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Interference in Floquet-Volkov transitions
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Floquet states are signatured by pseudoeigenvalues which are discretely separated by the photon energy.
Similarly, the laser-assisted photoemission effect (LAPE) induces electron-photon energy exchange (with mo-
mentum change), and also results in a discrete energy distribution. Both effects result from coherent interactions of
electrons and photons. Here, we investigate the coherent interference between a Floquet state and the LAPE effect.
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I. INTRODUCTION

Floquet theory [1] predicts that when the Hamiltonian
is periodic in time, such as interaction with light, the
solution of a time-dependent Schrödinger or Dirac equation
is given by a periodic pseudoeigenfunction multiplied by a
temporal evolution at a characteristic frequency [2]. Since the
pseudoeigenvector is periodic in the light oscillation period,
the pseudoeigenvalues become discrete multiples of photon
energy around the characteristic energy, which is the signature
of the “Floquet state.”

Similar to Floquet states, a photoelectron may acquire
additional photon energies and necessary momenta, and this
phenomenon is called the laser-assisted photoemission effect
(LAPE) [3,4]. It has been theoretically investigated by many
authors [5–8], invoking the Volkov solution [9] which is an
exact solution of the Klein-Gordon equation for a free electron
in an infinite planar electromagnetic wave and, therefore, a
special case of Floquet states for a free electron. LAPE may
obscure the intrinsic dynamics of bound electrons (see below),
but can be distinguished from the intrinsic dynamics by careful
investigation [8].

Both the Floquet state and LAPE effect are fundamental
and coherent phenomena that result from electromagnetic
interactions of electrons, and they both result in multiple
energy states separated by the photon energy. In order to
photoemit Floquet states when studying them in photoelectron
spectroscopy (PES), the photoionization laser needs to be
applied while the pump laser is inducing the (instantaneous)
Floquet states. The presence of the pump laser then would
inevitably cause the LAPE effect simultaneously, resulting in
redistribution of the side band intensity. Recently, Wang et al.
investigated the photoemission spectra of Bloch-Floquet states
[10] and observed the avoided crossing and side band which
are the signature of Floquet states in a massless Dirac system.
In particular, they found that the momentum dependence of
the side band intensity is stronger for the electron momentum
perpendicular to the light incidence plane than for the parallel
momentum. They argued that this finding is the opposite of the
LAPE theory prediction, and consequently their observation
must be pure Floquet states.

Here, we will demonstrate that not only do both effects
occur, but also they coherently interfere, such that the
observed momentum dependence is a direct consequence
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of the interference between a (weak) Floquet state and a
(strong) LAPE effect. We will formulate the amplitudes of
the Floquet pseudoeigenstate and LAPE wave function, and
their coherent interference during the photoemission. The
theoretical result and numerical simulations are then compared
to the experimental observation.

II. THEORY

A. Floquet pseudoeigenstate

The theory of the Floquet state of the massless two-
dimensional (2D) Dirac system was given by Zhou and
Wu [11]. The electric field perpendicular to the electron
momentum only causes state mixing via the Rabi oscillation
(see Appendix A 3), and consequently an avoided crossing,
but the side band amplitudes are essentially determined by
the parallel component (see Appendix A 2), except for the
further splitting of mixed states at avoided-crossing points.
Therefore, we only consider the parallel component here
to express the (unmixed) Floquet amplitude, and ignore
state mixing due to the perpendicular component. The final
Floquet state, if needed, can be expressed by a mixture of
unmixed pseudoeigenstates, shifted by band-gap splitting (see
Appendix A).

For the electric field parallel to the electron momentum,
the Hamiltonian matrix becomes diagonal and therefore the
characteristic angular frequency simply becomes that of the
unperturbed state, and the pseudoeigenvector is proportional
to the unperturbed eigenvector (see Ref. [11], Appendix B).
Here, we choose the vector potential to be given by

A(t) = x̂A2 cos θE cos ωpt + ŷA2 sin θE sin ωpt, (1)

where ωp is the light angular frequency and θE is the ellipticity
factor. For simplicity, we ignore the spatial dependence of
the vector potential. The parallel component becomes A‖ =
Ax cos θk + Ay sin θk, where θk = tan−1( ky

kx
), and the temporal

evolution of the Floquet state (see Appendix A 2) becomes

�F
b (t) = �

ξ
λ (t)

+∞∑
m=−∞

eimφ‖
Jm(λβ‖)e−imωpt , (2)

where �
ξ
λ (t) = ψ̂

ξ
λ (k)eik·re−iλω0t is the unperturbed eigen-

state wave function, ω0 = vF k is the unperturbed en-
ergy, β = evF A2

�ωp
is the total Floquet (interaction) param-

eter, β‖ = β
√

cos2 θE cos2 θk + sin2 θE sin2 θk is its paral-
lel component, and φ‖ = tan−1(tan θE tan θk), such that
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FIG. 1. (Color online) Schematic of Floquet-Volkov transitions where pseudoeigenvalues of Floquet and Volkov states enable multiple
transition pathways despite energy conservation. kn indicates the z component of the momentum of each state. Note that Volkov states collapse
to free states at detection.

β‖eiφ‖ = β(cos θE cos θk + i sin θE sin θk). We note that
Eq. (2) is a Volkov-like wave function.

Therefore, the Floquet coefficients become bλ
m ≡

eimφ‖
Jm(λβ‖). For linear polarization (θE = 0), φ‖ = 0 (or π

when cos θk < 0), β‖ = β| cos θk|, and bλ
m = Jm(λβ cos θk).

For circular polarization (θE = π
4 ), φ‖ = θk, β‖ = β√

2
, and

bλ
m = eimθkJm(λ β√

2
). The photoionization of a Floquet state

will result in multiple states with different energies and
corresponding momenta; see Fig. 1(a).

B. LAPE: Bound-Volkov transition

Here, we adopt the “bound-Volkov transition” picture [5,12]
and invoke Volkov solutions for unoccupied vacuum states, to
which a bound state is photoionized; see Fig. 1(b). In this
picture, we consider multiple photoionization pathways from
a bound state (�b) to many Volkov pseudoeigenstates (�V

n )
of different momenta (�kn) and corresponding characteristic
energies (�ωn), whose j th pseudoeigenvalue (�ωn,j ) coincides
with the excess photon energy (�ωe ≡ EUV − Wb). This is
equivalent to the allowed coupling between Floquet states
when the pseudoeigenvalues of lower and upper states are apart
by the photon energy even though the characteristic energies
are not resonant (see Appendix A 3).

We ignore the (small) transverse components of the electric
field and the photoelectron momentum, and therefore only
consider the longitudinal component of the vector potential
[13] here:

A(t) = ẑA1 cos ωpt. (3)

Ignoring the ponderomotive term for simplicity [14], the
nonrelativistic Volkov state [15] of the momentum k becomes

�V
k (t) = �k(t)

+∞∑
j=−∞

Jj (α)e−ijωpt , (4)

where α = ev·A1
�ωp

, v = ẑ �k
me

, and �k(t) = ei(kz−ωt) is the free
electron wave function. We define the Volkov coefficients
[16], aj ≡ Jj (α).

Following the framework given in Refs. [5,17], with Eq. (4)
and the rotating-wave approximation, the Born approximation

of the scattering matrix element [18] becomes

SB
kb − 1 = − i

�

∫ +∞

−∞
dt

〈
�V

k (t)

∣∣∣∣ V̂se
−iωs t

2

∣∣∣∣�b(t)

〉
= − i

�

〈
k
∣∣ V̂s

2

∣∣b〉 ∫ +∞

−∞
dt
∑

j

a
†
j e

i(ω+jωp−ωb−ωs )t

= − i

�
Hkb

∑
j

a
†
j 2πδ(ω − ω0 + jωp), (5)

where V̂s and ωs are of photoionization, Hkb = 〈k| V̂s

2 |b〉, and
δ is the Dirac delta function [19]. Since ω = �

2m
k2, Eq. (5) is

only significant at discrete values, ωn and kn, with n = −j ,
where ωn = ωe + nωp, ω0 ≡ ωs + ωb, kn ≈ k0 + nk, k0 =√

2m
�

ω0, and k ≡ ωp

v0
, such that the transition matrix elements

(see Appendix C) become

T B
nb = Hnba

†
−n, (6)

where Hnb = 〈kn| V̂s

2 |b〉. Since the resonance condition dictates
that only the j th Volkov expansion of the nth state contributes,
where j = −n, the amplitude of transition to �V

n is determined
by its Volkov coefficient for the (−n)th expansion, a−n [20].
Since a

†
−n = J−n(α) = (−1)nJn(α) = (−1)nan, the photoelec-

tron state becomes (see Appendix C)

�B(z,t) = 1

2π

∫ +∞

−∞
dkSki�

V
k (t)

= − i

�

∫ +∞

−∞
dk
∑

n

T B
kbδ(ω − ωn)�V

k (t)

= − i

�

∑
n

∫ +∞

−∞
dkT B

kb

δ(k − kn)

v
�V

k (t)

= − i

�

∑
n

T B
nb

vn

�V
n (t) ≈ − i

�

H0b

v0

∑
n

(−1)nan�
V
n (t),

(7)

where we approximated Hnb ≈ H0b and vn ≈ v0 for k 	 k0

(ωp 	 ω0) [6]. Note that T
(0)

0b = H0b is the T matrix element
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of photoemission without Volkov expansion (aj = δj when
α = 0). The pseudoeigenstate �V

n continues to evolve with
pseudoeigenvalues, and then collapses to a free state �n, with
the energy �ωn, after the laser interaction (α → 0 as t → ∞).
Therefore, the final wave function at detection becomes

�(z,t) → − i

�

H0b

v0

∑
n

(−1)nan�n. (8)

Note the emergence of a phase factor of (−1)n associated with
�n of kn and ωn, which is different from the semiclassical
model by Muller et al. [3] and the two-step model by Saathoff
et al. [8].

In this picture, Volkov expansion is only important during
photoemission because the pseudoeigenstates eventually col-
lapse to free states when the dressing light disappears. Hence,
only the electric field at the surface during the photoemission,
not the entire spatial and temporal dependence, matters. The
momentum component is provided by the photoionization
process (and ultimately by the momentum distribution of the
bound state via the Hnb term). Note that Hkb is a continuous
function of the final (longitudinal) momentum [6], but the
δ function dictates the energy resonance and hence a single
momentum component in the photoemission of a bound state.

C. Interference: Floquet-Volkov transition

Now we consider the transition from a Floquet state �F
b

to many Volkov states �V
n ; see Fig. 1(c). The result is similar

to the Volkov-Volkov transition [21] in laser-assisted electron
atomic scattering (LAES) [5,22,23]. Using Eqs. (2) and (4),
the scattering matrix element becomes

SB
kb − 1 = − i

�

∫ +∞

−∞
dt
〈
�V

k (t)
∣∣ V̂se

−iωs t

2

∣∣�F
b (t)
〉

= − i

�
〈k| V̂s

2
|b〉
∑
j,m

a
†
j b

λ
m

∫ +∞

−∞
dtei(ω−ω0+(j−m)ωp)t

= − i

�
Hkb

∑
n

⎛⎝m−j=n∑
j,m

a
†
j b

λ
m

⎞⎠ 2πδ(ω − ω0 − nωp),

(9)

where the (j,m) summation is a discrete convolution,

cn ≡
m−j=n∑

j,m

a
†
j b

λ
m =

m+j ′=n∑
j ′,m

a
†
−j ′b

λ
m, (10)

and a
†
−j ′ = (−1)j

′
aj ′ . Using the property of the Bessel function

[24], it becomes

cn =
m+j ′=n∑

j ′,m

(−1)j
′
Jj ′ (α)eimφ‖

Jm(λβ‖)

=
(

γ

|γ |
)n

Jn(|γ |), (11)

where

γ = λβ‖eiφ‖ − α

= λβ(cos θE cos θk + i sin θE sin θk) − α, (12)

where α also depends on θE via the Fresnel equation. The
transition matrix becomes

T B
nb = Hnbcn, (13)

the photoelectron state becomes

�B(z,t) ≈ − i

�

H0b

v0

∑
n

cn�
V
n (t), (14)

and the (normalized) population of the nth state becomes

Qn = |cn|2 = {Jn(|γ |)}2, (15)

since
∑

n |cn|2 = 1.

III. RESULTS AND DISCUSSION

The Fresnel equation for the incident light (10 μm) with
E0 = 8.9 × 107 V m−1 at θi = 45 ◦ and n2 = 4.93 gives
the reflectivity coefficients of rp = +0.558 and rs = −0.747.
Therefore, we obtain Ex = +2.8 × 107 V m−1 for p polariza-
tion, and Ex = +2.0 × 107 V m−1 and Ey = +1.6 × 107 V
m−1 for circular polarization. Ez = +9.8 × 107 and +6.9 ×
107 V m−1 for p and circular polarization, respectively, in
vacuum. Note that |Ez|  |Ex | because the incident and
reflected amplitudes are additive for Ez, but subtractive for
Ex [25]. Using vF = 5 × 105 m s−1, we obtain β = 0.59
and θE = 0 for p polarization, and β = 0.54 and θE =
0.68 (slightly elliptical) for circularly polarized incident light.
Assuming the excess energy of ∼0.7 eV [26], we have
vz = 5.0 × 105 m s−1 whereas vx and vy are in the order
of < 0.6 × 105 m s−1. Therefore, α depends little on the
initial (bound) electron momentum [27], and we will use
α = 2.1 and 1.5 for p and circular polarizations, respectively,
using only the z components (x and y components are
much smaller, |vzEz|  |vxEx + vyEy |). Figure 2 plots the
angle dependence in Eq. (15). It is readily seen that there
is a destructive interference at θk = 0◦ (along +x̂), and a
constructive interference at θk = ±180◦ (along −x̂).

Figure 3 shows the energy spectra of the Floquet states
(without photoionization laser) obtained fully (instead of the
approximation given in Sec. II A) by the numerical method
(see Appendix B), whereas Figs. 4 and 5 show the photoe-
mission spectra from the Floquet states which are obtained

 0

 1

 2

 3

−180 −90 0 90 180

|γ
|

θk (degree)

−x −y +x +y −x

linear
circular

FIG. 2. Momentum direction dependence of |γ | for λ = +, β =
0.59, and α = 2.1 and 1.5 for linear (θE = 0) and circular (θE = π

4 )
polarizations, respectively.
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FIG. 3. Energy spectra (without UV photoionization laser) of
Floquet states for β = 0.59 (scaled by 0.5946 to mimic the laser
profile averaging; see Appendix D). The incidence of the IR pump
laser is in the xz plane.

by convoluting the numerical Floquet coefficients with the
LAPE amplitudes. We employed a simple scaling method
(see Appendix D) and used a scaling factor of ρ1 = 0.5946
to mimic the temporal and spatial overlap of the pump and
probe lasers, instead of the envelope function method (see
Appendix C) for simplicity. The energy spectra of Floquet
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FIG. 4. Momentum-resolved photoemission spectra from Flo-
quet states in p polarization for θE = 0, β = 0.59, and α = 2.1 (β
and α scaled by 0.5946 to mimic the laser profile averaging; see
Appendix D). Additional side bands are due to LAPE.

states alone, Fig. 3, show very small side band intensities.
In particular, the perpendicular momentum spectrum in linear
polarization shows no side band except around k ≈ 0, due to
the lack of the electric field parallel to the electron momentum,
which is responsible for Floquet side bands. In contrast, the
photoemission spectra, Figs. 4 and 5, show additional and
much stronger side bands (and reduced main bands) due
to the very efficient LAPE effect, in addition to Floquet
pseudoeigenstates.

Furthermore, due to the coherent interference between
the Floquet and LAPE effects, the photoemission spectra of
Floquet states depend on the electron momentum direction
with respect to the incidence direction (see Figs. 4 and 5),
even though the energy spectra of the Floquet states are
symmetric with respect to k = 0 and ω = 0 (see Fig. 3).
Under p polarization (Fig. 4), the LAPE effect is reduced
by the Floquet state, above the Dirac point (and enhanced
below) along the parallel +x̂ axis, whereas it is enhanced
above (and reduced below) along the antiparallel −x̂ axis. On
the other hand, along the perpendicular ŷ axis, the side band
is purely by the LAPE [and no Floquet states; see Fig. 3(b)],
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FIG. 5. Momentum-resolved photoemission spectra from Flo-
quet states in circular polarization for θE = 0.68, β = 0.54, and α =
1.5 (β and α scaled by 0.5946 to mimic the laser profile averaging;
see Appendix D). Note that the band gaps at vF k = 0.5ωp are not
identical because the surface electric field is elliptical due to different
transmittivity coefficients for s- and p-polarization components.

and the spectrum is consequently symmetric. Under circular
polarization, the parallel momentum spectrum, Fig. 5(a),
shows the same asymmetric behavior as Fig. 4(a). The
perpendicular momentum spectrum, Fig. 5(b), is symmetric
because, in this case, the nonvanishing electric field parallel to
the electron momentum is out of phase by 90 ◦ with respect to
Ez which is in phase with Ex [see Eq. (15)].

The finding above is consistent with the recent experimental
observation by Wang et al. [10]. They presumably compared
the side band intensities along the +x̂ axis in the kx spectrum
(kx > 0 and the energy above the Dirac point) and the −ŷ axis
in the ky spectrum (ky < 0 and the energy above the Dirac
point) where the signal to noise ratio is much better due to
“the coupling between the photoionization UV laser and the
spin-orbit texture” [28]. They observed that the side band is
much stronger in the −ŷ direction compared to that in the
+x̂ direction [29]; readers are referred to Figs. 2 and 3 in
Ref. [10] where the n = +1 band is much stronger in the ky

spectrum than in the kx spectrum. The observed momentum

TABLE I. Laser-profile-weighted intensities of side bands in
photoemission spectra of Floquet states above the Dirac point.

Polarization Momentum f0 f1 f2

p +x 0.69 0.15 0.01
p ±y 0.50 0.21 0.04
p −x 0.35 0.24 0.07
c +x 0.84 0.08 0.00
c ±y 0.68 0.15 0.01
c −x 0.54 0.20 0.03

dependence is well explained by the interference between the
(strong) LAPE effect and the (weak) Floquet state, as presented
here (Figs. 4 and 5 here directly compare to Figs. 2 and 3
in Ref. [10], respectively; see Supplemental Material [30]),
whereas the Floquet state alone (Fig. 3) does not show such a
dependence. Note that the opposite reduction or enhancement
would would have been observed if the comparison had been
made between the ±ŷ direction and the −x̂ direction instead.
Indeed, a visual inspection seems to concur that the ratio
of the side band intensity to the main band along the −x̂
axis is larger than that along the +x̂ axis (see Ref. [10],
Fig. 2, panel A). In addition, the side band intensities in
the Floquet-Volkov transitions simulated here (Figs. 4 and
5) are more consistent with their observations, than those of
the Floquet state alone (Fig. 3), which are too weak to explain
the observed intensities. This clearly shows that the LAPE
is the strong and dominant effect. The simulation results with
laser-profile averaging (see Appendix C) are listed in Table I.

IV. SUMMARY

We investigated the interference between the Floquet state
and LAPE effect during photoemission. The LAPE effect
which depends on the vertical electric field Ez is in phase
with the incident light, whereas the phase of the Floquet
state which depends on the electric field parallel to the
electron momentum E‖ varies with the angle between the
electron momentum and the direction of the incident light.
Consequently, the combined effects exhibit an interference
depending on the initial transverse momentum. The theoretical
result was compared to the recent experimental observation
[10] and good agreement was found.
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APPENDIX A: FLOQUET STATE OF MASSLESS
2D DIRAC SYSTEM

Here, we reformulate the result of Ref. [11]
using A = x̂A0 cos θE cos ωpt + ŷA0 sin θE sin ωpt instead
of E = x̂E0 cos θE cos �t + ŷE0 sin θE sin �t (consequently
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A = −x̂A0 cos θE sin �t + ŷA0 sin θE cos �t). We choose
such a vector potential for simplicity in Floquet pseudoeigen-
state coefficients.

1. Dirac Hamiltonian

The unperturbed Hamiltonian operator is given by

Ĥ0 = (Ĥ ξ

0

) = (+Ĥ0 0
0 −Ĥ0

)
, (A1)

the component of which is given by

Ĥ
ξ

0 = ξ�vF (k̂x σ̂x + k̂y σ̂y)

= ξ�vF k

(
0 e−iθk

e+iθk 0

)
, (A2)

where σ̂j is the Pauli matrix, θk = tan−1 ky

kx
, vF is the Fermi

velocity, and ξ = ± is the valley isospin index. Then, the
eigenstates are the four spinors

�
ξ=+
λ = eik·rψ̂+

λ (k) = eik·r 1√
2

⎛⎜⎝ 1
+λeiθk

0
0

⎞⎟⎠ ,

(A3)

�
ξ=−
λ = eik·rψ̂−

λ (k) = eik·r 1√
2

⎛⎜⎝ 0
0
1

−λeiθk

⎞⎟⎠ ,

where ψ̂
ξ
λ (k) is the spinor vector and λ = ± is the band index.

The Hamiltonian matrix for the eigenstates becomes

H
ξ

0 = �vF k

(+1 0
0 −1

)
. (A4)

The perturbation term is given by

Ĥ ′ξ = −qvF (Axσ̂x + Ayσ̂y)

= −qvF

(
0 Ax − iAy

Ax + iAy 0

)
, (A5)

where q = −e is the electron charge, Ax = A2 cos θE cos ωpt ,
and Ay = A2 sin θE sin ωpt . The perturbation matrix for the
unperturbed eigenstates becomes

H ′ξ = −qvF

(
A‖ iA⊥

−iA⊥ −A‖

)
, (A6)

where(
A‖

A⊥

)
=
(

cos θk sin θk
− sin θk cos θk

)(
Ax

Ay

)
= R−θk

(
Ax

Ay

)
, (A7)

which become

A‖ = A2 cos θE cos θk cos ωpt + A2 sin θE sin θk sin ωpt

= A2

√
1 + cos 2θE cos 2θk

2
cos(ωpt − φ‖),

A⊥ = −A2 cos θE sin θk cos ωpt + A2 sin θE cos θk sin ωpt

= A2

√
1 − cos 2θE cos 2θk

2
sin(ωpt − φ⊥), (A8)

where tan φ‖ = sin θE sin θk
cos θE cos θk

= tan θE tan θk and tan φ⊥ =
cos θE sin θk
sin θE cos θk

= cot θE tan θk. For convenience, we define β ≡
−qvF A2

ωp
, β‖ = β

√
1+cos 2θE cos 2θk

2 , and β⊥ = β

√
1−cos 2θE cos 2θk

2 ,
such that

H ′ξ = �ωp

( +β‖ cos(ωpt − φ‖) +iβ⊥ sin(ωpt − φ⊥)
−iβ⊥ sin(ωpt − φ⊥) −β‖ cos(ωpt − φ‖)

)
.

(A9)

2. Parallel component: Side bands

We divide the Hamiltonian matrix into diagonal and off-
diagonal terms as

Hξ = �[ω0 + ωpβ‖ cos(ωpt − φ‖)]{σ̂z}
− �ωpβ⊥ sin(ωpt − φ⊥){σ̂y}

≡ [H0 + H1(t)] + H2(t). (A10)

For the electric field parallel to k, the Hamiltonian (H0 + H1)
is diagonal and therefore the characteristic angular frequency
simply becomes that of the unperturbed state, and the pseu-
doeigenvector is proportional to the unperturbed eigenvector.
The temporal evolution of the pseudoeigenvector is obtained
by

�
ξ
λ (t) = exp

[
− i

�

∫
dtHλλ

]
�

ξ
λ (0)

= exp{−iλ[ω0t + β‖ sin(ωpt − φ‖)]}�ξ
λ (0)

= �
ξ
λ (0)e−iλω0t

+∞∑
m=−∞

J−m(−λβ‖)e−im(ωpt−φ‖)

= �
ξ
λ (0)

+∞∑
m=−∞

eimφ‖
Jm(λβ‖)e−i(λω0+mωp)t , (A11)

using the Jacobi-Anger relation, eiz sin θ =∑n Jn(z)einθ . We
define the Floquet coefficients, bλ

m ≡ eimφ‖
Jm(λβ‖).

3. Perpendicular component: Rabi oscillation

Now we assume the solution is given by

�
ξ

k (t) =
∑

λ

cλ(t)�ξ
λ (t). (A12)

Then, the time-dependent Dirac equation leads to

ċ+ = +c−ωpβ⊥ sin(ωpt − φ⊥)

∑
m b−

me−i(−ω0+mωp)t∑
m b+

me−i(+ω0+mωp)t
,

(A13)

ċ− = −c+ωpβ⊥ sin(ωpt − φ⊥)

∑
m b+

me−i(+ω0+mωp)t∑
m b−

me−i(−ω0+mωp)t
,

which, using the Jacobi-Anger relation, becomes

ċ+ = +c−ωpβ⊥ sin(ωpt − φ⊥)
∑
m

y−
me−i(−2ω0+mωp)t ,

(A14)
ċ− = −c+ωpβ⊥ sin(ωpt − φ⊥)

∑
m

y+
me−i(+2ω0+mωp)t ,

013420-6
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where yλ
m = eimφ‖

Jm(2λβ‖). Using 2i sin(ωpt − φ⊥) =
eiωpt e−iφ⊥ − e−iωpt eiφ⊥

, we apply the rotating-wave approxi-
mation for lωp ≈ 2ω0 where only the terms with mλ = λl ± 1
survive. Namely, with ωl ≡ 2ω0 − lωp where ω0 = vF k,

ċ+ ≈ +c−
ωpβ⊥

2i
(e−iφ⊥

y−
+l+1 − e+iφ⊥

y−
+l−1)e+iωl t ,

(A15)

ċ− ≈ −c+
ωpβ⊥

2i
(e−iφ⊥

y+
−l+1 − e+iφ⊥

y+
−l−1)e−iωl t ,

We define �+ ≡ ωpβ⊥(e−iφ⊥
y−

+l+1 − e+iφ⊥
y−

+l−1) and �− ≡
−ωpβ⊥(e−iφ⊥

y+
−l+1 − e+iφ⊥

y+
−l−1). Note that �− = �+†. The

solutions are(
c+
c−

)
= C1

(
c+

1 exp
[−i 1

2 (�l − ωl) t
]

c−
1 exp
[−i 1

2 (�l + ωl) t
])

+C2

(
c+

2 exp
[−i 1

2 (−�l − ωl) t
]

c−
2 exp
[−i 1

2 (−�l + ωl) t
]) , (A16)

where �l =
√

�+�− + ω2
l and

c±
1 =
√

�±

|�±|
(

�l ± ωl

2�l

)
,

(A17)

c±
2 = ±

√
�±

|�±|
(

�l ∓ ωl

2�l

)
.

Pseudoeigenvectors become

�1 = �

(
c+

1 b+(t)

c−
1 b−(t)e+ilωpt

)
e−i(

lωp+�l
2 )t

= �

(
c+

1

∑
m b+

me−imωpt

c−
1

∑
m b−

m+le
−imωpt

)
e−i(

lωp+�l
2 )t

= �
∑
m

(
c+

1 b+
m

c1
1b

−
m+l

)
e−imωpt e−i(

lωp+�l
2 )t , (A18)

and

�2 = �

(
c+

2 b+(t)e−ilωpt

c−
2 b−(t)

)
e+i(

lωp+�l
2 )t

= �

(
c+

2

∑
m b+

m−le
−imωpt

c−
2

∑
m b−

me−imωpt

)
e+i(

lωp+�l
2 )t

= �
∑
m

(
c+

2 b+
m−l

c2
2b

−
m

)
e−imωpt e+i(

lωp+�l
2 )t , (A19)

respectively, where bλ(t) = e−iλβ‖ sin(ωpt−φ‖) =∑
m bλ

me−imωpt , � = eik·rψ̂ , and ψ̂ = (ψ̂ξ
+ ψ̂

ξ
−). Therefore,

the mth Floquet coefficients for �1 and �2 are given by
ψ̂(c+

1 b+
m,c−

1 b−
m+l)

T and ψ̂(c+
2 b+

m−l ,c
−
2 b−

m)T , respectively,
where l is the nearest integer to 2vF k

ωp
. Note that �2 near �1 is

given by replacing m with m′ + l as

�2 = �
∑
m′

(
c+

2 b+
m′

c2
2b

−
m′+l

)
e−im′ωpt e−i(

lωp−�l
2 )t . (A20)
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FIG. 6. Calculated (lines) and simulated (symbols) band gaps,
21 at 2vF k = ωp for the orthogonal linear polarization (solid line
and square) and 2κl at 2vF k = lωp for the circular polarization
(dashed and dotted lines, and circles).

Therefore, for a small ωl , the side band distribution by bλ
m

is further split by twofold, and the band gap at the avoided
crossing is given by �l . For a large ωl , mixing is negligible.

4. Band gap

For linear polarization (θE = 0, φ‖ = 0, φ⊥ = −π
2 , β‖ =

β cos θk, and β⊥ = −β sin θk), the band gap becomes

2n = |ωpβ sin θk{Jn−1(2β cos θk) + Jn+1(2β cos θk)}|

=
∣∣∣∣2n

Jn(2β cos θk)

2β cos θk
β sin θkωp

∣∣∣∣
= |nJn(2β cos θk) tan θkωp|. (A21)

At n = 1, 21 = |J1(2β| cos θk|) tan θkωp| ≈ |β sin θkωp|.
Needless to say, at n = 0, 20 = 0.

For circular polarization (θE = π
4 , φ‖ = φ⊥ = θk, β‖ =

β⊥ = β√
2
), the band gap becomes

2κn =
∣∣∣∣ωp

β√
2
{Jn+1(

√
2β) − Jn−1(

√
2β)}
∣∣∣∣

= |J ′
n(

√
2β)

√
2βωp|, (A22)

where J ′
n is the derivative of the Bessel function. At n = 0,

2κ0 = |2J1(
√

2β) β√
2
ωp| ≈ β2ωp. Figure 6 shows calculated

and simulated band gaps (see Appendix B for the numerical
approach). For weak interactions, the band gaps agree well
with the simulation.

APPENDIX B: NUMERICAL SOLUTION OF FLOQUET
STATE

An exact solution of a Floquet state involves diagonalization
of an infinite, sparse matrix which is truncated to NM × NM

for N states (with N × N Hamiltonian) and M Floquet coef-
ficients where truncation requires a knowledge or an educated
guess of the exact solution [2]. Here, we present an alternative
efficient algorithm to determine the characteristic frequencies
and pseudoeigenvectors of Floquet states, using N single
period numerical integrations, N × N matrix diagonalization,
and N × N fast Fourier transforms (FFTs) of a length of M .
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Let us assume that a set of N mixed states, ql(t) ≡ (
q1l (t)

.

.

.
qNl (t)

),

where l = 1 · · · N , for N -dimensional Hamiltonian, is known
at t = 0 and t = τ , which can be obtained by numeri-
cal integration of the differential equation (time-dependent
Schrödinger or Dirac equation) with the initial condition of
ql(0) for a period from 0 to τ . Since ql is in general a mixed
state of the pseudoeigenstates, we can write

ql(t) =
∑

k

pk(t)e−iωkt ckl, (B1)

which is, in matrix notation,

Qt = PtTtC, (B2)

where Qt ≡ Q(t) = {q1(t),q2, . . . ,qN (t)} = {qjl(t)} is the re-
sult of numerical integration with the initial condition of ql(0),
Pt ≡ P(t) = {p1(t),p2, · · · ,pN (t)} = {pjk(t)} are the pseu-
doeigenvectors to be determined, and C ≡ {c1,c2, · · · ,cN } =
{ckl} are the (constant) linear combination coefficients yet
unknown. Tt ≡ T(t) = {e−iωkt } is a diagonal matrix and
describes the (characteristic) temporal evolution of the pseu-
doeigenvectors.

Since Pt is periodic (Pτ = P0), we have, at t = 0 and t = τ ,

Q0 = P0T0C = P0C,

Qτ = Pτ Tτ C = P0Tτ C,
(B3)

respectively. With C = P−1
0 Q0, and by rearranging the other,

we obtain

Qτ Q−1
0 = P0Tτ P−1

0 , (B4)

where the right-hand side is in the form of a diagonal
matrix transformation (eigenvector decomposition). There-
fore, by diagonalizing (Qτ Q−1

0 ), we can obtain the initial
pseudoeigenvectors P0 and pseudoeigenvalues Tτ . Namely,
the characteristic exponent becomes ln(Tτ )kk = −iωkτ .

Then, we obtain the pseudoeigenvector temporal evolution,

PtTt = Qt

(
Q−1

0 P0
)
, (B5)

therefore the periodic part is obtained from

Pt = Qt

(
Q−1

0 P0
)
T−1

t . (B6)

By FFT of Pt at t = m
M

τ where m = 0,1, . . . ,M − 1, we can
determine pjk,m.

The above procedure only requires M-step integration from
t = 0 to τ to determine the characteristic angular frequency,
pseudoeigenvector, and M Floquet coefficients. The character-
istic angular frequency and pseudoeigenvectors are determined
only by the (given) initial and final points. The rest (with
the initial) is used for determining M Floquet coefficients.
Furthermore, for simplicity we can choose Q0 = I, namely,
unit vectors of unperturbed basis, for a set of initial conditions,
and then Q−1

0 also becomes I.

APPENDIX C: SCATTERING THEORY
OF PHOTOEMISSION

The S operator is defined in the interaction picture [31] as

S = exp

[
− i

�

∫ +∞

−∞
dtH (t ′)

]
= 1 − i

�

∫ +∞

−∞
dt1H (t1) + · · · . (C1)

Only the zeroth- and first-order terms are considered in the
Born approximation, such that SB − 1 = − i

�

∫ +∞
−∞ dt ′H (t ′).

Since 〈k|H |j 〉 = 〈k(S)|H (S)
I |j (S)〉 = 〈k(0)|H (S)

I (0)|j (0)〉eiωkjI t ,
where ωkjI = ωk − ωj − ωI for a harmonic perturbation, the
S matrix element becomes

Skj = δkj − 2π
i

�
δ(ωkjI )Tkj ,

(C2)
Tkj = H

(S)
kj (0) + · · · ,

where H
(S)
kj (0) = 〈k(0)|H (S)

I (0)|j (0)〉 and 2πδ(ω) =∫ +∞
−∞ dteiωt . For discrete and normalized states, the S

matrix becomes infinite at the resonance due to the δ function,
and the T matrix is utilized instead [32]. However, for
continuum states, the δ function describes the momentum
distribution [33], namely, a single momentum component.
For example, for a free electron, ω = �k2

2m
, and

δ(ω − ω0) = δ(k − k0) + δ(k + k0)

|v| , (C3)

where v = �

m
k. Note that the Jacobian factor 1

v
= dk

dω
becomes

the density of states. For a one-dimensional continuum
with |k〉 ≡ eikz, such that 〈k′|k〉 = 2πδ(k − k′), the S-matrix
component becomes the final state in momentum space,

�f (z) = S�i(z),

�f (k) = 1√
2π

〈k|S|i〉 = Ski√
2π

, (C4)

using a unitary Fourier transform, and the final state in position
space (in Schrödinger representation) becomes

�
(S)
f (z,t) = 1√

2π

∫ +∞

−∞
dk�f (k)|k〉e−iωt

= 1

2π

∫ +∞

−∞
dkSki |k〉e−iωt . (C5)

Then, it follows, for a single energy component,

�
(S)
f (z,t) = − i

�

Tk0i

v0
|k0〉e−iω0t , (C6)

where we assumed δki = 0.
For a perturbation that is finite in time, the δ function

becomes a distribution that is broad and finite. We define the
unnormalized Gaussian function as

G(x,σ ) = exp

[
− x2

2σ 2

]
, (C7)

and the normalized Gaussian function as

ĝ(x,σ ) = 1√
2πσ

exp

[
− x2

2σ 2

]
, (C8)
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such that
∫ +∞
−∞ dtG(t,σ )eiωt = 2πĝ(ω, 1

σ
). We define

the time-dependent perturbation term as V̂s(r,t) =
V̂s(r) Re[e−iωs t ]F (t), where the envelope function is given by
F (t) = √

G(t − τ,σe) = G(t − τ,
√

2σe) = exp[− (t−τ )2

4σ 2
e

],
where σe is the standard deviation width of the
photoionization laser intensity profile. Note that we assume
that photoionization is only significant at the surface, and the
envelope function is at z = 0 only. When the pump laser is also
pulsed, α, β, and γ , which are given by the amplitude of the
electric field or the vector potential, also (slowly) vary in time.
We define an envelope function for the electric field of the
pump laser, f (t) = √G(t,σp) = G(t,

√
2σp) = exp[− t2

4σ 2
p

],

where σp is the width of the pump laser intensity profile. Under
the slowly varying envelope approximation γ (t) ≈ γ0f (t),
where γ0 = γ (0), we obtain

cn(t) =
(

γ0

|γ0|
)n

Jn(|γ0f (t)|), (C9)

and they need to be explicitly included in the time integration
of the S matrix. To this end, we define the composite envelope
functions

�n(t ; τ ; σe,σp) ≡ cn(t)

cn(0)
F (t)

= Jn(|γ0|G(t,
√

2σp))
Jn(|γ0|) G(t − τ,

√
2σe),(C10)

such that cn(t)F (t) = cn(0)�n(t), and their nonunitary inverse
Fourier transform

2π�̂n

(
ω; τ ;

1

σe

,
1

σp

)
≡
∫ +∞

−∞
dt�n(t ; τ,σe,σp)eiωt . (C11)

Note that for a continuous pump beam (σp → ∞), the
envelope function becomes a Gaussian function �n = G(t −
τ,

√
2σe), such that �̂n = ĝ(ω, 1√

2σe

)eiωτ . When the probe laser
is also continuous (σe → ∞), the latter becomes a delta
function, ĝ → δ(ω). Then, Eq. (9) becomes

SB
kb − 1 = − i

�

∫ +∞

−∞
dt
〈
�V

n (t)
∣∣V̂s(r,t)

∣∣�F
b (t)
〉

= − i

�
〈k| V̂s

2
|b〉
∫ +∞

−∞
dt
∑

n

cn(t)F (t)ei(ω−ω0−nωp)t

= − i

�
Hkb

∑
n

cn(0)
∫ +∞

−∞
dt�n(t)ei(ω−ω0−nωp)t

= − i

�
Hkb

∑
n

cn(0)2π�̂n(ω − ωn), (C12)

where we define

T
(0)
nb ≡ Hnbcn(0). (C13)

Then the Schrödinger representation becomes

�B
f (z,t) = 1

2π

∫ +∞

−∞
dkSB

ki�
V
k (t)

= − i

�

∑
n

T
(0)
nb

∫
dk�̂n(ω − ωn)�V

k (t)

≈ − i

�

∑
n

T
(0)
nb

vn

∫
dk�̂n(k − kn)�V

k (t)

≈ − i

�

∑
n

T
(0)
nb

vn

�(−)
n (z − vnt)�

V
n (t), (C14)

where �̂n(k − kn) = �̂n(k − kn; vnτ ; 1
vnσe

, 1
vnσp

), and �(−)
n (z −

vnt) = �n(−z + vnt ; vnτ ; vnσe,vnσp) is the double inverse
Fourier transform of �n. Note that �(−)

n (ξ ) = �n(−ξ ), be-
cause F{f (ξ )} = F−1{f (−ξ )}. We approximated that the
Volkov phase in �V

k = ei(kz−ωt−α sin ωpt) remains constant in
k integration, and we ignored the wave-packet dispersion by
ω ≈ ωn + vn(k − kn). Also note that ωn,j = �

2m
k2
n + jωp and

its dispersion relation and the group velocity are independent
of jωp, namely, ∂ωn,j

∂kn
= vn, for each n. Equation (C14) shows

that the photoelectron temporal profile follows that of the
composite envelope function. The wave packet in the nth state
(after collapse of the Volkov states) is

�n(z,t) = − i

�

T
(0)
nb

vn

�(−)
n (z − vnt)e

i(knz−ωnt), (C15)

and the intensity (probability density) is given by

In(z,t) =
∣∣∣∣T (0)

nb

�vn

�(−)
n (z − vnt)

∣∣∣∣2
=
∣∣∣∣Hnb

�vn

cn(0)�(−)
n (z − vnt)

∣∣∣∣2
=
∣∣∣∣Hnb

�vn

cn

(
t − z

vn

)
F

(
t − z

vn

)∣∣∣∣2
=
∣∣∣∣Hnb

�vn

cn

(
t − z

vn

)∣∣∣∣2G(t − τ − z

vn

,σe

)
≈ I00

∣∣∣∣cn

(
t − z

vn

)∣∣∣∣2G(t − τ − z

vn

,σe

)
, (C16)

where we approximated Hnb

�vn
≈ H0b

�v0
≡ I00, such that I00 is the

continuous photoemission intensity with no pump laser. Then,
the probability is given by

Pn =
∫ +∞

0
dzIn(z,t)

= I00vn

∫ t

−∞
dξ |cn(ξ )F (ξ )|2, (C17)

where ξ = t − z
vn

. Since
∑

n |cn(ξ )|2 = 1 at any ξ , the total
photoemission is∑

n

Pn = I00

∑
n

vn

∫ t

−∞
dξ |cn(ξ )F (ξ )|2

≈ I00v0

∑
n

∫ t

−∞
dξ |cn(ξ )F (ξ )|2

= I00v0

∫ t

−∞
dξ |F (ξ )|2

→ I00v0

√
2πσe (for t − τ  σe). (C18)
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The normalized population (fraction) becomes

Qn = Pn∑
n Pn

≈ 1√
2πσe

∫ t

−∞
dξ |cn(ξ )F (ξ )|2

=
∫ t

−∞
dξ |cn(ξ )|2 1√

2πσe

G(ξ − τ,σe)

=
∫ t

−∞
dξ |cn(ξ )|2ĝ(ξ − τ,σe), (C19)

which shows that the photoemission intensity in the continuous
case can be treated as an instantaneous intensity, such that it
allows us to use a semiclassical approximation to perform a
profile averaging to obtain the total population.

However, the integration in Eq. (C19) is not analytically ob-
tainable to our best knowledge, particularly because the Bessel
function is oscillatory for a large argument. Nevertheless, for
a weak interaction (|γ | 	 √

n + 1), Jn(|γ |) → 1
n! (

|γ |
2 )n for

n > 0, we may further approximate Jn(f |γ |) ≈ f nJn(|γ |).
Then, we simply have �n ≈ f nF , and obtain

|�(−)
n |2 = G

(
ξ,

σp√
n

)
G(ξ − τ,σe)

= G(τ,�n)G(ξ − τn,�n), (C20)

where �2
n = σ 2

e + n−1σ 2
p , �−2

n = σ−2
e + nσ−2

p , and τn = τ σe

�n

and therefore

Qn → Q(0)
n G(τ,�n)

�n

σe

= Q(0)
n

G(τ,�n)√
1 + n

σ 2
e

σ 2
p

, (C21)

where Q(0)
n is when σp → ∞. After a similar treatment for the

spatial overlap, we obtain

Qn → Q(0)
n

∏
ξ=t,x,y

G(ξ,�n,ξ )√
1 + n

σ 2
e,ξ

σ 2
p,ξ

, (C22)

where �n,ξ =
√

σ 2
e,ξ + 1

n
σ 2

p,ξ .

APPENDIX D: SCALING FACTOR FOR
PROFILE AVERAGING

We define a scaling factor ρn such that Qn = Q(0)
n (γ0ρn).

Since we approximated Q(0)
n (γ0ρn) ≈ (ρn)2nQ(0)

n (γ0) for a
weak interaction, we obtain

ρn ≈

⎛⎜⎜⎝ ∏
ξ=t,x,y

G(ξ,�n,ξ )√
1 + n

σ 2
e,ξ

σ 2
p,ξ

⎞⎟⎟⎠
1

2n

. (D1)

Then, for the three-dimensional case (time and space di-
mensions) with a perfect overlap (σe,ξ = σp,ξ and ξ = 0),
Q

(0)
1 (γ0ρ1) = |J1 (γ0ρ1)|2 with a scale factor of ρ1 = 0.5946

approximately gives the population for n = 1 with profile
averaging.
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