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Theoretical analysis of the excitation of low-Z hydrogenlike atoms by incident twisted light is presented.
Emphasis is placed on the cross sections that describe transitions between particular atomic substates. Simple
expressions for these partial cross sections are derived using the nonrelativistic first-order perturbation theory and
the momentum representation of the photon wave functions. Based on the developed approach, calculations have
been performed for the 1s → 2p and 2p → 3d transitions induced in the course of interaction of twisted (Bessel)
light with a macroscopic hydrogen target. Results of these calculations, supported by an analytical analysis, clearly
indicate that the sublevel population of residual atoms following absorption of twisted photons differs much from
what is expected for the standard plane-wave case; this effect can be easily observed experimentally by measuring
the linear polarization of the subsequent fluorescent emission.
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I. INTRODUCTION

With the recent experimental advances in optics and photon-
ics, new possibilities arise to design light beams with special
polarization and angular momentum properties, unusual for the
“standard” plane-wave radiation. Of particular interest here are
twisted photons that carry a nonzero projection of the orbital
angular momentum (OAM) onto their propagation direction
[1,2]. Such photons are readily produced with the help of
computer-generated holograms, spiral phase plates, and helical
undulators [3], and can serve as a novel tool to explore the role
of the OAM in fundamental light-matter interaction processes.
During the last few years, for example, a number of theoretical
proposals have been made to employ the twisted light in
photoionization as well as Compton and elastic (photon-atom)
scattering studies [4–7]. These investigations demonstrate that
the properties of emitted and/or scattered particles may be
strongly affected by the OAM and the phase structure of the
incident radiation.

Besides the ionization and scattering processes, much of the
recent interest has been focused also on the excitation of target
atoms by twisted photons. Detailed theoretical analysis of the
bound-state transitions in hydrogenlike ions was performed
by Afanasev and co-workers [8–10] who used the coordinate
representation of the photon wave functions to evaluate the
transition matrix elements and to obtain the general selection
rules. In the present work we propose an alternative approach
to the treatment of the atomic photoexcitation process. By
performing a nonrelativistic study in the momentum space we
develop a simpler formalism for the evaluation of the transition
cross sections as well as properties of the excited atomic states
and subsequent fluorescent radiation. Our results, moreover,
can be employed for the guidance and analysis of future
experimental investigations of the interaction of the twisted
photons beams with atomic ensembles.

To lay down a general theory for the description of the
excitation of hydrogenlike atoms by twisted light we start in

Sec. II A with the evaluation of the bound-state transition
amplitudes. We show, in particular, how the matrix elements
for the absorption of twisted (Bessel) photons can be expressed
in terms of their “plane-wave” analogs. In Sec. II B we
employ these matrix elements to derive the partial cross
sections that describe photoexcitation into particular atomic
substates |n l m〉. Two scenarios are considered here, in which
the Bessel beam collides with either a well-localized single
atom or a macroscopic (atomic) target. Detailed calculations
were performed for the second, more experimentally realistic
case and are presented in Sec. III. Based on the results obtained
for the 1s → 2p and 2p → 3d transitions, we show that
the absorption of Bessel light may lead to the population of
atomic substates which otherwise cannot be reached by the
standard plane-wave excitation. It is shown, moreover, that the
kinematic properties of the incident twisted photons, such as
the ratio of the transverse to longitudinal momenta, can also
influence the linear polarization of the subsequent fluorescent
radiation which can be easily detected experimentally. A brief
summary of these results and an outlook are given finally in
Sec. IV. Hartree atomic units (� = e = me = 1, c = 1/α) are
used throughout the paper unless stated otherwise.

II. THEORY

A. Evaluation of transition amplitude

1. Plane-wave photons

Within the framework of the (nonrelativistic) perturbation
theory, the photoexcitation of a hydrogenlike atom from an
initial |i〉 = |nilimi〉 to a final |f 〉 = |nf lf mf 〉 bound state is
described by the matrix element:

Mmf mi
=

∫
ψ∗

nf lf mf
(r)V̂ ψni limi

(r) d r. (1)

Here we assume that the nuclear charge Z of a target atom
is relatively low and, hence, the standard Schrödinger wave
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functions ψnilimi
(r) = Rnili (r) Ylimi

(θ,φ) and ψnf lf mf
(r) =

Rnf lf (r) Ylf mf
(θ,φ) can be employed. In Eq. (1), moreover,

V̂ is the transition operator which describes the interaction of
an electron with the electromagnetic field. The explicit form
of this operator depends on the state in which the incident
light is prepared. For a plane-wave photon with the wave
vector k, energy ω = k/α, and helicity λ = ±1, for example,
the (nonrelativistic) transition operator reads

V̂ (pl) = α Akλ(r) p̂ = α ekλ eikr p̂, (2)

where p̂ = −i∇̂ is the linear momentum operator and ekλ

denotes the polarization vector.
Computation of the matrix element (1) with the plane-wave

operator (2) also requires us to specify the quantization (z)
axis of the overall system. In atomic studies, the quantization
axis is often adopted along the wave vector of the incoming
radiation, z || k. This choice of the coordinate system, together
with the fact that the photon polarization and wave vector are
orthogonal to each other, k · ekλ = 0, allows one to simplify
the matrix element (1) into

M (pl)
mf mi

(θk = 0, φk = 0)

≡ M (pl)
mf mi

(0, 0)

= −iα

∫
ψ∗

nf lf mf
(r) eikz∇λ ψni limi

(r) d r, (3)

where ∇λ refers to the spherical components of the nabla
operator, and (θk,φk) are the polar and azimuthal vectors of
the wave vector k.

To further evaluate the amplitude (3) we use the Rayleigh
expansion of the photon plane wave in terms of spherical
Bessel functions jL(kr):

ei k z =
√

4π
∑
L

iL
√

2L + 1 jL(kr) YL0(θ,φ), (4)

and the formula for the gradient of the initial wave
function [11]:

∇λ ψni limi
(r) ≡ ∇λ

(
Rnili (r) Ylimi

(θ,φ)
)

=
∑

	i=li±1

Aλ
	imi

R̃ni	i
(r) Y	i mi+λ(θ,φ). (5)

In the latter expression, the coefficients Aλ
	imi

read as

A±1
	imi

=
√

(li ± mi + 1)(li ± mi + 2)

2(2li + 1)(2li + 3)
, if 	i = li + 1,

(6)

A±1
	imi

= −
√

(li ∓ mi − 1)(li ∓ mi)

2(2li − 1)(2li + 1)
, if 	i = li − 1,

and the radial functions R̃ni	i
(r) are given by

R̃ni	i
=

(
∂Rni li (r)

∂r
− li

r
Rni li (r)

)
, if 	i = li + 1,

R̃ni	i
=

(
∂Rni li (r)

∂r
+ li + 1

r
Rni li (r)

)
, if 	i = li − 1.

(7)

By inserting decompositions (4) and (5) into Eq. (3) and
making some angular momentum algebra, we obtain the final

expression for the matrix element:

M (pl)
mf mi

(0,0) = −iα
∑
L	i

iL

√
(2	i + 1)(2L + 1)3

(2lf + 1)
Aλ

	imi

×〈	i0 L0|lf 0〉〈	imi + λ L0|lf mf 〉

×
∫ ∞

0
Rnf lf (r)jL(kr)R̃ni	i

(r) r2 dr, (8)

which describes the excitation of a hydrogenlike system if
a plane-wave photon is absorbed. The symmetry properties
of the Clebsch-Gordan coefficients 〈... | ...〉 in this equation
immediately lead to the well-known selection rule:

mi + λ = mf , lf � |mf |, (9)

which defines the sublevel population of the residual atom.
In the present work, the matrix element (8) was calculated
by means of the DIRAC program [12,13], a computer-algebraic
toolbox which was developed by us for studying the properties
and the dynamical behavior of hydrogenlike ions.

The transition amplitude (8) has been derived under the
assumption that the incident light propagates along the (z)
quantization axis. Such an assumption is usually well justified
to explore the interaction of atoms with the plane-wave
radiation, where the photon wave vector k is the only
preferred direction of the overall system. In the next section,
however, we will see that for twisted photons one needs the
matrix element (1) with the operator (2) in which the wave
vector k points in an arbitrary direction, k̂ = k/k = (θk,φk),
not coinciding with the quantization z- axis. To calculate the
transition amplitude M

(pl)
f i (θk,φk) for this general case, we

express the (initial- and final-state) atomic wave functions,
defined in the coordinate system S(x,y,z), in terms of the
functions from the system S(x ′,y ′,z′) with the z′ axis along the
vector k. Since the S(x ′,y ′,z′) coordinate system is obtained
from the S(x,y,z) by a rotation through an angle θk around the
y axis and an angle φk around the z axis, one obtains

ψnlm(r) =
∑
m′

Dl∗
mm′(φk,θk,0)ψnlm′ (r ′), (10)

where Dl
mm′(φk,θk,0) = e−imφk d l

mm′ (θk) is the Wigner D func-
tion, and d l

mm′ (θk) can be written in terms of polynomials in
the sine and cosine of θk/2, see Ref. [11]. By inserting this
expression into Eq. (1), we can derive

M (pl)
mf mi

(θk,φk)

= −iα

∫
ψ∗

nf lf mf
(r) ekλ eikr ∇̂ ψnilimi

(r) d r

= −iα
∑
m′

f m′
i

D
lf

mf m′
f
(φk,θk,0) D

li∗
mim

′
i
(φk,θk,0)

×
∫

ψ∗
nf lf m′

f
(r ′) eikz′ ∇λ ψni lim

′
i
(r ′) d r ′

= e−i(mf −mi )φk

∑
m′

f m′
i

d
lf

mf m′
f
(θk) d

li
mim

′
i
(θk)M (pl)

m′
f m′

i
(0,0). (11)
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Here m′
i and m′

f are projections of the initial- and final-state
angular momenta on the propagation direction of incident
light, i.e., on the z′ axis.

Equations (8)–(11) can be further simplified for the excita-
tion of a hydrogenlike atom from its ground 1s state, i.e., when
ni = 1 and li = mi = 0. In this case, the M

(pl)
mf mi

(0,0) reads as

M
(pl)
mf , mi=0(0,0)

= −iα
∑
L

iL

√
(2L + 1)3

2lf + 1
〈10 L0|lf 0〉 〈1λ L0|lf mf 〉

×
∫ ∞

0
Rnf lf (r)jL(kr)

∂R10(r)

∂r
r2 dr, (12)

where, owing to the properties of the Clebsch-Gordan coeffi-
cients, the summation is restricted to L = lf ± 1 and mf = λ.
By inserting this expression into Eq. (11) we find the matrix
element for the transition |1s〉 + γ → |nf lf mf 〉 and for an
arbitrary direction of light propagation:

M
(pl)
mf , mi=0(θk,φk) = D

lf

mf m′
f
(φk,θk,0)M (pl)

λ, m′
i=0(0,0)

= e−imf φk d
lf
mf λ(θk) M

(pl)
λ, m′

i=0(0,0). (13)

As seen from this formula, the M
(pl)
mf ,mi=0(θk,φk) is triv-

ially factorized into the product of the Wigner D matrix
D

lf

mf m′
f
(φk,θk,0), which depends on the incident photon angles

(θk,φk), and the plane-wave amplitude (12). Below, this
factorization will allow us to perform an analytical analysis of
the absorption of the twisted light.

2. Twisted photons

To derive the amplitude for the excitation of hydrogenlike
atoms by twisted radiation we have to come back to the general
expression (1) and to take the transition operator as

V̂ (tw) = α A�mγ kzλ(r) p̂. (14)

This operator is similar to the plane-wave one (2), except
for the vector potential Aκmγ kzλ which describes here the
(twisted) wave propagating along the quantization axis with
well-defined longitudinal momentum kz and the projection
of the total angular momentum (TAM), Jz = mγ . We further
assume that the absolute value of the transverse momentum,
|k⊥| = �, and, hence, the energy of the photons, ω = k/α =√

k2
z + �2/α, are also fixed. Such a Bessel state of light is

characterized by the vector potential [6,14]

A�mγ kzλ(r) =
∫

ekλ eikra�mγ
(k⊥) e−ik⊥b d2k⊥

(2π )2
, (15)

which can be written as a superposition (integral) of the
standard plane-wave components with the amplitude

a�mγ
(k⊥) = (−i)mγ eimγ φk

√
2π

k⊥
δ(k⊥ − �). (16)

In Eq. (15), moreover, the factor e−ik⊥b specifies the position
of a target atom within the incident wave front, where b is the
impact parameter vector shown in Fig. 1. This exponential
factor is essential since in contrast to a plane wave the

FIG. 1. (Color online) Left panel: In the momentum space, the
twisted light can be seen as a coherent superposition of plane waves
with wave vectors k, lying on a cone with a polar opening angle θk =
arctan(|k⊥|/kz), and with polarization vectors ekλ, perpendicular to
k. Right panel: Geometry of the atomic excitation by twisted Bessel
light. The quantization (z) axis is chosen along the propagation
direction of the incident beam. The position of a target atom with
respect to the zero-intensity line of the Bessel wave is characterized
by the impact parameter b.

twisted beam has a complex spatial structure. Within a plane
perpendicular to the propagation (z) axis, in particular, the
intensity profile of the Bessel radiation exhibits the concentric
ring pattern with a central zero-intensity spot [6]. In the
analysis below we will define the impact parameter b =
(bx,by,0) with regard to such a (zero-intensity) center.

By inserting the interaction operator (14)–(16) into Eq. (1)
and performing trivial integration over the transverse momen-
tum k⊥, we can write the amplitude for the excitation of an
atom by twisted light as

M (tw)
mf mi

(b) =
∫

M (pl)
mf mi

(θk,ϕk) a�mγ
(k⊥) e−ik⊥b d2k⊥

(2π )2

= (−i)mγ

√
�

2π

∫ 2π

0

dϕk

2π
eimγ ϕk−ik⊥b

×M (pl)
mf mi

(θk,ϕk), (17)

where k = (� cos ϕk, � sin ϕk,kz) and tan θk = �/kz. If we use
the well-known integral relation∫ 2π

0

dϕ

2π
einϕ±iz cos ϕ = (±i)n Jn(z), (18)

together with Eq. (11) and the scalar product formula k⊥b =
� b cos(ϕk − ϕb), we finally obtain the expression

M (tw)
mf mi

(b) = imf −mi−2mγ ei(mγ +mi−mf )ϕb

√
�

2π

× Jmγ +mi−mf
(�b)

∑
m′

f m′
i

d
lf

mf m′
f
(θk) d

li
mim

′
i
(θk)

×M
(pl)
m′

f m′
i
(0,0). (19)

This formula shows that the amplitude M (tw)
mf mi

(b) for the
twisted light can be expressed in terms of the matrix ele-
ments (3) for the absorption of plane-wave photons, propa-
gating along the quantization axis. For the excitation from
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the ground 1s state, especially, this expression shows that
M (tw)

mf mi
(b) and M

(pl)
mf mi

(0,0) are simply proportional to each
other:

M
(tw)
mf mi=0(b) = i mf −2mγ ei(mγ −mf )ϕb

√
�

2π
Jmγ −mf

(�b)

× d
lf
mf λ(θk) M

(pl)
λ m′

i=0(0,0), (20)

and the proportionality coefficient only depends on the
parameters of the incident twisted radiation.

B. Photoexcitation cross sections

We can apply the matrix elements (3), (11), and (19) to
calculate the cross section for the excitation of an atom into
a particular sublevel |nf lf mf 〉. For the incident plane-wave
radiation with flux j = k/(2π ), this partial excitation cross
section is simply given by:

σ (pl)
mf

= 1

2li + 1

2π

j

∑
mi

∣∣M (pl)
mf mi

(0,0)
∣∣2

δ(ω + Ei − Ef ),

(21)

if the atom is assumed to be initially unpolarized. Moreover,
since we restrict our analysis to photons with certain helicity λ,
the summation in Eq. (21) is restricted to mi = mf − λ.

By using the amplitude M (tw)
mf mi

one can derive the excitation
cross section for the incoming twisted (Bessel) beam of

radius R. In contrast to the plane-wave case, we need first to
agree about the particular setup under which the photoabsorp-
tion process is observed. For a well-defined impact parameter
of an atom with regard to the photon beam axis, for example,
the partial cross section reads

σ (tw)
mf

(b) = 2π

jz

1

2li + 1

∑
mi

∣∣M (tw)
mf mi

(b)
∣∣2

δ(ω + Ei − Ef )

= 2π

jz

�

2π

1

2li + 1
δ(ω + Ei − Ef )

×
∑
mi

∣∣Jmγ +mi−mf
(�b) M (pl)

mf mi
(θk,0)

∣∣2
, (22)

where we employed Eqs. (11) and (19), and introduced the
averaged flux jz = kz/(2π3R) of the Bessel radiation (see for
details Appendix B in Ref. [14]). In practice, however, no
accurate knowledge about the position of an individual atom
within the wave front is usually available. As a second scenario,
therefore, we consider the collision of the Bessel photons with
a target in which atoms are distributed randomly over the
extent of the incident beam. For such a macroscopic target we
have to average the excitation cross section over the impact
parameters b � R. By employing the first line of Eq. (17) and
definition (16), the integration over the b and the transverse
momentum k⊥ is trivially performed to give

σ (tw)
mf

(θk) = 2π

jz

δ(ω + Ei − Ef )
1

2li + 1

∑
mi

∫ ∣∣M (tw)
mf mi

(b)
∣∣2 d2b

πR2
= 2π

jz

δ(ω + Ei − Ef )
1

2li + 1

×
∑
mi

∫
ei(k′

⊥−k⊥)b a�mγ
(k⊥) a∗

�mγ
(k′

⊥) M (pl)
mf mi

(θk,ϕk)Mpl∗
m′

f mi
(θ ′

k,ϕ
′
k)

d2k⊥
(2π )2

d2k′
⊥

(2π )2

d2b

πR2

= 2

jzR2
δ(ω + Ei − Ef )

1

2li + 1

∑
mi

∫ ∣∣δ(k⊥ − �)M (pl)
mf mi

(θk,ϕk)
∣∣2 dk⊥ dφk

2π
. (23)

We can further simplify σ (tw)
mf

by making use of Eq. (76a) from
Ref. [14] to evaluate the square of the δ function

|δ(k⊥ − �)|2 = R

π
δ(k⊥ − �), (24)

and using Eq. (11), which suggests that the dependence of
the amplitude M

(pl)
m′

f mi
(θk,ϕk) on the azimuthal angle ϕk arises

solely from the factor e−i(mf −mi )ϕk :

σ (tw)
mf

(θk) = 1

2li + 1

(2π )2

kz

×
∑
mi

∣∣M (pl)
mf mi

(θk,0)
∣∣2

δ(ω + Ei − Ef ), (25)

where kz = k cos θk . This expression is analog to Eq. (21)
derived for the absorption of a plane-wave light. The only
difference here—apart from the trivial prefactor—is the matrix
element M

(pl)
mf mi

(θk,0) which depends now on the angle
θk = arctan(�/kz) characterizing the ratio of transverse to
longitudinal components of the photon’s linear momentum.

III. RESULTS AND DISCUSSION

Using Eqs. (22) and (25) we can investigate the excitation
of one-electron ions by the twisted light. These expressions
have been derived for two different scenarios in which the
Bessel photon beam interacts with either (i) a well-localized
single atom or (ii) a macroscopic atomic target. Below we shall
focus on the second scenario which can be more easily realized
experimentally. The partial cross section (25), derived for this
scenario, is independent of the projection of the total angular
momentum mγ and sensitive only to the transverse momentum
� of the twisted wave as characterized by the angle θk . In Fig. 2
we display the θk dependence of the relative total

σ
(tw)
tot (θk)

σ
(pl)
tot

≡
∑

mf
σ (tw)

mf
(θk)∑

mf
σ

(pl)
mf

, (26)

as well as relative partial cross sections

σ (tw)
mf

(θk)

σ
(tw)
tot (θk)

≡
σ (tw)

mf
(θk)∑

mf
σ

(tw)
mf

(θk)
, (27)
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FIG. 2. (Color online) The relative total (26) and partial cross
sections (27) for the 1s → 2p excitation of neutral hydrogen atoms
by the twisted photons. Results are presented as a function of the
opening angle θk of the Bessel beam.

calculated for the 1s → 2p excitation of neutral hydrogen by
the incident photons with helicity λ = +1. As seen from the
figure, the predictions obtained for the twisted light match
closely with the “plane-wave” results at vanishing values
of the angle θk . In particular, only the partial cross section
σ

(tw)
mf =+1 is nonzero for θk = 0, following the selection rule (9)

in which mi = 0 and, hence, mf = λ = +1. Moreover, as
can be expected from Eqs. (21) and (25), the σ

(tw)
mf =+1(θk = 0)

coincides with the cross section σ
(pl)
mf =+1, obtained for the

incident plane-wave radiation.
With the increase of the transverse momentum �, the

absorption of the twisted light may lead to the population of
other substates with mf �= 1. As seen from the right panel of
Fig. 2, for example, the partial cross section for the excitation
to the level with mf = 0 grows up with the angle θk and
even becomes larger than σ tw

mf =+1(θk) for θk � 71◦. One can
also observe the enhancement of the σ tw

mf =−1(θk) within the
strongly nonparaxial regime, where �/kz >> 1. To explain
such a behavior we recall that the twisted (Bessel) state can
be seen as a coherent superposition of plane waves lying
on a momentum cone surface with a polar opening angle
θk , cf. Eqs. (15) and (16) and Fig. 1. For each plane-wave
component eikr and the 1s → 2p transition, the standard
selection rule m′

f = λ = 1 holds in which the projection
m′

f is defined, however, with respect to the unit vector

k̂ = k/k = (sin θk cos φk, sin θk sin φk, cos θk). To study the
sublevel population along the overall quantization (z) axis, a
rotation of the atomic system by an angle θk is performed and
results in the breakdown of the relation (9). A similar violation
of the plane-wave selection rule was predicted by Afanasev and
co-workers in Ref. [9] for the scenario where the position of
a target atom within the wave front is specified. In that study
it was shown that, depending on the impact parameter b, the
p substates with the magnetic quantum numbers mf = 0 and
−1 can be populated under the absorption of a twisted light
with the helicity λ = +1.

The θk behavior of the excitation cross sections σ (tw)
mf

(θk),
displayed in Fig. 2, can be also understood based on Eqs. (13),
(21), and (25). By using these expressions and making some

trivial algebra we find

σ (tw)
mf

(θk) =
∣∣d lf

mf λ(θk)
∣∣2

cos θk

σ
(pl)
λ . (28)

For the 1s → 2p transition and the helicity of the incident
light λ = +1, this equation is further simplified to

σ
(tw)
mf = 0(θk)

σ
(tw)
tot (θk)

= sin2 θk

2
,

(29)
σ

(tw)
mf =±1(θk)

σ
(tw)
tot (θk)

= (1 ± cos θk)2

4
,

thus confirming the numerical results from Fig. 2. The total
photoexcitation cross section is also readily derived from
Eq. (28) and unitarity properties of the Wigner matrices:

σ
(tw)
tot (θk) =

∑
mf

σ (tw)
mf

(θk) = 1

cos θk

σ
(pl)
λ . (30)

This formula indicates that while for θk = 0 the σ
(tw)
tot (θk)

coincides with the plane-wave result, it significantly increases
with the opening angle, an effect which can be observed also
in the left panel of Fig. 2.

Until now we have discussed the population of atomic
sublevels following the 1s → 2p transition. However, the
theoretical approach, developed in the previous section is
general and can be used to describe the photoexcitation from
any atomic state. In Fig. 3, for example, we display the relative
total (26) and partial cross sections (27) for the 2p → 3d

case. Similar to before, results were obtained as a function
of the opening angle θk of incident Bessel photons with
the helicity λ = +1. As one can expect, our predictions for
θk = 0 reproduce those obtained for the plane-wave radiation.
In particular, following Eq. (9) only sublevels |3d mf 〉 with
mf = 0,+1,+2 can be populated during the excitation of the
unpolarized 2p state. This plane-wave selection rule is violated
with the increase of the angle θk and, correspondingly, of the
cross sections σ

(tw)
mf =−1(θk) and σ

(tw)
mf =−2(θk). Such a θk behavior

of the partial cross sections can be analyzed analytically also
for the 2p → 3d transition. For the sake of brevity, however,
we will not present here the explicit expressions for the
σ (tw)

mf
(θk) and just refer the reader to Eqs. (11) and (25).
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FIG. 3. (Color online) Same as Fig. 2, but for the 2p → 3d

transition in neutral hydrogen.
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As seen from Figs. 2 and 3, the partial cross sections
σ (tw)

mf
(θk) for the photoinduced transitions are generally dif-

ferent from each other, thus leading to the unequal population
of the final sublevels |nf lf mf 〉. In this case, the residual
(excited) atom is said to be aligned and/or oriented [15,16].
In atomic theory, such an alignment is usually described in
terms of one (or several) parameters Ak0, which are related to
partial excitation cross sections and can be directly employed
to analyze the subsequent decay of an atom. For example, the
linear polarization and angular distribution of the Lyman-α
(2p → 1s) radiation following the formation of the excited
2p state are defined by a single alignment parameter [17]:

A20 = 1

2

σ
(tw)
+1 (θk) + σ

(tw)
−1 (θk) − 2σ

(tw)
0 (θk)

σ
(tw)
+1 (θk) + σ

(tw)
−1 (θk) + σ

(tw)
0 (θk)

. (31)

By making use of Eqs. (29), we find that the alignment also
depends on the opening angle of the twisted Bessel beam as
A20(θk) = (1 + 3 cos 2θk) /8. The information about the θk can
be experimentally obtained, therefore, from the analysis of the
properties of the subsequent Lyman-α decay. For example,
the linear polarization of the fluorescent photons, detected
under the right angle with respect to the collision (z) axis, is
usually characterized by the Stokes parameter P1, which reads
as [18–20]

P1(θk) = 3A20(θk)

A20(θk) − 6
= 3 + 9 cos 2θk

−47 + 3 cos 2θk

, (32)

if we assume that the fine structure of the 2p level remains
unresolved. In experiment, this parameter is determined simply
as P1 = (I|| − I⊥)/(I|| + I⊥), where I|| and I⊥ are the inten-
sities of light, linearly polarized in parallel or perpendicular,
respectively, to the reaction plane. Such a plane is spanned by
the momenta kz and kLy−α of the incident Bessel and emitted
fluorescent photons, respectively.

In Fig. 4 we display the polarization (32) of the Lyman-α
photons emitted after the 1s → 2p excitation of neutral
hydrogen atoms by twisted light. Here, one can observe that
the parameter P1(θk) changes qualitatively with the opening
angle θk . Within the paraxial regime, where θk � 5◦, for
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FIG. 4. (Color online) The Stokes parameter (32) of the Lyman-α
radiation following the 1s → 2p excitation of hydrogen atoms by
twisted light with the opening angle θk .

example, P1(θk) is relatively large and negative thus implying
a remarkable linear polarization of the Lyman-α line in the
direction perpendicular to the reaction plane. With the increase
of the opening angle, P1(θk) first vanishes at θk ≈ 58◦ and
later becomes positive which indicates that the fluorescence
emission is now predominantly polarized within the plane.
Such a θk variation of the polarization parameter (32) can
be easily observed experimentally and may provide valuable
information about the interaction of twisted photon beams with
atomic ensembles.

As seen from Figs. 2–4 as well as the discussion above, the
effect of the absorption of twisted light on the population
of excited atomic states and on the linear polarization of
the characteristic radiation becomes most pronounced if θk

approaches 90◦. This (right) opening angle cannot be reached
experimentally and leads, moreover, to an unphysical situation
when the radiation does not propagate along the z axis, i.e.,
kz = 0. However, a clear distinction between the plane-wave
and twisted calculations can be found also for smaller θk

in the range from about 20◦ to 60◦. The photoabsorption
measurements employing twisted photon beams with such
opening angles are likely to become feasible in the near
future [21].

IV. SUMMARY AND OUTLOOK

In summary, we have performed a theoretical study of
the excitation of hydrogenlike atoms by incident twisted
light. Special attention was paid to the partial (excitation)
cross sections which characterize the population of sublevels
|nf lf mf 〉 of residual atoms. To evaluate these cross sections
we employed the eigensolutions of the Schrödinger equation
and the first-order perturbative approach. Based on such a
nonrelativistic approach, simple analytical expressions have
been derived that allow the analysis of the photoexcitation
process for the experimentally realistic scenario where the
twisted photon beam collides with a macroscopic atomic
target. We have shown, in particular, that the partial cross
sections are very sensitive to the ratio of transverse �

to longitudinal kz momenta of the beam while remaining
unaffected by the projection of its total angular momentum
Jz = mγ . In fact, such an insensitivity to the mγ holds for the
case when the atomic target is much larger than (the transverse
extension of the) incident photon beam. In contrast, if the size
of the target is small, �1/�, the photoexcitation cross sections
will be sensitive to the projection of the TAM. The study of
this effect is out of the scope of this paper and will be presented
elsewhere.

While the developed approach can be applied to investigate
the photoinduced transitions between two arbitrary one-
electron levels, detailed analysis has been performed for the
1s → 2p and 2p → 3d excitations of neutral hydrogen. Our
results confirm that the standard selection rule (9), which
defines the population of the (excited) substates in the course
of the absorption of the plane-wave radiation, does not hold
anymore for the twisted case. For example, a single transition
|1s〉 + γ → |2p mf = +1〉 can be induced in a hydrogen atom
by the plane-wave photons with the helicity λ = +1. If, in
contrast, the light is prepared in the twisted (Bessel) state,
a remarkable excitation to the sublevels with mf �= λ can
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be observed, and the effect becomes more pronounced with
the increase of the transverse momentum � of the incident
beam. We argued, moreover, that kinematic properties of the
Bessel radiation affect not only the sublevel population of
excited atomic states but also the angular distribution and linear
polarization of the fluorescence emission. Experimental study
of the subsequent radiative decay is feasible today and can be
used to gain more insights into the fundamental light-matter
interaction process with twisted particles.

Our present study was restricted to the photoexcitation of
light one-electron ions for which, moreover, we neglected
the effects of the spin-orbit interaction. Future experimental
studies, however, most likely will focus on the interaction
of twisted photons with many-electron atoms. Theoretical

analysis of the bound-state transitions, induced in the complex
atoms, requires accurate treatment of the relativistic and
interelectronic-interaction effects. Based on the multiconfig-
uration Dirac-Fock method and the density matrix approach,
such an analysis is currently underway and will be reported in
an upcoming publication.
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