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Green’s-function formalism for a condensed Bose gas consistent with infrared-divergent
longitudinal susceptibility and Nepomnyashchii-Nepomnyashchii identity
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We present a Green’s-function formalism for an interacting Bose-Einstein condensate (BEC) satisfying the two
required conditions: (i) the infrared-divergent longitudinal susceptibility with respect to the BEC order parameter,
and (ii) the Nepomnyashchii-Nepomnyashchii identity stating the vanishing off-diagonal self-energy in the low-
energy and low-momentum limit. These conditions cannot be described by the ordinary mean-field Bogoliubov
theory, the many-body T -matrix theory, or the random-phase approximation with the vertex correction. In this
paper, we show that these required conditions can be satisfied, when we divide many-body corrections into
singular and nonsingular parts, and separately treat them as different self-energy corrections. The resulting
Green’s function may be viewed as an extension of the Popov’s hydrodynamic theory to the region at finite
temperatures. Our results would be useful in constructing a consistent theory of BECs satisfying various required
conditions, beyond the mean-field level.
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I. INTRODUCTION

The Bogoliubov-type mean-field theory [1] has success-
fully clarified various superfluid phenomena of ultracold Bose
gases. However, the theory of Bose-Einstein condensates
(BECs) still has room for improvement. The Hartree-Fock-
Bogoliubov (HFB) approximation gives a finite energy gap [2],
and the HFB-Popov (Shohno) theory [2–7] unphysically
concludes the first-order phase transition [6,8] (whereas a
real Bose gas is expected to exhibit the second-order phase
transition). These mean-field type BEC theories also assume
a static self-energy �, where its off-diagonal self-energy part
�12 characterized by two outgoing particle lines is specific to
the BEC phase. This static result contradicts the exact identity
proved by Nepomnyashchii and Nepomnyashchii [9,10],
stating the vanishing off-diagonal self-energy �12 in the
low-energy and low-momentum limit.

When we try to go beyond the mean-field approximation to
include many-body correlations, we suffer from the infrared
divergence associated with fluctuations of BECs. The infrared
singularity directly appears in some quantities such as the
correlation functions of the phase and amplitude fluctuations
of a BEC order parameter [11–20] (that are also referred to
as the transverse and longitudinal response functions in the
literature, respectively). On the other hand, in some cases such
as the density-density correlation function [21], the infrared
divergence does not appear in the final result. The singularity
only appears on the way of calculation. Indeed, the density
response function satisfies the compressibility sum rule [21].
One thus needs to carefully treat the infrared divergence,
depending on what we are considering.

For curing the infrared divergences in BEC theories, a
number of ideas have been proposed. Instead of bosonic fields,
hydrodynamic variables (such as density and phase) have
been adopted to describe BECs in the low-momentum region
at T = 0 [5,22,23]. This so-called Popov’s hydrodynamic
approach correctly describes the long-range correlations. A
renormalization-group technique has also been applied to the
BEC phase at T = 0 [13,15,24,25]. To obtain correct infrared

behaviors in this approach, the Ward-Takahashi identities
associated with the gauge symmetry play an important role.
The infrared divergences are also removed by an artificial field
that breaks U(1) gauge symmetry [26]. In this approach, one
takes the limit of vanishing symmetry breaking terms after
calculating physical quantities, and long-range correlations
are corrected by incorporating the Popov’s hydrodynamic
theory.

In this paper, we construct a Green’s-function formalism
that can correctly describe the low-energy singularity of
the longitudinal response function χ‖(p,ω). This function is
a typical quantity exhibiting the infrared divergence below
the BEC phase transition temperature Tc. This infrared
behavior is strongly related to the so-called Nepomnyashchii-
Nepomnyashchii (NN) identity [9,10]. Indeed, it has been
shown that χ‖(0,0) is proportional to �−1

12 (0,0) [16].
The longitudinal response function is also a useful quantity

in constructing a consistent theory of BECs. The Bogoli-
ubov mean-field theory incorrectly gives a finite value of
χ‖(0,0) [12,16]. This approximation only includes fluctua-
tions around the mean-field order parameter to the second
order, where longitudinal (amplitude) and transverse (phase)
fluctuations of the BEC order parameter are decoupled from
each other in the Bogoliubov Hamiltonian. Anharmonic effects
beyond such a Gaussian approximation have been pointed out
to be important for the NN identity [12]. However, the so-called
many-body T -matrix theory, which involves interaction effects
beyond the mean-field level, still cannot reproduce the infrared
singularity of the longitudinal response function, nor the NN
identity [6,27].

We note that the infrared divergence of the longitudinal
susceptibility associated with an order parameter is a general
phenomenon in a system with spontaneously broken con-
tinuous symmetry. This divergence was originally discussed
in a Heisenberg ferromagnet [28], and was extended to
a general system described by a multicomponent ordering
field [11]. Although the longitudinal susceptibility has not
been observed in an ultracold Bose gas, the singularity of
the longitudinal dynamical susceptibility is observable in

1050-2947/2014/90(1)/013603(12) 013603-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.90.013603


SHOHEI WATABE AND YOJI OHASHI PHYSICAL REVIEW A 90, 013603 (2014)

Bose-Einstein condensation of magnons in a quantum
Heisenberg antiferromagnet via neutron scattering [29].

Here, we explain our strategy in this paper. Effects of a
particle-particle interaction can be conveniently included in
the single-particle thermal Green’s function G through the
Dyson equation

G(p,iωn) = 1

G−1
0 (p,iωn) − �(p,iωn)

. (1)

Here, G0 is the Green’s function for a free Bose gas, � is
the irreducible self-energy, and ωn is the boson Matsubara
frequency. Equation (1) is the most conventional expression in
considering an interacting Bose gas. This equation is actually
a (2 × 2) matrix in the BEC phase.

One may also include many-body corrections into G

through the reducible self-energy �′ by using the expression

G(p,iωn) = G0(p,iωn) + G0(p,iωn)�′(p,iωn)G0(p,iωn).

(2)

The reducible self-energy �′ is related to the irreducible self-
energy � through

�′(p,iωn) = 1

1 − �(p,iωn)G0(p,iωn)
�(p,iωn). (3)

Equations (1) and (2) are equivalent to each other.
We may also employ the hybrid version of Eqs. (1) and (2),

given by

G(p,iωn) = G̃(p,iωn) + G̃(p,iωn)�̃(p,iωn)G̃(p,iωn), (4)

where we divide the self-energy � into two parts, i.e., � =
�a + �b. In Eq. (4), �a is treated as the self-energy correction
to G0, which provides G̃−1 = G−1

0 − �a. On the other hand,
�̃ is given by Eq. (3), where � and G0 are replaced by �b and
G̃, respectively. If the sum of �a and �b provides the exact
irreducible self-energy possessing all orders of interactions,
Eq. (4) is a rewriting of Eq. (1).

In most cases, we need an approximate treatment of many-
body effects. In an extreme case, one may introduce different
approximations between G̃ in the first term of (4) and those in
the second term, giving the form

G(p,iωn) = G̃(p,iωn) + G̃L(p,iωn)�̃(p,iωn)G̃R(p,iωn).

(5)

Equation (5) is more flexible than Eq. (1) in the sense that
one may employ different approximations in the first and
the second terms. This flexibility is particularly useful in
constructing the BEC theory that satisfies various required
conditions, such as the infrared divergence of the longitudinal
response function, the NN identity, the Hugenholtz-Pines
relation [30], as well as the second-order phase transition.

In this paper, we employ the hybrid expression in Eq. (5).
We treat the first term in Eq. (5) within the many-body T -
matrix approximation (MBTA), as well as the random-phase
approximation (RPA) with the vertex correction. In a previous
paper [27], we examined a weakly interacting Bose gas within
the framework of the ordinary Green’s-function formalism
in Eq. (1). Evaluating the self-energy within the MBTA as
well as the RPA with the vertex correction, we found that
these many-body theories describe the enhancement of Tc as

predicted by various methods [31], whereas they do not meet
the NN identity. We overcome this problem in this paper, by
determining the second term in Eq. (5) so as to cure the broken
NN identity. The resulting Green’s function is found to also
reproduce the infrared divergence of the longitudinal response
function, as well as the Hugenholtz-Pines relation.

We determine �̃ in Eq. (5) on the basis of the hydrodynamic
theory developed by Popov [5,22,23]. Indeed, our approach
based on Eq. (5) is strongly related to the Popov’s hydrody-
namic theory. The Green’s function in Eq. (5) has formally
the same structure as that given in the Popov’s hydrodynamic
theory. In this hydrodynamic theory, a factor corresponding
to �̃ in Eq. (5) exhibits infrared divergence that originates
from phase fluctuations of the BEC order parameter. Using
this, Popov obtained the vanishing off-diagonal self-energy in
the low-energy and low-momentum limit (NN identity). This
result provides a crucial key in determining �̃.

Section II presents our Green’s-function formalism. In
Sec. III, we examine low-energy properties of the longitudinal
response function in our formalism. We explicitly show that
our formalism satisfies the NN identity. We also discuss how
our approach is related to the Popov’s hydrodynamic theory.
In Sec. IV, we examine the condensate fraction as a function
of the temperature, to see how the present theory affects
the previous results based on the ordinary Green’s-function
formalism in Eq. (1). Throughout this paper, we set � = kB =
1, and the system volume V is taken to be unity.

II. FRAMEWORK

We consider a three-dimensional Bose gas with an atomic
mass m. The Hamiltonian is given by

H =
∑

p

(εp − μ)a†
pap + U

2

∑
p,p′,q

a
†
p+qa

†
p′−qap′ap, (6)

where ap is the annihilator of a Bose atom with the kinetic
energy εp − μ = p2/(2m) − μ, measured from the chemical
potential μ. We consider a weak repulsive interaction U (>0),
which is related to the s-wave scattering length a as

4πa

m
= U

1 + U
∑pc

p
1

2εp

, (7)

where pc is a cutoff momentum.
The BEC phase is conveniently characterized by the BEC

order parameter 〈ap=0〉. It is related to the condensate fraction
n0 through 〈ap=0〉 = √

n0 [1]. In this paper, we take 〈ap=0〉 as
a real number, without loss of generality.

We consider the (2 × 2)-matrix single-particle thermal
Green’s function having the form in Eq. (5). We divide a self-
energy �(p,iωn) into the sum of the singular part �IR(p,iωn)
(which exhibits infrared divergence) and the regular part
�R(p,iωn) (which remains finite even in the low-energy and
low-momentum limit). For G̃ and �̃ in Eq. (5), we take

G̃(p,iωn) = 1

iωnσ3 − εp + μ − �R(p,iωn)
, (8)

�̃(p,iωn) = �IR(p,iωn). (9)

013603-2



GREEN’S-FUNCTION FORMALISM FOR A CONDENSED BOSE . . . PHYSICAL REVIEW A 90, 013603 (2014)

(a)

Π

=

⎛
⎜⎜⎜⎜⎜⎝

⎞
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(b)
g(p)

=

⎛
⎝

g11 g12

g21 g22

⎞
⎠

FIG. 1. (a) Generalized polarization function �. (b) Single-
particle Green’s function g(p) used in (a).

Here, σi (i = 1,2,3) are Pauli matrices. We determine the
chemical potential μ, so as to satisfy the Hugenholtz-Pines
relation μ = �R

11(0,0) − �R
12(0,0) [30].

To explain how to divide the self-energy into two parts
in the MBTA and the RPA, we conveniently introduce the
(4 × 4)-matrix generalized correlation function [27]

�(p) = −T
∑

q

g(p + q) ⊗ g(−q), (10)

where ⊗ is the Kronecker product. Here, we have used
the simplified notation p = (p,iωn). The correlation function
�(p) is diagrammatically given in Fig. 1(a). In Eq. (10), g(p)
is the (2 × 2)-matrix single-particle Green’s function in the
HFB-Popov approximation, given by

g(p) = 1

iωnσ3 − ξp − Un0σ1
, (11)

where ξp = εp + Un0. Using the symmetry proper-
ties g22(p) = g11(−p) and g12(p) = g12(−p), we reduce
Eq. (10) to

�(p) =

⎛
⎜⎜⎜⎝

�11(p) �12(p) �12(p) �14(p)

�12(p) �22(p) �14(p) �∗
12(p)

�12(p) �14(p) �22(p) �∗
12(p)

�14(p) �∗
12(p) �∗

12(p) �∗
11(p)

⎞
⎟⎟⎟⎠. (12)

The detailed expressions of �ij are summarized in
Appendix A 1.

We divide (12) into the sum �(p) = �IR(p) + �R(p) of
the singular part �IR(p) (which exhibits infrared divergence)
and the regular part �R(p) (which remains finite in the low-
energy and low-momentum limit). In this case, the singular
part �IR(p) can be written so as to be proportional to �14(p),
giving the form

�IR(p) = �14(p)Ĉ, (13)

with

Ĉ =

⎛
⎜⎝

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1

1 −1 −1 1

⎞
⎟⎠. (14)

ΣIR(p) =
G1/2

U

f0|ΠIR(p)|f0

U

G†
1/2

FIG. 2. Self-energy �IR used for �̃. We take the single-bubble
structure for �IR. The wavy line describes the repulsive interaction U .
The dashed arrow describes the condensate Green’s functions G1/2

and G
†
1/2.

The infrared singularity of (analytic continued) �14 is given
by [16–21,29,32]

�14(p,iωn → ω + iδ) ∝
{

ln
(
c2

0p2 − ω2
)

(T = 0),

1/|p| (T �= 0).
(15)

[For the derivation of (15), see Appendix A 2.] In Eq. (15),
c0 = √

n0U/m is the Bogoliubov sound speed, and δ is an
infinitesimally small positive number.

The singular part �IR only appears in the BEC phase below
Tc. Indeed, the singular part �14 is constructed from the off-
diagonal Green’s functions g12 and g21. The regular part �R

is free from the infrared divergence. In fact, the singular part
�14 is completely eliminated from �R.

Using �IR(p), we construct �̃ in Eq. (9). We consider the
single bubble diagram in Fig. 2, which provides

�IR(p) = − 1
2G1/2U 〈f0|�IR(p)|f0〉UG

†
1/2, (16)

where |f0〉 = (0,1,1,0)T. In Eq. (16), G1/2 = √−n0(1,1)T and
G

†
1/2 = √−n0(1,1) are the condensate Green’s functions.
We calculate the regular part �R(p) in Eq. (8)

so as to be free from the infrared divergence. In
the MBTA, summing up the diagrams in Fig. 3, we

(a)
pp

ΣR
11(p) =

pp

ΓR
11(p) +

p

p

ΓR
11(p)

+

p

−p + q

p

Γ11(q)
+

−p + q

p

p

Γ11(q)

(b)
−pp

ΣR
12(p) =

p −p

ΓR
11(0)

(c) ΓR(p) = U + U

ΠR(p)

ΓR(p)

FIG. 3. Self-energy �R in the many-body T -matrix approxima-
tion. (a) Diagonal component �R

11. (b) Off-diagonal component �R
12.

The dashed arrows describe
√

n0. (c) Bethe-Salpeter equation of the
four-point vertex function �R.

013603-3



SHOHEI WATABE AND YOJI OHASHI PHYSICAL REVIEW A 90, 013603 (2014)

obtain

�R
11(p) = 2n0�

R
11(p) − 2T

∑
q

�11(q)g11(−p + q), (17)

�R
12(p) = n0�

R
11(0), (18)

where �R
ij (p) is the (4 × 4)-matrix four-point vertex, given by

�R(p) = U

1 − U�R(p)
. (19)

The four-point vertex � in the second term of Eq. (17) involves
the singular part �IR, giving the form

�(p) = U

1 − U [�R(p) + �IR(p)]
. (20)

The regular part �R does not exhibit infrared divergence. The
first terms in Eqs. (17) and (18) involve �R, which are free
from the infrared divergence. The second term in Eq. (17)
does not exhibit the infrared divergence of �IR, after carrying
out the summation with respect to the internal momentum
q = (q,iωm).

The regular part of the RPA self-energy �R is also obtained
in the same manner. Summing up the diagrams in Fig. 4, one
has

�R
11(p) = (n0 + n′)UR

eff(0) + n0U
R
eff(p)

− T
∑

q

Ueff(q)g11(p − q), (21)

(a)
pp

ΣR
11(p) =

pp

UR
eff(0) +

pp

UR
eff(p)

+

pp

UR
eff(0)

q

+

pp
Ueff(q)

p − q

(b)
−pp

ΣR
12(p) =

p

Ueff(p)

−p

(c)

UR
eff(p)

=
U

+

Ueff(p)U
χR(p)

(d) χR(p) =
1

2
×

f0|ΠR(p)|f0

+

ΠR(p)|f0f0|ΠR(p)

ΓR(p)

FIG. 4. Self-energy �R in the random-phase approximation with
the vertex correction. (a) Diagonal component �R

11. (b) Off-diagonal
component �R

12. (c) Effective interaction UR
eff (p), which involves the

density fluctuation effects. (d) The correlation function χR.

�R
12(p) = n0U

R
eff(p), (22)

where n′ = −T
∑

p g11(p)eiωnδ is the noncondensate density,
and

UR
eff(p) = U

1 − UχR(p)
. (23)

Here, the correlation function χR is given by [27]

χR(p) = 1
2 〈f0|[�R(p) + �R(p)�R(p)�R(p)]|f0〉. (24)

In Eq. (21), Ueff is also given by Eq. (23), where both �R

and �R in Eq. (24) are replaced by � = �R + �IR and � in
Eq. (20), respectively. As in the MBTA, the infrared singularity
in Ueff does not remain in the final result �R

11 after taking the
q summation.

The factors G̃L(p) and G̃R(p) in Eq. (5) are also evaluated
in a diagrammatic manner. In this paper, we consider the fol-
lowing two cases as typical examples. Recalling the expression
in Eq. (4), one may take, as the first example,

G̃
(1)
L,R(p) = G̃(p). (25)

As the second example, we may employ the simple version
that involves the self-energy in the Hartree-Fock (HF) approx-
imation, given by

G̃
(2)
L,R(p) = 1

iωnσ3 − εp + μ − �HF(p)
, (26)

where �HF(p) = 2U (n0 + n′) is the HF self-energy.
These two examples lead to the same infrared singularity

in the second term of Eq. (5), giving the form

G̃
(1)
L (p)�̃(p)G̃(1)

R (p)
∣∣
p→0 = n0U

2�14(p)

2
[
�R

12(0)
]2

(
1 1
1 1

)
, (27)

G̃
(2)
L (p)�̃(p)G̃(2)

R (p)
∣∣
p→0 = 2n0U

2�14(p)

[μ − �HF(0)]2

(
1 1
1 1

)
. (28)

Both Eqs. (27) and (28) diverge reflecting the infrared
singularity of the correlation function �14(p → 0) in Eq. (15).
Indeed, we have �R

12(0) �= 0, as well as μ − �HF �= 0 below Tc

(at least in the MBTA and the RPA with the vertex correction
we are using). As will be shown in the next section, this infrared
divergence is a crucial key to reproduce the infrared divergence
of the longitudinal response function χ‖(p), as well as the NN
identity.

The present approach separately evaluates each term in
Eq. (5) in a diagrammatic manner, so that one needs to be
careful about double counting of many-body corrections. In
this regard, we emphasize that this problem is safely avoided
in our formalism, because �a and �̃ involve qualitatively
different diagrams with respect to the infrared behavior. We
briefly note that, although the second term in Eq. (5) exhibits
the infrared divergence in our approach, it is expected that this
contribution is still weaker than the first term in Eq. (5). Indeed,
for a small p, the first term in Eq. (5) exhibits G̃(0,p) ∝ p−2.
This divergence is stronger than that of the second term in
Eq. (5) [which is proportional to �14 in Eq. (15)].
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III. LONGITUDINAL SUSCEPTIBILITY AND
NEPOMNYASHCHII–NEPOMNYASHCHII IDENTITY

A. Longitudinal susceptibility

The longitudinal response function χ‖ and the transverse
response function χ⊥ are given by [12,17]

χν(p) =
∫ 1/T

0
dτeiωnτ 〈Tτaνp(τ )aν−p(0)〉, (29)

where Tτ denotes a τ -ordering operation, and ν ≡ (‖,⊥). In
Eq. (29), a‖p and a⊥p are longitudinal and transverse operators,
respectively. When the BEC order parameter is taken to be real,
they are respectively given by

a‖p = 1

2
(ap + a

†
−p), a⊥p = 1

2i
(ap − a

†
−p). (30)

Equation (29) can be also written as

χ‖(p) = − 1
4 〈+|G(p)|+〉, χ⊥(p) = − 1

4 〈−|G(p)|−〉, (31)

where |±〉 ≡ (1, ± 1)T.
We here summarize exact properties of these static suscep-

tibilities obtained from the exact Green’s function with the
self-energy that satisfies the NN identity [10], as well as the
Hugenholtz-Pines relation [30]. The transverse susceptibility
exhibits the infrared divergence as

χ⊥(0,p) � n0m

n|p|2 . (32)

This indicates the instability of this state against an in-
finitesimal perturbation in the transverse direction (phase
fluctuations) of the BEC order parameter.

The static longitudinal susceptibility in the low-momentum
region is dominated by the off-diagonal self-energy [16,19,32],
given by

χ‖(0,p) � 1

4�12(0,p)
. (33)

Because of the NN identity �12(0) = 0, Eq. (33) diverges when
p = 0. This infrared divergence is, however, weaker than that
of the transverse susceptibility, i.e. [33],

χ⊥(0,p) � χ‖(0,p). (34)

The infrared divergence of the longitudinal susceptibility
can be correctly described by our approach (Fig. 5). This
result is quite different from the cases of the HFB-Popov
approximation, the MBTA, as well as the RPA with the vertex
corrections, based on the standard formalism in Eq. (1) [27,34].

In the present case, the longitudinal susceptibility in the
limit p → 0 behaves as

χ
(1)
‖ (p) � −n0U

2�14(p)

2
[
�R

12(0)
]2 , (35)

χ
(2)
‖ (p) � − 2n0U

2�14(p)

[μ − �HF(0)]2
. (36)

Here, χ
(1)
‖ and χ

(2)
‖ are the longitudinal susceptibility in the

cases of Eqs. (25) and (26), respectively. The second term in
Eq. (5) provides the infrared divergence of χ‖ thanks to the
singularity of �14(p) [see also Eqs. (27) and (28)]. This result

0.00 0.02 0.04 0.06 0.080

5
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0.00 0.02 0.04 0.06 0.080
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50

(a) T = 0.1T 0
c (iωn = 0)

(b) T = 0.5T 0
c (iωn = 0)

|p|/p0

χ T 0
c

χ T 0
c

MBTA-I
MBTA-II
RPA-I
RPA-II
HFB–Popov

I : G= G̃+G̃
(1)
L Σ̃G̃

(1)
R

II : G−1 =G−1
0 −Σ

0

FIG. 5. (Color online) Static longitudinal susceptibility
χ‖(iωn = 0,p). (a) T = 0.1T 0

c . (b) T = 0.5T 0
c . Here, T 0

c is the
critical temperature of an ideal Bose gas. We consider two
approximations [the many-body T -matrix approximation (MBTA)
as well as the random-phase approximation (RPA) with the vertex
correction]. For each approximation, we apply two different
formalisms. One is our formalism in Eq. (5) with G̃L,R = G̃

(1)
L,R = G̃,

given in Eq. (25). The other is the Green’s function obtained from
the standard formalism in Eq. (1). In self-energies in the standard
formalism in Eq. (1), we replace �R

11 with �11 in the MBTA in
Eqs. (17) and (18), and also replace UR

eff with Ueff in the RPA in
Eqs. (21) and (22). We set an1/3 = 10−2 and pc = 5p0, where
p0 = √

2mT 0
c .

is consistent with the previous work dealing with the infrared
divergence of the longitudinal susceptibility [11–19].

The Bogoliubov approximation fails to reproduce this
infrared-divergent longitudinal susceptibility. In this approxi-
mation, one obtains [12,16]

χ⊥(0,p) � m

p2
, χ‖(0,p) � 1

4mc2
0

. (37)

The origin of the finite longitudinal susceptibility is considered
to be decoupling of transverse and longitudinal fluctuations in
the mean-field theory [12]. Indeed, the Hamiltonian in the
Bogoliubov theory has the form [12]

H2 =
∑
p �=0

[
F0a⊥pa⊥−p + F2a‖pa‖−p + 1

2F1
]
, (38)
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where Fj = εp + jUn0. Anharmonic effects of fluctuations
were pointed out to be important to obtain the infrared-
divergent longitudinal susceptibility [12].

B. Nepomnyashchii-Nepomnyashchii identity

Our Green’s function also satisfies the NN identity [9,10], as
well as the Hugenholtz-Pines relation [30]. These two required
conditions are conveniently summarized as

�(0) = μ. (39)

Given the hybrid version of the Green’s function in Eq. (5) in
the standard expression in Eq. (1), one finds that the self-energy
in Eq. (1) has the form

�(p) = G−1
0 (p) − 1

1 + G̃−1(p)G̃L(p)�̃(p)G̃R(p)
G̃−1(p).

(40)

In Eq. (40), the factor G̃L�̃G̃R involves the infrared divergence
[as seen in Eqs. (27) and (28)], whereas G̃−1(p → 0) safely
converges in the MBTA as well as the RPA with the vertex
correction. The second term thus vanishes when p → 0,
leading to Eq. (39) through the relation �(0) = G−1

0 (0) = μ.
The present approach in Eq. (5) may be viewed as an

extension of the Popov’s hydrodynamic approach at T =
0 [5,22,23] to the finite temperature region. Far below Tc in
the weak-coupling regime where the noncondensate density is
negligible, one may retain the regular self-energy �R to the
lowest order, giving the form

�R
11 = 2Un0, �R

12 = Un0. (41)

When we apply Eq. (41) to G̃L,R in Eq. (5), one has

G̃L,R(p) = g(p). (42)

For �̃, we use Eq. (16). In addition, we assume the hydro-
dynamic regime |p| � √

2mc0 (where c0 is the Bogoliubov
sound speed). Then, the Green’s function (5) is reduced to

G(p) = − mc2
0

ω2
n + c2

0p2

(
1 −1

−1 1

)
+ �14(p)

2n0

(
1 1
1 1

)
. (43)

Equation (43) equals the Green’s function in the Popov’s
hydrodynamic theory (which is explained in Appendix B).

We note that the phase (transverse) fluctuation affects the
amplitude (longitudinal) fluctuation, and leads to the infrared
divergence of the longitudinal susceptibility [20]. Indeed,
according to the Popov’s hydrodynamic theory, the second
term in Eq. (43) providing the infrared divergence of χ‖
originates from the convolution of the phase-phase correlation
(see also Appendix B).

We also note that Eq. (43) has the same structure as the
exact Green’s function in the low-energy and low-momentum
limit obtained by Nepomnyashchii and Nepomnyashchii [10],

G(p)= n0mc2

n

1

ω2 − c2|p|2
(

1 −1
−1 1

)
− 1

4�12(p)

(
1 1
1 1

)
,

(44)

where c is the macroscopic sound velocity determined from
the compressibility.

δΣIR(p) =
T̂G1/2

U
G†

1/2T̂
ΠIR(p)

U +
T̂G1/2

G†
1/2

U

ΠIR(p)

U

+
G1/2

T̂G1/2

U

f0|ΠIR(p)

U + U
G†

1/2T̂
ΠIR(p)|f0

U

G†
1/2

FIG. 6. Self-energy δ�IR.

The single bubble diagram giving Eq. (16) is the primitive
many-body correction to the self-energy �̃ to reproduce the
NN identity. Any other p-dependent second-order corrections
do not contribute to �̃. To explicitly see this, we conveniently
write �̃ in the form

�̃(p) = �IR(p) + δ�IR(p), (45)

where �IR(p) is given in Eq. (16), and δ�IR(p) is diagram-
matically described as Fig. 6, which gives

δ�IR(p) = −G†
1/2T̂ U�IR(p)UT̂ G1/2

−G†
1/2U�IR(p)UT̂ G1/2

−G1/2U 〈f0|�IR(p)UT̂ G1/2

−G†
1/2T̂ U�IR(p)|f0〉UG

†
1/2. (46)

Here, we have introduced matrix condensate Green’s functions
G1/2 = √−n0η̂g and G†

1/2 = √−n0η̂
†
g . The matrices T̂ and η̂g

are given by, respectively,

T̂ =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠, η̂g =

⎛
⎜⎝

1 0
1 0
0 1
0 1

⎞
⎟⎠. (47)

Using ĈT̂ η̂g = Ĉη̂g = 0, we find that δ�IR(p) = 0, as ex-
pected.

We point out that the NN identity is still obtained even if one
includes vertex corrections to the single bubble contribution in
Eq. (16). Indeed, considering the self-energy corrections given
in Fig. 7, we have

�̃(p) = −T
∑

q

P †(q; p)K IR
0 (q; p)U

1√−1
T̂ G1/2

− 1

2
T

∑
q

P †(q; p)K IR
0 (q; p)|f0〉U 1√−1

G
†
1/2, (48)

where P †(q; p) is a (2 × 4)-matrix three-point ver-
tex, and K IR

0 (q; p) ≡ K0
1212(q; p)Ĉ with K0

1212(q; p) ≡

Σ̃(p) =

T̂G1/2

K IR
0

UP † +

K IR
0 |f0

U

G†
1/2

P †

FIG. 7. Self-energy �̃ with the vertex correction P †.
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g12(p + q)g12(−q). Although K IR
0 provides the singular part

�IR in Eq. (13), the first term in Eq. (48) actually does not
exhibit the infrared divergence, because ĈT̂ η̂g = 0.

To examine the infrared behavior of the second term in (48),
it is convenient to use the Ward-Takahashi identity with respect
to the three-point vertex P † and the off-diagonal self-energy
�12(0) in the limit p → 0 [10], giving the form

P †(0; 0) = 2
�12(0)√

n0
η† + n

3/2
0

∂

∂n0

(
�12(0)

n0

)
η†

a, (49)

where

η† =
(

1 1 1 0
0 1 1 1

)
, η†

a =
(

1 1 1 1
1 1 1 1

)
. (50)

(For the derivation, see Appendix C 1.) The contribution
P †(0; 0) can be clearly extracted from Eq. (48), if we apply
the second mean value theorem for integrals [35]. Using this
theorem, the second term in (48) can be divided into two terms:
the term involving the infrared divergence and the term which
is finite in the limit p → 0. The former involves P †(0; 0)��

14Ĉ,
where ��

14 = −T
∑�

q=0 K0
1212(iωn = 0,q; 0), and � is a cutoff

determined from the mean value theorem. Then, using the
relation η†Ĉ|f0〉 = 2|+〉, one finds

�̃(0) = 2U��
14�12(0)

(
1 1
1 1

)
+ δ�, (51)

where δ� is the nonsingular part of �̃. When we evaluate
the self-energy � = G−1

0 − G−1 using Eq. (51) together with
��

14(0) = ∞, we reach the expected result �(0) = μ.
Nepomnyashchii and Nepomnyashchii derived the NN

identity in a similar manner [10]. The NN identity is ascribed to
the infrared divergence in the bubble structure self-energy with
the vertex correction. Diagrams providing required infrared
behaviors of χ‖(0) as well as �12(0) are common between our
formalism and the exact results studied by Nepomnyashchii
and Nepomnyashchii [10]. The original derivation of the NN
identity as well as the relation to the phase fluctuation are
summarized in Appendixes C 2 and C 3, respectively.

IV. CONDENSATE FRACTION

Figure 8 shows the condensate fraction n0 in the BEC phase,
calculated from the equation

n0 = n − n′ = n + T
∑

p

G11(p)eiωnδ, (52)

where the second term n′ is the noncondensate density. Many-
body corrections to Tc are dominated by the first term in Eq. (5),
when Tc is determined from the theory above Tc. Indeed, both
δG̃(1) ≡ G̃

(1)
L �̃G̃

(1)
R and δG̃(2) ≡ G̃

(2)
L �̃G̃

(2)
R are absent in the

normal state above Tc. As a result, the enhancement of Tc in
each case of the MBTA and the RPA with the vertex correction
is the same as our previous results based on the standard
Green’s-function formalism in Eq. (1) [27]. Given the shift
of Tc as

Tc − T 0
c

T 0
c

= c1an1/3, (53)

T/T 0
c

n0/n

T/T 0
c

n0

n

HFB–Popov

MBTA(G̃
(1)
L Σ̃G̃

(1)
R )

MBTA(G̃
(2)
L Σ̃G̃

(2)
R )

RPA(G̃
(1)
L Σ̃G̃

(1)
R )

RPA(G̃
(2)
L Σ̃G̃

(2)
R )

Tc:MBTA

RPA

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.98 1.00 1.02 1.040.00

0.01

0.02

0.03

0.04

0.05

◦
◦ ◦◦

FIG. 8. (Color online) Condensate fraction n0 calculated in our
formalism (5). We separately examine the many-body T -matrix
approximation (MBTA) as well as the random-phase approximation
(RPA) with the vertex correction. We employ approximations G̃

(1)
L,R

in (25) as well as G̃
(2)
L,R in (26) on G̃L,R. The inset is the condensate

density n0 magnified near Tc. The points plotted in the inset are
the critical temperature Tc in each approximation evaluated from
the region above Tc. This temperature Tc is common between two
cases G̃

(1)
L �̃G̃

(1)
R and G̃

(2)
L �̃G̃

(2)
R , because �̃ = 0 at Tc. We set an1/3 =

10−2 and pc = 5p0. In the Hartree-Fock-Bogoliubov (HFB)–Popov
approximation, we apply the interaction strength U0 = 4πa/m,
instead of U .

one finds c1 � 3.9 in the MBTA and c1 � 1.1 in the RPA with
the vertex correction [27] (where T 0

c is the phase-transition
temperature in an ideal Bose gas). The RPA result is close to
the Monte Carlo result c1 � 1.3 [36–38], whereas the MBTA
overestimates the coefficient c1.

When Tc is evaluated by the theory below Tc, δG̃(1)

and δG̃(2) give different results. In the case of δG̃(2), the
contribution of δG(2) smoothly vanishes in the limit n0 → 0,
so that the value of Tc coincides with that evaluated from
the region above Tc. The order of the phase transition is also
the same as the result based on the standard Green’s-function
formalism in Eq. (1) [27]. When the self-energy in the first term
of Eq. (5) is treated within the RPA with the vertex correction,
the weak first-order phase transition is obtained. In the case
of the MBTA, one obtains the second-order phase transition
(see the inset of Fig. 8).

In the case of δG̃(1), on the other hand, Tc determined
by the temperature in the limit n0 → +0 does not coincide
with Tc determined by the theory above Tc. In addition, in
both the cases of the MBTA and the RPA with the vertex
correction, the condensate fraction n0 exhibits a remarkable
reentrant behavior near Tc (see the inset in Fig. 8). These are
ascribed to a large contribution of Eq. (27). Given the regular
part of the off-diagonal self-energy

�R
12(0) = n0Veff (54)

[where Veff = �R
11(0) in the MBTA, and Veff = UR

eff(0) in
the RPA], we find that in the limit p → 0, Eq. (27) is
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reduced to

G̃
(1)
L (p)�̃(p)G̃(1)

R (p) � U 2�14(p)

2n0V
2

eff

(
1 1
1 1

)
. (55)

Equation (55) becomes very large, when n0 → +0 [39]. Thus,
the temperature has to decrease near Tc, so as to satisfy
the number equation n = n0 + n′. This leads to the reentrant
behavior of n0 seen in the inset of Fig. 8. In addition, while
Eq. (55) is very large in the limit n0 → +0, it is absent in the
normal state above Tc because �14 = 0. One thus obtains the
discrepancy of the critical temperature between formalisms
above and below Tc.

The reentrant behavior of n0 is more remarkable in the
MBTA than in the RPA. In the former MBTA, the effective
interaction Veff vanishes at Tc [6,27], because

�11(p) = �R
11(p) = U

1 − U�11(p)
(T = Tc), (56)

where �11(0) = ∞. On the other hand, in the latter RPA with
the vertex correction [27], one finds Veff = U/2 at Tc, because

Ueff(p) = UR
eff(p) = U [1 − U�22(p)]

1 − 2U�22(p)
(T = Tc), (57)

and �22(0) = ∞. As a result, Eq. (55) is larger in the MBTA
than in the RPA with the vertex correction.

Although the present approach can correctly describe the
infrared behavior of the longitudinal response function, as well
as the NN identity, the above results indicate that it still has
room for improvement in the fluctuation region near Tc. In this
region, strong fluctuations dominate over the phase-transition
behavior [26,36,38,40–42].

V. SUMMARY

We have presented a Green’s-function formalism, which
can correctly describe two required conditions for any
consistent theory of Bose-Einstein condensates (BECs):
(i) the infrared divergence of the longitudinal susceptibility
in the low-energy and low-momentum limit, as well as (ii)
the Nepomnyashchii-Nepomnyashchii (NN) identity, which
states the vanishing off-diagonal self-energy in the same
limit. These conditions cannot be satisfied in the Bogoliubov
mean-field theory, the many-body T -matrix theory (MBTA),

or the random-phase approximation (RPA) with the vertex
correction.

Our key idea is to divide the irreducible self-energy
contribution into the singular and nonsingular parts with
respect to the infrared divergence. These self-energies are
separately included in the Green’s function so as to satisfy
various conditions that are required for any consistent theory
of BECs. In this paper, we treated the nonsingular self-energy
as the ordinary self-energy correction in the Green’s function.
On the other hand, we dealt with the singular self-energy to
the first order. The resulting Green’s function consists of two
terms, which is similar to the Green’s function in the Popov’s
hydrodynamic theory [5,22,23].

The singular component mentioned above enables us to
correctly describe the infrared divergence of the longitudinal
susceptibility, the Hugenholtz-Pines relation, as well as the
NN identity. In addition, we showed that the nonsingular
part of the self-energy provides the enhancement of the BEC
phase-transition temperature Tc (which has been predicted by
various methods). The value of the enhancement depends on
to what extent we take into account many-body corrections in
the nonsingular self-energy.

The present approach can describe various required condi-
tions that are not satisfied in the previous theories, such the
Bogoliubov-type mean-field theory, the MBTA, as well as the
RPA with the vertex correction. On the other hand, it still
has room for improvement in considering the region near Tc.
When the nonsingular self-energy is treated within the MBTA,
the expected second-order phase transition may be obtained,
whereas the enhancement of Tc is overestimated compared
with the Monte Carlo simulation result. When the nonsingular
part is calculated within the RPA with the vertex correction, the
enhancement of Tc is close to the Monte Carlo result compared
with the MBTA, whereas it incorrectly gives the first-order
phase transition. The further improvement of the present
approach to overcome this problem is a remaining issue.
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APPENDIX A: POLARIZATION FUNCTIONS

1. List of �

The polarization functions used in this paper are summarized as follows:

�11(p) = −
∑

q

1

2

[
(Ep+q − Eq)

(
1 − ξp+qξq

Ep+qEq

)
+ iωn

(
ξp+q

Ep+q
− ξq

Eq

)]
np+q − nq

ω2
n + (Ep+q − Eq)2

−
∑

q

1

2

[
(Ep+q + Eq)

(
1 + ξp+qξq

Ep+qEq

)
+ iωn

(
ξp+q

Ep+q
+ ξq

Eq

)]
1 + np+q + nq

ω2
n + (Ep+q + Eq)2

, (A1)

�12(p) = −
∑

q

1

2
�

[
ξp+q

Ep+qEq
(Ep+q − Eq) + iωn

Eq

]
np+q − nq

ω2
n + (Ep+q − Eq)2

+
∑

q

1

2
�

[
ξp+q

Ep+qEq
(Ep+q + Eq) + iωn

Eq

]
1 + np+q + nq

ω2
n + (Ep+q + Eq)2

, (A2)
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�14(p) =
∑

q

1

2

�2

Ep+qEq

[
(Ep+q − Eq)

np+q − nq

ω2
n + (Ep+q − Eq)2

− (Ep+q + Eq)
1 + np+q + nq

ω2
n + (Ep+q + Eq)2

]
, (A3)

�22(p) =
∑

q

1

2

[
(Ep+q − Eq)

(
1 + ξp+qξq

Ep+qEq

)
+ iωn

(
ξp+q

Ep+q
+ ξq

Eq

)]
np+q − nq

ω2
n + (Ep+q − Eq)2

+
∑

q

1

2

[
(Ep+q + Eq)

(
1 − ξp+qξq

Ep+qEq

)
+ iωn

(
ξp+q

Ep+q
− ξq

Eq

)]
1 + np+q + nq

ω2
n + (Ep+q + Eq)2

, (A4)

where ξp ≡ εp + �, � ≡ Un0, Ep ≡ √
εp(εp + 2�), and np

is the Bose distribution function np ≡ 1/(eβEp − 1) with
β = 1/T .

2. Infrared behaviors of �14

We discuss the infrared properties of the polarization
function �14 for the system dimensionality d = 3. We are
going to derive the relation

�14(p) ∝
{

ln
(
c2

0|p|2 − ω2
)

(T = 0),
1/|p| (T �= 0).

(A5)

For simplicity, we use the dimensionless quantities. We
scale the energy by the critical temperature of an ideal Bose
gas T 0

c . In the dimensionless formula, we use Ẽp = Ep/T 0
c ,

�̃ = �/T 0
c , �̃14(q) = �14(q)T 0

c , and ε̃p = εp/T 0
c = p̃2. We

wrote the modulus of the momentum in the dimensionless form
as p̃ = |p̃|. In the following, we omit the tilde for simplicity.

After lengthy calculation, we reduce the polarization
function �14 as

�14(p) = −A32π

∫ pc

0
dqq2 �2

2Eq
�14gq, (A6)

where gq ≡ coth(βEq/2). Here, �14 is given by

�14 = Re

[
1

2pqR
ln

(P+ + � − R)(P− + � + R)

(P− + � − R)(P+ + � + R)

]
, (A7)

where P± = (p ± q)2, R = √
A2 + �2 and A = iωn − Eq.

The coefficient A3 is given by A3 = 1/[π3/2ζ (3/2)], and ζ is
the Riemann zeta function.

For the small q and iωn, we have A � iωn − c0q and R �
� + c−2

0 (iωn − c0q)2. In this case, the main contribution of
�14 reads as

�14 � 1

c2
0pq

Re

[
ln

(
A+q + B

A−q + B

)]
, (A8)

where A± = 2(±p + iωn/c0), and B = p2 − (iωn/c0)2.
At T = 0, we replace iωn with ω, and take gq = 1. We have

�14 � −A3
πc0

4p
Re[F (pc) − F (0)], (A9)

where

F (q) = q ln

(
B + A+q

B + A−q

)
+

∑
j=±

jB

Aj

ln(B + Ajq). (A10)

The main contribution originates from F (0), and we end with

�14 � A3
πc0

4
ln

(
p2 − ω2

c2
0

)
. (A11)

This leads to (A5) for T = 0.
At T �= 0, we take ωn = 0 and gq = 2T/c0q. In this case,

we have

�14 � −A3
πT

2p
Re[F (pc)], (A12)

where

F (q) = −Li2(4q/A−) + Li2(4q/A+). (A13)

Here, Lin(z) is the polylogarithm (Jonquière’s function). We
also used F (0) = 0. For large pc, Re[F (pc)] � π2/2 − p/pc

holds. We thus end with

�14 � −A3
π3T

4

1

p
. (A14)

This leads to (A5) for T �= 0.

APPENDIX B: POPOV’S HYDRODYNAMIC THEORY

We derive the single-particle Green’s function in the
Popov’s hydrodynamic theory. We suppose that the system
is (a) in the weak-coupling regime, (b) at T � 0, as well as (c)
in the hydrodynamic regime |p| � √

2mc.
In the Popov’s hydrodynamic theory, the bosonic field

operator �(x) is written in the hydrodynamic variables, i.e.,
�(x) = √

n0 + π (x)eiϕ(x) with x = (r,τ ). Here, π (x) and
ϕ(x) are density and phase fluctuation operators. Green’s
functions in the hydrodynamic picture and the standard picture
are related each other [5,19,22,23,32], giving the form

G(p) = − 1

4n0
Gππ (p)

(
1 1
1 1

)
+ iGπϕ(p)

(
1 0
0 −1

)

− n0Gϕϕ(p)

(
1 −1

−1 1

)
+ δG(p)

(
1 1
1 1

)
, (B1)

where

δG(p) = −n0

2
T

∑
q

Gϕϕ(p + q)Gϕϕ(q). (B2)

Here, GAB with A,B = π,ϕ is the nonperturbed cor-
relation function for the hydrodynamic variables, given
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by [5,19,22,23,32](
Gππ (p) Gπϕ(p)
Gϕπ (p) Gϕϕ(p)

)
= 1

ω2
n + c2

0p2

(
n0p2/m −ωn

ωn mc2
0/n0

)
.

(B3)

In (B3), we used the conditions (a) and (b), which leads
an approximate equality between the mean density and the
condensate density, i.e., n � n0 [19].

To obtain (B1), the bosonic field operator �(x) is expanded
by the fluctuation operators π (x) and ϕ(x). Fluctuations are
considered up to the second order. According to (B3), the phase
fluctuation is stronger than the density fluctuation. Thus, the
phase fluctuation effect alone is taken as the second-order
fluctuation.

In the hydrodynamic regime |p| � √
2mc0, by using (B3),

we end with

G(p) = − mc2
0

ω2
n + c2

0p2

(
1 −1

−1 1

)
+ δG(p)

(
1 1
1 1

)
. (B4)

The first term in (B4) is equivalent to the first term in (43). The
second term in (B4) becomes also equal to the second term
in (43) for small p. Indeed, in the hydrodynamic regime, a
relation g12(p) � n0Gϕϕ(p) holds. As a result, δG(p) in (B2)
is reduced into �14(p)/(2n0), which reproduces the second
term in (43).

To summarize, in the hydrodynamic regime, the Green’s
function in our approach (5) reproduces the Green’s function
obtained in the Popov’s hydrodynamic approach. In particular,
the term (B2) including the convolution of the phase-phase
correlation is reproduced from the second term in (5), where
�̃ involves the single bubble self-energy (16).

One of the highlights in the Popov’s hydrodynamic
approach is to meet the NN identity [23]. We substitute
the Green’s function (B4) into the Dyson-Beliaev equa-
tion. Inversely solving this Dyson-Beliaev equation �(p) =
G−1

0 (p) − G−1(p), we obtain �(0) = μ. This result meets
the Hugenholtz-Pines relation [30] as well as the NN iden-
tity [9,10]. This equality �(0) = μ originates from the fact that
the term δG has the infrared divergence. Our Green’s-function
approach employs the same procedure to obtain (39).

APPENDIX C: NEPOMNYASHCHII-NEPOMNYASHCHII
IDENTITY

1. Derivation of Eq. (49)

To derive the equality (49), it is convenient to refer to an ex-
act many-line vertex M(rout,rin,rU ), given by Nepomnyashchii
and Nepomnyashchii [10]. Here, rin and rout are numbers of
incoming and outgoing external particle lines, respectively. rU

is the number of an external potential line U . In this vertex M ,
momentum and frequency are taken to be zeros with respect to
the external particle line and the external interaction potential
line.

The exact many-line vertex, which is constructed from
diagrams irreducible in the particle lines, reads as [10]

M(rout,rin,rU ) = n
(rout−rin)/2
0

(
− ∂

∂μ

)rU

n0

(
∂

∂n0

)rout

μ

n
rin
0

(
∂

∂n0

)rin

μ

×E′(T ,μ,n0), (C1)

where E′ is the thermodynamic potential given by E′ =
−T ln Tr[exp(−βH ′)]. For the Hamiltonian H ′, we subtract
the contribution −μn0 from the original Hamiltonian (6),
where the Bogoliubov prescription is applied. Indeed, we
are considering diagrams irreducible in the particle lines. An
operator ∂/∂μ creates a vertex point connecting to an external
potential line U . An operator

√
n0∂/∂n0 creates a vertex point

connecting to an external particle line by eliminating one
condensate line.

Using (C1), we obtain matrix forms of the two-point vertex
(the self-energy) � and the three-point vertex P † with respect
to the external particle line, which are respectively given
by [10]

�(0) = ∂E′

∂n0

(
1 0
0 1

)
+ n0

∂2E′

∂n2
0

(
1 1
1 1

)
, (C2)

P †(0; 0) = 2
√

n0
∂2E′

∂n2
0

η† + n
3/2
0

∂3E′

∂n3
0

η†
a. (C3)

We thus obtain the relation (49).
We note that the Hugenholtz-Pines relation μ = �11(0) −

�12(0) is also obtained from (C2), when we apply μ =
∂E′/∂n0 [10].

2. Original derivation of Nepomnyashchii-Nepomnyashchii
identity

Nepomnyashchii and Nepomnyashchii considered the full
self-energy contribution by using vertex functions [10] (dia-
grammatically described in Fig. 9), giving the form

�(p) = �(0)(p) + �(1)(p) + �(2)(p) + �(3)(p), (C4)

(a) Σ(0) =

G1/2

U

G†
1/2

+

U

∂E
∂μ

(b) Σ(1) =

G1/2

U

G†
1/2

+

G

U

γ

(c) Σ(2) =

T̂G1/2

K

UP †

(d) Σ(3) =

K |f0

U

G†
1/2

P †

FIG. 9. Self-energy � = �(0) + �(1) + �(2) + �(3) studied by
Nepomnyashchii and Nepomnyashchii [10], where all diagrammatic
contributions are included. Diagrams in (a)–(d) correspond to �(0),
�(1), �(2), and �(3), respectively.
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where

�(0)(p) = −U
1

2
G

†
1/2G1/2 − U

∂E′

∂μ
= Un, (C5)

�(1)(p) = −G1/2UG
†
1/2 − T

∑
q

Uγ (q; p)G(q), (C6)

�(2)(p) = −T
∑

q

P †(q; p)K(q; p)U
1√−1

T̂ G1/2, (C7)

�(3)(p) = −T

2

∑
q

P †(q; p)K(q; p)|f0〉U 1√−1
G

†
1/2. (C8)

Here, K(q; p) is a bare part of the (4 × 4)-matrix two-particle
Green’s function, given by

K(p + q) = G(p + q) ⊗ G(−q). (C9)

The Green’s function G is the full Green’s function, where
all the diagrammatic contributions are included to the self-
energy. In the small-p regime, the leading term of G is reduced
to [10,21]

G(p) = −n0mc2

n

1

ω2
n + c2|p|2

(
1 −1

−1 1

)
. (C10)

In (C6), γ (p; q) is the (2 × 2)-matrix three-point vertex
that has an external potential line and two external particle
lines. In (C5), ∂E′/∂μ corresponds to the one-point vertex
connecting to an external potential line. We used the fact that
this vertex is equivalent to the noncondensate density, i.e.,
n′ = −∂E′/∂μ.

The contributions (C5) and (C6) converge. On the
other hand, for (C7) and (C8), the bare part of the
two-particle Green’s function K provides the infrared
divergences. Since the infrared divergences are strongly
related to each other, these are simply extracted by using
K IR(q; p) = G12(p + q)G12(q)Ĉ, where we used the symme-
try relation G12(p) = G12(−p). Indeed, according to (C10),
we have the infrared-divergent relation limp→0 G11,22(p) =
− limp→0 G12,21(p) [21].

The infrared divergences in (C7) are exactly canceled out,
because we have a relation ĈT̂ η̂g = 0, as discussed in the
case of the first term of (48). On the other hand, for (C8), the
infrared divergence remains as discussed in the second term
in (48).

Using the identity (49) as well as the second mean value
theorem for integrals [35], we can reduce the self-energy � to

�(0) = 2U��
IR�12(0)

(
1 1
1 1

)
+ δ�. (C11)

Here, ��
IR ≡ −T

∑�
q=0[G12(iωn = 0,q)]2 provides the in-

frared divergence. The (2 × 2) matrix δ� is a remaining
converging part of �. Solving (C11) for �12(0), we end with
�12(0) = 0, where we used ��

IR = ∞. This is the original
derivation of the NN identity.

To summarize, the NN identity was originally derived from
(a) the infrared divergence of the Green’s function due to the
spontaneously broken continuous symmetry, as well as (b)
the Ward-Takahashi identity with respect to two- and three-
point vertices. The diagrammatic contribution essential to the

NN identity is the bubble structure diagram with the vertex
correction (C8), which is the same diagram as the second term
of (48) in our formalism.

3. Gauge invariance

To derive the NN identity, Nepomnyashchii and Nepom-
nyashchii used the fact that the Green’s function exhibits
the infrared divergence, which originates from the phase
fluctuation thanks to the spontaneously broken continuous
gauge symmetry. If we apply the idea that physical quantities
are gauge invariant, we may more simply understand the NN
identity as well as the finiteness of the chemical potential μ, the
diagonal self-energy �11, and the macroscopic sound speed c.

We apply the exact many-line vertex (C1) at p = 0. Note
that if the system is not at the critical temperature, the exact
many-line vertex M does not diverge. Indeed, it is given by
thermodynamic derivative of the condensate density and the
chemical potential. This vertex M is thus finite not at Tc.
We also note that the thermodynamic potential E′ is gauge
invariant. In the representation (C1), we assumed that the BEC
order parameter is a real number. We now consider that the
BEC order parameter is a complex number, given by

√
n0e

iϕ0 .
In this case, the exact many-line vertex (C1) has the factor
given by exp [iϕ0(rout − rin)].

The off-diagonal self-energy �12 at p = 0 is now given by

�12(0) = e2iϕ0n0
∂2E′

∂n2
0

. (C12)

The phase ϕ0 is chosen to be arbitrary in the ordered phase
with the spontaneously broken continuous symmetry. We thus
take the average with respect to ϕ0 over the range ϕ0 ∈ [0,2π ).
The averaged off-diagonal self-energy 〈�12(0)〉 is now given
by 〈�12(0)〉 = 0, which leads to the NN identity.

On the other hand, the diagonal self-energy is given by

�11(0) = ∂E′

∂n0
+ n0

∂2E′

∂n2
0

. (C13)

The chemical potential is given by μ = ∂E′/∂n0 [10]. The
density-density correlation function χ, which has two external
potential lines, reads as

χ(0) = ∂2E′

∂μ2
= −∂n′

∂μ
. (C14)

As shown in Ref. [10], we have χ (0) = −n/(mc2). These
quantities do not involve a factor given by exp (iϕ0), and their
values are unchanged even if we take the average with respect
to the phase ϕ0.

To summarize, averaged quantities of gauge invariant
operators are not affected by uncertainty of the phase ϕ0. The
gauge invariance protects their finiteness against the phase
fluctuations. On the other hand, the gauge-dependent quantities
are affected by the phase fluctuations, and their values vanish
at p = 0. It may lead to the NN identity �12(0) = 0 [9,10].
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