transitions between |g+〉 and
|g−〉 are precisely canceled as claimed above.

Adding also the contributions from the last four fields, we
get

Heff = 16e2|E|2|R|2
9�L

[
(c2

+ + c2
−)|g−〉〈g−|

+α2(s2
+ + s2

−)|g+〉〈g+| + 1

2
(|d+|2 + |d−|2)P0

]
.

(36)

Since
1

2
(|d+|2 + |d−|2) = 1

2β2
[s2

+ + s2
− + α2(c2

+ + c2
−)], (37)

we conclude that the potential-energy landscape seen by a
fermion in the state |g−〉 is

V− = −V0[(2β2 + α2)(c2
+ + c2

−) + (s2
+ + s2

−)] (38)

and the potential-energy landscape seen by a fermion in the
state |g+〉 is

V+ = −V0[(1 + 2α2β2)(s2
+ + s2

−) + α2(c2
+ + c2

−)], (39)

where

V0 ≡ −8e2|E|2|R|2
9�Lβ2

. (40)

Note that V0 is positive for red detuning and negative for blue
detuning.

5. Lattice potentials for the hyperfine states

As we shall later on consider laser fields that drive Raman
transitions between different hyperfine levels, we shall now
discuss the hyperfine structure. For simplicity we assume that
the spin of the nucleus is I = 1, which is, e.g., the case for
6Li (see [50]). Coupling the nuclear spin I and the electron
angular momentum J to the total angular momentum F , one
finds that the ground-state manifold consists of the hyperfine
levels [49]∣∣∣∣0,

3

2
, + 3

2

〉
F

=
∣∣∣∣0,1,

1

2

〉
IJ

,

∣∣∣∣0,
3

2
, + 1

2

〉
F

=
√

2

3

∣∣∣∣0,0,
1

2

〉
IJ

+
√

1

3

∣∣∣∣0,1,−1

2

〉
IJ

,

∣∣∣∣0,
3

2
,−1

2

〉
F

=
√

1

3

∣∣∣∣0,−1,
1

2

〉
IJ

+
√

2

3

∣∣∣∣0,0,−1

2

〉
IJ

,

∣∣∣∣0,
3

2
,−3

2

〉
F

=
∣∣∣∣0,−1,−1

2

〉
IJ

, (41)

∣∣∣∣0,
1

2
, + 1

2

〉
F

=
√

1

3

∣∣∣∣0,0,
1

2

〉
IJ

−
√

2

3

∣∣∣∣0,1,−1

2

〉
IJ

,

∣∣∣∣0,
1

2
,−1

2

〉
F

=
√

2

3

∣∣∣∣0,−1,
1

2

〉
IJ

−
√

1

3

∣∣∣∣0,0,−1

2

〉
IJ

,

where kets with subscript F give the state in the form
|L,F,mF 〉, kets with subscript IJ give the state in the form

|L,mI ,mJ 〉, and mF , mI , and mJ are the z components of the
angular momenta.

The potential-energy landscapes

V3/2,3/2 = V+ = −2V0(1 + 2α2β2)

+V0(1 + 2α2β2 − α2)(c2
+ + c2

−), (42)

V3/2,1/2 = V1/2,−1/2 = 2

3
V+ + 1

3
V− = −2V0

(
1 + 4

3
α2β2

)

+V0

(
4

3
α2β2 − α2 + 1 − 2

3
β2

)
(c2

+ + c2
−), (43)

V3/2,−1/2 = V1/2,1/2 = 1

3
V+ + 2

3
V− = −2V0

(
α2 + 4

3
β2

)

+V0

(
α2 − 2

3
α2β2 + 4

3
β2 − 1

)
(s2

+ + s2
−), (44)

V3/2,−3/2 = V− = −2V0(α2 + 2β2)

+V0(α2 + 2β2 − 1)(s2
+ + s2

−) (45)

seen by the hyperfine states are obtained as the diagonal matrix
elements of Heff , i.e., VF,mF

= F 〈0,F,mF |Heff|0,F,mF 〉F . We
note that the hyperfine splitting is not taken into account in
Heff , but this splitting ensures that the fields do not induce
transitions between hyperfine states with different values
of F .

Assume we choose the parameters such that the coefficient
of (c2

+ + c2
−) in (43) and of (s2

+ + s2
−) in (44) are both positive.

For red detuning (V0 > 0) this is the case provided
2
3β2 − 1
4
3β2 − 1

< α2 <

4
3β2 − 1
2
3β2 − 1

. (46)

We can then obtain the optical-lattice potential in Fig. 4 by
implementing the red and blue spin-up and -down states such
that

|↑r〉 = |0,3/2,1/2〉F , |↓r〉 = |0,1/2,−1/2〉F ,
(47)

|↑b〉 = |0,3/2,−1/2〉F , |↓b〉 = |0,1/2,1/2〉F ,

where the subscript r (b) refers to red (blue). Figure 7
illustrates this encoding and the energy shifts due to the
optical-lattice potential. Note that |↑r〉 and |↓r〉 see exactly
the same potential, and |↑b〉 and |↓b〉 also see exactly the same
potential.

In Fig. 8, we plot the maximum and minimum values
of VF,mF

. The figure shows the freedom we have to adjust
the relative heights of the red and blue potentials and the
minimum of the red potential relative to the minimum of the
blue potential by varying α2 when β2 = 2.

B. Implementation of the hopping terms

1. Light fields

To implement the hopping between red and blue lattice
sites, we propose to use the standing-wave fields


Erx = Re(iEz
εze
ikxe−iωr t − iEz
εze

−ikxe−iωr t )

= −Ez
εz sin(kx)e−iωr t + c.c., (48a)
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|0, 3
2 , 3
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δ

δ

FIG. 7. (Color online) Hyperfine structure of the ground-state
manifold and the encoding of the red and blue spin-up and -down
states. The states are labeled |L,F,mF 〉 as on the left-hand side
of (41). The vertical position of each state is the energy of the state in
the checkerboard optical lattice when β2 = 2, α2 = 1.2, and V0 > 0.
The states that see a potential with minima at the blue sites for these
parameters are shown in light gray (blue) and are assumed to be
trapped on a blue site. The states that see a potential with minima at
the red sites for these parameters are shown in dark gray (red) and are
assumed to be trapped on a red site. Possible differences in zero point
energy on the different lattice sites and the trapping in the z direction
are not taken into account in this drawing. Such effects will, however,
not spoil the symmetry ensuring that the two �δ’s are the same. The
hyperfine splitting �HF is not to scale.


Ery = Re(−Ez
εze
ikye−iωr t + Ez
εze

−ikye−iωr t )

= −iEz
εz sin(ky)e−iωr t + c.c., (48b)


Ebz = Re[(E+
ε+ + E−
ε−)eikzze−iωbt

+ (E+
ε+ + E−
ε−)e−ikzze−iωbt ]

= (E+
ε+ + E−
ε−) cos(kzz)e−iωbt + c.c., (48c)
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FIG. 8. (Color online) Minimum and maximum values of
V3/2,mF

/V0 for mF = −3/2, − 1/2, 1/2, 3/2, and β2 = 2 as a
function of α2 in the region where (46) is fulfilled.

x

y

x

y

iEz

Ezz

z
FIG. 9. (Color online) Implementation of the Fermi-Hubbard-

like model (1) with laser assisted tunneling on the checkerboard
optical lattice. The kinetic-energy part is implemented with the two
z-polarized standing-wave laser fields along, respectively, the x and
y axis with frequency ωr and a standing-wave laser field (not shown)
along the z direction with frequency ωb containing left and right
circularly polarized components. Note that it is possible to use the
same set of lasers to implement both Hkin,↑ and Hkin,↓, and that Hint

comes from the interaction between two fermions with opposite spin
sitting on the same site.

created by three pairs of counterpropagating laser beams along
the x, y, and z direction, respectively (c.c. is the complex
conjugate). We choose k = π/a as illustrated in Fig. 9, where
a is the lattice constant. This also fixes ωr . The origin is
assumed to be at the lower-left corner of the lattice, and we
choose ωb such that ωr − ωb = δ, where δ is the energy of an
atom on a blue site minus the energy of an atom on a red site.
Note that this energy difference is the same for spin up and spin
down, and the fields (48) therefore drive Raman transitions
between both the up states and the down states as shown
in Fig. 10. If this symmetry is not present in a given setup,
the field 
Ebz should be replaced by two fields with different
frequencies and appropriate polarizations. Note also that the
optical lattice automatically shifts away the energies of the
states |0,3/2,3/2〉F and |0,3/2,−3/2〉F [see (42) and (45) and
Fig. 10] such that these states can be ignored in the following.

2. Wannier functions

Let us consider a lattice of infinite extent and denote the
spatial part of the wave function of a fermion at the site with
position coordinates (xn,yn) by fb(x − xn,y − yn,z) if the site
is blue and fr (x − xn,y − yn,z) if the site is red. Since we
are considering only the lowest energy state in each of the
potential wells of the optical lattice, we shall anticipate that
fb/r (x,y,z) is symmetric under reflection in the x axis, under
reflection in the y axis, and under reflection in the z axis. Due
to the symmetry of the lattice, we also assume that fb/r (x,y,z)
is invariant under a rotation of 90◦. For a deep lattice, e.g.,
fb/r (x,y,z) is a Gaussian in all three coordinates, but we shall
not assume this in the following.

A fermion in the internal state |σb〉 (encoded in the blue
spin-up and -down states) sitting on a blue site with coordinates
(xn,yn) is then described by the state∣∣ψσb

n

〉 = ∫∫∫ fb(x − xn,y − yn,z)|x〉|y〉|z〉|σb〉dxdydz.

(49)
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FIG. 10. (Color online) Raman transitions used for laser assisted
tunneling between nearest-neighbor sites (the frequencies of the lasers
are not to scale).

Likewise, a fermion in the internal state |σr 〉 (encoded in the red
spin-up and -down states) sitting on a red site with coordinates
(xn,yn) is described by the state∣∣ψσr

n

〉 = ∫∫∫ fr (x − xn,y − yn,z)|x〉|y〉|z〉|σr〉dxdydz.

(50)

We shall also need expressions for the excited states used for
the Raman transitions. We denote the internal part |eq〉 and
define gp(x,y,z), p = 1,2, . . ., to be a complete set of spatial
wave functions. The states are then∣∣ψeq

p

〉 = ∫∫∫ gp(x,y,z)|x〉|y〉|z〉|eq〉dxdydz. (51)

Finally, for later convenience, we define the projectors

P0 = Pr↓ + Pr↑ + Pb↓ + Pb↑,

Q0 =
∑

q

∑
p

∣∣ψeq

p

〉〈
ψ

eq

p

∣∣,
Pr↓ =

∑
n∈R

∣∣ψ↓r
n

〉〈
ψ↓r

n

∣∣, Pb↓ =
∑
n∈B

∣∣ψ↓b
n

〉〈
ψ↓b

n

∣∣, (52)

Pr↑ =
∑
n∈R

∣∣ψ↑r
n

〉〈
ψ↑r

n

∣∣, Pb↑ =
∑
n∈B

∣∣ψ↑b
n

〉〈
ψ↑b

n

∣∣,
where R (B) is the set of all the red (blue) lattice sites.

3. Light-atom interaction

In the dipole approximation and ignoring irrelevant levels,
the Hamiltonian describing an atom in the optical lattice and
its interaction with the standing-wave fields is

H̃ = �

∑
p,q

ω
eq

p

∣∣ψeq

p

〉〈
ψ

eq

p

∣∣− �
δ

2
Pr↓ + �

(
HF − δ

2

)
Pr↑

+ �
δ

2
Pb↓ + �

(
HF + δ

2

)
Pb↑

+ e(P0 + Q0)
η · 
ET (P0 + Q0), (53)

where 
ET = 
Erx + 
Ery + 
Ebz and �HF is the hyperfine
energy splitting between the states in the ground-state manifold
with F = 3/2 and F = 1/2 as in Fig. 10. We move into a
rotating frame defined by the Hamiltonian

HRF = �(ωr − δ/2)Q0 − �
δ

2
Pr↓ + �

(
HF − δ

2

)
Pr↑

+ �
δ

2
Pb↓ + �

(
HF + δ

2

)
Pb↑. (54)

In this frame, the Hamiltonian of the system takes the form
H = H0 + V , where

H0 = −�

∑
p,q

pq

∣∣ψeq

p

〉〈
ψ

eq

p

∣∣,
(55)

pq = ωr − δ/2 − ω
eq

p ,

and

V = eQ0(
η · 
ET )Pr↓eiωr t + eQ0(
η · 
ET )Pr↑ei(ωr−HF)t

+ eQ0(
η · 
ET )Pb↓eiωbt + eQ0(
η · 
ET )Pb↑ei(ωb−HF)t

+ H.c. (56)

Inserting the fields (48) and using the rotating-wave approxi-
mation, we get

V =
∑

σ∈{↓,↑}
{−eQ0Ez 
η · 
εz[sin(kx) + i sin(ky)]Prσ

+ eQ0(E+
η · 
ε+ + E−
η · 
ε−) cos(kzz)Pbσ

− eQ0Ez 
η · 
εz[sin(kx) + i sin(ky)]Pbσ e−iδt

+ eQ0(E+
η · 
ε+ + E−
η · 
ε−) cos(kzz)Prσ eiδt }e−iδσ↑HFt

+ H.c., (57)

where δσ↑ is a Kronecker δ function.

4. Effective Hamiltonian and hopping amplitudes

Assuming that |pq | is large compared to the light-atom
interaction strength, we can use the Schrieffer-Wolff transfor-
mation (see Appendix A) to eliminate the excited states. In
doing so, we shall assume that |pq | is large compared to the
hyperfine splitting in the ground- and excited-state manifolds
and compared to the height of the optical-lattice potentials. The
latter ensures that the intermediate state in the Raman transition
does not see the optical lattice. We then have pq ≈  for all
p and q and the effective Hamiltonian (A1) simplifies to

Heff = (Q0V P0)†Q0V P0

�
(58)
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to third order in V . We note that by choosing  sufficiently large, the fourth-order term can be made so small that it does not
contribute to the expansion to third order in t/U used to derive (5).

Neglecting oscillating terms and utilizing the fact that the functions gp(x,y,z) constitute a complete set of spatial wave
functions, we find

〈
ψ↑b

n

∣∣Heff

∣∣ψ↑r
m

〉 = − e2

�

∑
q

[〈eq |(E+
η · 
ε+ + E−
η · 
ε−)|↑b〉]∗Ez〈eq |(
η · 
εz)|↑r〉

×
∫∫∫

f ∗
b (x − xn,y − yn,z) cos(kzz)[sin(kx) + i sin(ky)]fr (x − xm,y − ym,z)dxdydz, (59)

〈
ψ↑b

n

∣∣Heff

∣∣ψ↑b
m

〉 = e2|Ez|2
�

∑
q

|〈eq |(
η · 
εz)|↑b〉|2
∫∫∫

f ∗
b (x − xn,y − yn,z)[sin2(kx) + sin2(ky)]fb(x − xm,y − ym,z)dxdydz

+ e2

�

∑
q

|〈eq |(E+
η · 
ε+ + E−
η · 
ε−)|↑b〉|2
∫∫∫

f ∗
b (x − xn,y − yn,z)

× cos2(kzz)fb(x − xm,y − ym,z)dxdydz, (60)

〈
ψ↑r

n

∣∣Heff

∣∣ψ↑r
m

〉 = e2|Ez|2
�

∑
q

|〈eq |(
η · 
εz)|↑r〉|2
∫∫∫

f ∗
r (x − xn,y − yn,z)[sin2(kx) + sin2(ky)]fr (x − xm,y − ym,z)dxdydz

+ e2

�

∑
q

|〈eq |(E+
η · 
ε+ + E−
η · 
ε−)|↑r〉|2
∫∫∫

f ∗
r (x − xn,y − yn,z)

× cos2(kzz)fr (x − xm,y − ym,z)dxdydz, (61)

and the exact same set of equations with ↑ replaced by ↓. Note that only spin preserving hops are allowed due to energy
conservation. These equations precisely give the hopping amplitudes t̃mn = 〈ψσk

n |Heff|ψσl
m 〉 in (2), where σk/l is to be replaced by

the relevant states. In the following two sections, we analyze first the integrals appearing in the hopping amplitudes and then the
factors coming from the internal states.

5. Spatial part of the matrix elements

Let us first note that the integrals in (59), (60), and (61) decay rapidly with the distance between the sites n and m because
the Wannier functions are localized. It is therefore sufficient to consider hops over short distances. Let us start with the integral
appearing in the hopping amplitude for hops from site 1 to site 2 on the lattice (see Fig. 1 for the numbering of the sites), which is

−
∫∫∫

f ∗
b (x − a,y,z) cos(kzz)[sin(kx) + i sin(ky)]fr (x,y,z)dxdydz

= −
∫∫∫

f ∗
b (x − a,y,z) cos(kzz) sin(kx)fr (x,y,z)dxdydz ≡ −J. (62)

Note that the standing-wave field in the y direction does not contribute because fr and fb are even functions of y whereas sin(ky)
is odd. Let us compare this result to the integral

−
∫∫∫

f ∗
b (x − a,y,z) cos(kzz)[sin(kx) + i sin(ky)]fr (x − 2a,y,z)dxdydz

= −
∫∫∫

f ∗
b (−x − a,y,z) cos(kzz) sin(−kx)fr (−x − 2a,y,z)dxdydz

=
∫∫∫

f ∗
b (x + a,y,z) cos(kzz) sin(kx)fr (x + 2a,y,z)dxdydz

=
∫∫∫

f ∗
b (x − a,y,z) cos(kzz) sin(kx − 2π )fr (x,y,z)dxdydz

=
∫∫∫

f ∗
b (x − a,y,z) cos(kzz) sin(kx)fr (x,y,z)dxdydz = J (63)

appearing for hops from site 3 to site 2. From this we see that t̃32 differs from t̃12 by a minus sign as desired (see Fig. 9). Note
that the minus sign comes from the fact that sin(kx) changes sign when displaced by one lattice constant. Similar manipulations
show that the integral appearing for hops from site Lx + 2 to site Lx + 1 is −J and that the integral appearing for hops from
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site Lx + 2 to site Lx + 3 is J . Since the integrals are unchanged if translated by two lattice constants in either the x or the y

direction, it follows that the relative phases of all the nearest-neighbor hops along the x axis come out right.
To obtain the integrals for the hops in the y direction, we only need to exchange x and y. Since it is now i sin(ky) that contributes
rather than sin(kx), we get an extra i on all the integrals. The integral for a hop from site 1 to site Lx + 1 is thus −iJ , for a hop
from 2Lx + 1 to Lx + 1 it is iJ , for a hop from Lx + 2 to 2 it is −iJ , and for a hop from Lx + 2 to 2Lx + 2 it is iJ . This is
also as desired since the arrows representing the hopping amplitudes in Fig. 9 point opposite to the hopping directions for the
integrals that are −iJ . We thus conclude that all the nearest-neighbor hopping amplitudes have the correct relative phases.
Let us next consider hops between sites of the same color. Let us first note that the integral∫∫∫

f ∗
r (x,y,z) sin2(kx)fr (x − a,y − a,z)dxdydz =

∫∫∫
f ∗

r (x + a,y + a,z) sin2(kx)fr (x,y,z)dxdydz

=
∫∫∫

f ∗
r (−x + a,−y + a,z) sin2(−kx)fr (−x,−y,z)dxdydz =

∫∫∫
f ∗

r (x − a,y − a,z) sin2(kx)fr (x,y,z)dxdydz

(64)

is real, and the same is true if sin2(kx) is replaced by sin2(ky)
or cos2(kzz), if red is replaced by blue, and if the hop is in
the perpendicular direction. The hopping amplitudes for the
next-nearest-neighbor hops are thus all real. For the proposal
to work out, we need to assume that the signs of (60) and (61)
are the same. This holds if fb and fr are Gaussian and also if
the blue and the red lattices are not too different. Let us assume
first that the integrals are positive. Then we would obtain the
correct sign of the next-nearest-neighbor hopping amplitudes
for blue detuning. If the phase of (59) does not come out right
for the hop from site 1 to site 2, this can always be adjusted
by changing the phase of either Ez or of E+ and E−. Similar
considerations apply if the integrals are negative and there
is red detuning. Switching the sign of the detuning changes
the sign of all the hopping amplitudes, and we note that this
gives the model with reversed chirality. We can, however, get
the correct chirality back simply by changing the sign of 
Ery .
These considerations establish that we can get all the phases
of the hopping amplitudes right, provided the phase of the
internal part of (59) does not depend on whether the spins are
up or down. We shall see below that this is the case if E+ and
E− are chosen to have the same phase.

The last situation we need to consider is n = m. These
terms give an additional contribution to the trapping. The field

Ebz provides the trapping potential in the z direction, and the
other two fields modify the trapping potential in the xy plane.
The modification can, however, be made small by reducing Ez,
while increasing E± to keep the product of the two constant.

6. Internal part of the matrix elements

The next important question is whether we can make the
hopping rates equal for spin up and down, and for this we need
to consider the internal part of the matrix elements of Heff .
As for the preparation of the optical-lattice potential, we shall
assume that the light fields couple the ground-state manifold
to a 2P1/2 orbital. The states |eq〉 are then

|e1〉 =
√

1

3

∣∣∣∣1,−1,0,
1

2

〉
ILS

−
√

2

3

∣∣∣∣1,−1,1,−1

2

〉
ILS

,

|e2〉 =
√

1

3

∣∣∣∣1,0,0,
1

2

〉
ILS

−
√

2

3

∣∣∣∣1,0,1,−1

2

〉
ILS

,

|e3〉 =
√

1

3

∣∣∣∣1,1,0,
1

2

〉
ILS

−
√

2

3

∣∣∣∣1,1,1,−1

2

〉
ILS

,

|e4〉 =
√

2

3

∣∣∣∣1,−1,−1,
1

2

〉
ILS

−
√

1

3

∣∣∣∣1,−1,0,−1

2

〉
ILS

,

|e5〉 =
√

2

3

∣∣∣∣1,0,−1,
1

2

〉
ILS

−
√

1

3

∣∣∣∣1,0,0,−1

2

〉
ILS

,

|e6〉 =
√

2

3

∣∣∣∣1,1,−1,
1

2

〉
ILS

−
√

1

3

∣∣∣∣1,1,0,−1

2

〉
ILS

,

where the kets with subscript ILS give the state in the form
|L,mI ,mL,mS〉. The matrix elements that we shall need below
are listed in Table II.

TABLE II. 〈eq |
η · 
εi |ψ〉 in units of R/
√

3, where |ψ〉 ∈
{|↑r〉,|↑b〉,|↓r〉,|↓b〉} and R is the radial integral in (32).

q i |↑r〉 |↑b〉 |↓r〉 |↓b〉
1 z 0 1/3

√
2/3 0

2 z
√

2/3 0 0 1/3
3 z 0 0 0 0
4 z 0 0 0 0
5 z 0 −√

2/3 1/3 0
6 z −1/3 0 0

√
2/3

1 + 0 0 0 0
2 + 0 2/3 −√

2/3 0
3 + √

2/3 0 0 −2/3
4 + 0 0 0 0
5 + 0 0 0 0
6 + 0 0 0 0

1 − 0 0 0 0
2 − 0 0 0 0
3 − 0 0 0 0
4 − 0

√
2/3 2/3 0

5 − 2/3 0 0
√

2/3
6 − 0 0 0 0
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The internal part of the matrix element describing nearest-
neighbor hops of spin up fermions is∑

q

[〈eq |(E+
η · 
ε+ + E−
η · 
ε−)|↑b〉]∗Ez〈eq |(
η · 
εz)|↑r〉

= 2
√

2|R|2
27

E∗
+Ez, (65)

whereas it is∑
q

[〈eq |(E+
η · 
ε+ + E−
η · 
ε−)|↓b〉]∗Ez〈eq |(
η · 
εz)|↓r〉

=
√

2|R|2
27

E∗
−Ez (66)

for spin down. This shows that the hopping amplitudes are the
same for spin-up and spin-down fermions provided we choose
E− = 2E+. We assume this to be the case in the following.

Let us next consider hops between blue lattice sites. Note
that∑

q

|〈eq |(
η · 
εz)|↑b〉|2 =
∑

q

|〈eq |(
η · 
εz)|↓b〉|2 = 1

9
|R|2

(67)
and∑

q

|〈eq |(E+
η · 
ε+ + E−
η · 
ε−)|↑b〉|2

=
∑

q

|〈eq |(E+
η · 
ε+ + E−
η · 
ε−)|↓b〉|2 = 4

9
|R|2|E+|2.

(68)

The next-nearest-neighbor hopping thus happens at the same
rate for fermions in the blue spin-up state as for fermions in
the blue spin-down state.

For hops between red sites we get∑
q

|〈eq |(
η · 
εz)|↑r〉|2 =
∑

q

|〈eq |(
η · 
εz)|↓r〉|2 = 1

9
|R|2

(69)
and∑

q

|〈eq |(E+
η · 
ε+ + E−
η · 
ε−)|↑r〉|2

=
∑

q

|〈eq |(E+
η · 
ε+ + E−
η · 
ε−)|↓r〉|2 = 2

3
|R|2|E+|2,

(70)

so that the hopping rate is again the same for spin up and spin
down. If the red and blue optical lattices were the same, the
above results also show that hops would occur at a faster rate
on the red lattice than on the blue lattice. This can be avoided,
however, by making the difference between the maximum and
the minimum value of the red lattice potential larger than the
same difference for the blue lattice, i.e., by choosing α2 slightly
larger than 1 in Fig. 8.

C. Implementation of the interaction terms

Finally, we need to account for the on-site interaction
terms. As in the standard Fermi-Hubbard model, interactions

between atoms on the same site occur naturally, and Feshbach
resonances can be used to tune the interaction strength over
a wide range of values [37,38,47,51,52]. Let us also note
here that the intensity of the laser beams used to create the
optical lattice influences the relative strength of the interaction
terms and the tunneling terms [53]. Increasing the intensity
increases the potential barrier between sites and therefore
reduces the tunneling rate. At the same time, a larger intensity
also reduces the spatial width of the Wannier functions and
this increases the interaction strength between two atoms on
the same site. Finally, the rate of laser assisted tunneling can
be adjusted independently by varying the amplitudes of the
lasers driving the Raman transitions.

IV. CONCLUSION

In conclusion, we have described a scheme to implement
a bosonic FQH-like state in ultracold fermions in optical
lattices. The FQH-like state appears as the ground state of
a Fermi-Hubbard-like Hamiltonian with complex nearest-
neighbor and real next-nearest-neighbor hopping terms for
suitable parameters in the Mott insulating regime. The proposal
uses a checkerboard optical lattice and laser assisted tunneling
with a suitable configuration of laser beams. The experimental
requirements are similar to those needed to observe the Néel
antiferromagnetic ordering in the standard Fermi-Hubbard
Mott insulator combined with the implementation of laser
assisted tunneling in this system. The model can thus be
implemented with present or planned technology.
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APPENDIX A: THE SCHRIEFFER-WOLFF
TRANSFORMATION

A detailed description of the Schrieffer-Wolff transfor-
mation can be found in [54], and here we give only a
brief overview, summarizing the results needed in this paper.
Consider a quantum system with Hamiltonian H0 and let
|i〉 denote the eigenstates of H0 with eigenvalues Ei , i.e.,
H0|i〉 = Ei |i〉. Let P0 be the subspace spanned by all states |i〉
for which Ei belongs to a given energy interval, and let Q0 be
the subspace spanned by all other states. We shall assume that
the states in P0 are separated by an energy gap from the states
in Q0, i.e., |Ei − Ej | � �0 for all |i〉 ∈ P0 and all |j 〉 ∈ Q0,
where �0 is some constant larger than zero. Typically, the
interval is chosen to encompass the lowest energy states, and
for convenience we shall therefore refer toP0 as the low-energy
subspace even though the results are more general.

We now add a perturbation V , such that the Hamiltonian is
H = H0 + V , and define P (Q) to be the low (high) energy
subspace with respect to H . If V is small enough that it changes
all of the energies Ei in the spectrum of H0 by less than �0/2,
we can choose the dimension of P to be the same as the
dimension of P0, and there will be an energy gap between the
low- and the high-energy states of H . In this case, one can find
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a unitary transformation U that transforms P into P0 and Q
into Q0. Applying this transformation to H is the Schrieffer-
Wolff transformation, and the resulting Hamiltonian is block
diagonal with respect to P0 and Q0. One can then obtain
an effective Hamiltonian Heff for the low-energy physics by
discarding the block of the Hamiltonian acting on Q0.

When the perturbation is small, U is close to the identity,
and one can write U = eS and Taylor expand S in V . As
derived in [54], this leads to

Heff =
∑

n

H
(n)
eff , (A1)

where H
(n)
eff is nth order in V and H

(n)
eff for n � 3 is given by

H
(0)
eff = P0H0P0, (A2)

H
(1)
eff = P0V P0, (A3)

H
(2)
eff = 1

2

∑
i,j

P0|i〉〈i|P0V Q0|j 〉〈j |Q0V P0

Ei − Ej

+ H.c., (A4)

H
(3)
eff = 1

2

∑
i,j,k

P0V Q0|j 〉〈j |Q0V Q0|i〉〈i|Q0V P0|k〉〈k|P0

(Ei − Ek)(Ej − Ek)

− 1

2

∑
i,j,k

P0V Q0|k〉〈k|Q0V P0|i〉〈i|P0V P0|j 〉〈j |P0

(Ei − Ek)(Ej − Ek)

+ H.c. (A5)

Here, P0 (Q0) is the projector onto P0 (Q0), and H.c. is the
Hermitian conjugate.

APPENDIX B: EFFECTIVE MODEL IN THE MOTT
INSULATING REGIME

We derive the effective Hamiltonian of the Fermi-Hubbard-
like model in (1) in the limit |t |,|t ′| 	 U by applying the
Schrieffer-Wolff transformation in Appendix A. In this case,
H0 = Hint and V =∑σ Hkin,σ . The low-energy subspace P0

of H0 consists of all states with precisely one fermion on each
site, and these states have zero energy. The lowest excited
states have precisely one site with double occupation and have
energy U . In the following, we compute the terms (A2) in the
effective Hamiltonian up to third order in V .

1. Zeroth and first-order term

Since all the low-energy states have precisely one fermion
at each site, we immediately get

H
(0)
eff = H

(1)
eff = 0. (B1)

2. Second-order term

The second-order term describes processes in which we
start from a state in P0 and apply the potential twice, after
which we must be back to a state in P0. The only possibility
is therefore a fermion hopping from site n to site m followed
by a fermion hopping from m to n. We can therefore treat the
terms in V corresponding to hops between different pairs of
lattice sites independently. Considering one of these terms, the

relevant part of the potential is

Vmn ≡
∑

σ

(t̃mna
†
nσ amσ + t̃∗mna

†
mσ anσ ), (B2)

where n and m must be nearest or next-nearest neighbors on
the lattice. Vmn gives the contribution

H
(2)
eff,mn ≡ −|t̃mn|2

U

∑
σ

∑
σ ′

P0(a†
m,σ an,σ a

†
n,σ ′am,σ ′

+ a†
n,σ am,σ a

†
m,σ ′an,σ ′ )P0 (B3)

to H
(2)
eff .

We would like to express H
(2)
eff,mn in terms of spin operators,

and we therefore investigate the action of H
(2)
eff,mn on the states

|↑n↑m〉, |↑n↓m〉, |↓n↑m〉, and |↓n↓m〉 in P0, where |↑n↓m〉,
e.g., represents the state with the fermion on site n in the ↑
state and the fermion on site m in the ↓ state, whereas the
state of all the other spins is not important and therefore not
specified. Using the anticommutation relations of the fermion
operators, we get

H
(2)
eff,mn|↑n↑m〉 = 0,

H
(2)
eff,mn|↑n↓m〉 = −2|t̃mn|2

U
(|↑n↓m〉 − |↓n↑m〉),

(B4)

H
(2)
eff,mn|↓n↑m〉 = −2|t̃mn|2

U
(|↓n↑m〉 − |↑n↓m〉),

H
(2)
eff,mn|↓n↓m〉 = 0.

Since H
(2)
eff,mn is SU(2) invariant, one would expect that it can

be written in terms of 
Sn · 
Sm. A small computation shows that

H
(2)
eff,mn = 2|t̃mn|2

U

(
2
Sn · 
Sm − 1

2

)
(B5)

indeed reproduces (B4). To get H
(2)
eff in the spin basis we

only need to sum over all pairs of nearest and next-nearest
neighbors.

3. Third-order term

Since P0V P0 = 0, the second term on the right-hand side
of (A5) vanishes. All nonzero contributions to H

(3)
eff then in-

volve hops between three sites, where both of the intermediate
states have energy U , and therefore (A5) simplifies to

H
(3)
eff = 1

U 2
P0V Q0V Q0V P0. (B6)

The three sites must pairwise be nearest or next-nearest
neighbors. Let us consider a triangle with vertices labeled n,
m, p when going around the triangle in the counterclockwise
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direction. The contribution to H
(3)
eff from this triangle is

H
(3)
eff,nmp ≡ it2t ′

U 2

∑
σ,σ ′,σ ′′

∑
All permuta-

tions of n,m,p

P0a
†
n,σ ah(n),σ a

†
m,σ ′ah(m),σ ′a

†
p,σ ′′ah(p),σ ′′P0

− it2t ′

U 2

∑
σ,σ ′,σ ′′

∑
All permuta-

tions of n,m,p

P0a
†
n,σ ah−1(n),σ a

†
m,σ ′ah−1(m),σ ′a

†
p,σ ′′ah−1(p),σ ′′P0, (B7)

where the function h is defined such that h(n) = m, h(m) = p, and h(p) = n and h−1 is the inverse of h. The action of H
(3)
eff,nmp

on the spin states in P0 is

H
(3)
eff,nmp|↑n↑m↑p〉 = 0,

H
(3)
eff,nmp|↑n↑m↓p〉 = −6it2t ′

U 2
|↑n↓m↑p〉 + 6it2t ′

U 2
|↓n↑m↑p〉,

H
(3)
eff,nmp|↑n↓m↑p〉 = −6it2t ′

U 2
|↓n↑m↑p〉 + 6it2t ′

U 2
|↑n↑m↓p〉,

H
(3)
eff,nmp|↓n↑m↑p〉 = −6it2t ′

U 2
|↑n↑m↓p〉 + 6it2t ′

U 2
|↑n↓m↑p〉,

(B8)

H
(3)
eff,nmp|↓n↓m↑p〉 = −6it2t ′

U 2
|↓n↑m↓p〉 + 6it2t ′

U 2
|↑n↓m↓p〉,

H
(3)
eff,nmp|↓n↑m↓p〉 = −6it2t ′

U 2
|↑n↓m↓p〉 + 6it2t ′

U 2
|↓n↓m↑p〉,

H
(3)
eff,nmp|↑n↓m↓p〉 = −6it2t ′

U 2
|↓n↓m↑p〉 + 6it2t ′

U 2
|↓n↑m↓p〉,

H
(3)
eff,nmp|↓n↓m↓p〉 = 0,

where again we only specify the states of the spins on which H
(3)
eff,nmp acts. Given the SU(2) symmetry, we compare these results

to the action of 
Sn · (
Sm × 
Sp) and get

H
(3)
eff,nmp = −24t2t ′

U 2

Sn · (
Sm × 
Sp). (B9)

The complete third-order term H
(3)
eff is then obtained by summing H

(3)
eff,nmp over all triangles.
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[37] R. Jördens, N. Strohmaier, K. Günter, H. Moritz, and

T. Esslinger, Nature (London) 455, 204 (2008).

[38] U. Schneider, L. Hackermüller, S. Will, T. Best, I. Bloch,
T. A. Costi, R. W. Helmes, D. Rasch, and A. Rosch, Science
322, 1520 (2008).

[39] S. Trotzky, P. Cheinet, S. Fölling, M. Feld, U. Schnorrberger,
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