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Attosecond photoionization for reconstruction of bound-electron wave packets
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We present a method for the characterization of bound-electron wave packets generated by a broadband
excitation pulse. The technique is based on the photoionization of the electron wave packet by a delayed isolated
attosecond pulse and on the measurement of the ionization asymmetry parameter in the direction of the probe
pulse polarization, which depends on the pump-probe delay and on the photoelectron energy. By numerically
solving the fully three-dimensional time-dependent Schrödinger equation we show that Fourier analysis of the
two-dimensional ionization asymmetry parameter, displaying a complex interference pattern, enables a clear
observation of quantum beats between pairs of stationary states involved in the generation of the wave packet.
An analytical model confirms that the quantum beats’ signal encodes the weight of each stationary state, thus
suggesting a feasible approach for the complete characterization of the relative population ratio of the excited-state
components of the wave packet. Moreover, an approach based on the further analysis of quantum beats is proposed
to retrieve the lifetime added to each excited state.
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I. INTRODUCTION

The excitation of atoms and molecules by broadband
extreme ultraviolet (XUV) pulses results in the creation
of localized electron wave packets (EWPs), which can be
expressed as a coherent superposition of several stationary
states. The temporal evolution of the generated EWP is directly
related to the energy spacing between the stationary states
involved in the coherent superposition. Various techniques
have been proposed for complete reconstruction of such
wave packets, including (i) attosecond transient absorption
spectroscopy [1–3]; (ii) all-optical methods based on the
measurement of the modulation of high-harmonic spectrum
generated by single-electron recollision [4] and by scanning
the pump-probe delay [5]; (iii) use of chirped attosecond
pulses [6]; and (iv) measurement of an asymmetry parameter
in the attosecond photoionization of the EWP as a function
of the delay between the pulse which generates the coherent
superposition and an attosecond probe pulse [7–9]. We have
recently demonstrated that the measurement of two ionization
asymmetry parameters enables one to monitor the temporal
evolution of the population of the atomic states involved in the
EWP formation [10]. In all these cases, only two stationary
states were involved in the coherent superposition.

Shake-up processes [11,12] following the release of core
electrons can lead to the generation of EWPs including a
series of bound states, whose dynamics is more complex
than in the case of two atomic states. EWPs produced by the
superposition of a series of bound states have been generated
by isolated attosecond pulses [13] or harmonic pulse trains [14]
with central photon energy around the ionization threshold.
The EWP was then characterized using attosecond electron
interferometry [15], which can be also extended to retrieve both
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time-dependent amplitudes and phases of each stationary state
involved in the formation of the EWP, as recently theoretically
suggested [16]. This interferometric technique, also referred to
as quantum-state holography, requires the use of a broadband
attosecond pump pulse for the simultaneous generation of the
bound EWP and of a continuum wave packet, which acts as a
reference.

In this work we propose a method for the characterization
of an EWP generated by the coherent superposition of various
atomic stationary states. We assume that the wave packet
is generated by a broadband attosecond pulse, below the
ionization potential of the atom. The method is based on the
use of a second isolated attosecond pulse, which photoionizes
the bound EWP, and on the measurement of the ionization
asymmetry in the direction of the probe pulse polarization.
The numerical solution of the fully three-dimensional (3D)
time-dependent Schrödinger equation (TDSE) is performed to
obtain the angle-resolved photoelectron spectrum. A method
to observe quantum beats between pairs of stationary states
by calculating the photoionization asymmetry parameter as a
function of the electron energy and the pump-probe delay
is presented. We also show that the quantum beat signal
encodes the relative population ratio between the excited
states. Moreover, we propose an approach to retrieve the
lifetime of each excited state.

II. THEORETICAL MODEL AND NUMERICAL METHODS

We consider the helium atom within the single-active-
electron (SAE) approximation model, which has already
been used in many previous works [17–19]. The hydrogenic
helium atom is prepared by a broadband pump pulse into a
coherent superposition of more than two stationary states by
single-photon excitation. In particular we will concentrate on
the coherent superposition of four states, 1s, 2p0, 3p0, and
4p0, characterized by the atomic orbitals ψ1(r), ψ2(r), ψ3(r),
and ψ4(r), respectively. Therefore, the generated wave packet

1050-2947/2014/90(1)/013403(6) 013403-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.90.013403


LIU, ZENG, LI, XU, AND NISOLI PHYSICAL REVIEW A 90, 013403 (2014)

can be written as

ψ(r,t) = α1ψ1(r) + α2e
−iγ (t)ψ2(r) + α3e

−iβ3−iγ (t) �I13
�I12 ψ3(r)

+α4e
−iβ4−iγ (t) �I14

�I12 ψ4(r), (1)

where α2
i (i = 1,2,3,4) is the initial population for the ith

atomic orbital (
∑4

i=1 α2
i = 1), βj (j = 2,3,4) is the initial phase

depending on the excitation scheme, �Iij = Ii − Ij (i,j =
1,2,3,4) is the energy difference between two atomic states
(i and j ), and γ (t) = �I12t + β2 is the time-dependent phase
shift. Here Ii is the ionization energy of each atomic state. To
simplify the notation, the subscripts 1, 2, 3, and 4 in Eq. (1)
represent 1s, 2p0, 3p0, and 4p0, respectively. The exponential
terms in Eq. (1) represent the temporal evolution of the wave
packet.

The theoretical approach is based on the numerical solution
of TDSE as described in Ref. [10]. In the SAE approximation
and the Cartesian spherical coordinates, the fully 3D TDSE is
given by

i
∂

∂t
ψ(r,t) =

[
−1

2

1

r2

∂

∂r
r2 ∂

∂r
+

�

l 2

2r2
+ V (r) + VI (r,t)

]

×ψ(r,t), (2)

where
�

l 2 is the square of the orbit angular momentum
operator, V (r) is an effective Coulomb potential with spherical
symmetry, and VI (r,t) is the interaction Hamiltonian for the
atom irradiated by the probe XUV pulse. Unless otherwise
indicated, atomic units are used throughout: e = � = me = 1,
where e and me are the electron charge and mass, respectively.
In the length gauge and in the dipole approximation, the
interaction Hamiltonian between the hydrogenic helium atom
and an isolated attosecond pulse with a linear polarization
along the z axis can be described as VI (r,t) = zEz(t), where
the electric field is written as Ez(t) = − dAz(t)

dt
. Here the general

expression for the vector potential Az(t) of a chirped Gaussian
attosecond pulse is given by [20]

Az(t) = Re

(
−i

1

ω0

√
I0

1 − iξ
exp

{
−i[ω0(t − t0) + ϕ0]

−2 ln 2
(t − t0)2

τ 2(1 − iξ )

})
, (3)

where t0 is the temporal coordinate corresponding to the peak
position of the pulse envelope (t0 = 0 in this work), ω0 is
the central carrier frequency at t = t0, ξ is the dimensionless
linear chirp rate, ϕ0 is the carrier envelope phase (CEP), and
I0 and τ are the peak intensity and duration (full width at
half maximum) of the transform-limited pulse (ξ = 0). While
the duration and peak intensity of the pulse, whose vector
potential is given by Eq. (3), depend on the chirp rate, ξ , the
corresponding spectral profile and energy do not depend on ξ .

The numerical solution of Eq. (2) is based on the expansion
of time-dependent wave function ψ(r,t) in series of partial
waves indexed by angular quantum number l and magnetic

quantum number m, i.e.,

ψ(r,t) =
+∞∑
l=0

l∑
m=−l

1

r
ϕlm(r,t)Ym

l (θ,φ). (4)

In this way Eq. (2) can be written as a set of coupled
equations between the different angular quantum numbers
for the radial wave function ϕlm(r,t) [10]. Here we employ
the finite-element discrete variable representation method to
discretize the radial equations due to the advantage of forming
the block-diagonal sparse matrix representation of the kinetic
operator and the diagonal matrix representation of the effective
Coulomb potential [21,22]. The temporal evolution of the wave
function is carried out by the Arnoldi-Lanczos algorithm [23].

The projection of the final wave function onto the field-
free scattering state ψC

p (r) yields the probability amplitude
a(p) of the continuum EWP with momentum p = (p,θp,φp)
generated by the probe XUV pulse, i.e.,

a(p) = 〈
ψC

p (r)
∣∣ ψ(r,tf )

〉
. (5)

In order to conveniently calculate a(p) and the subsequent
differential ionization probability, the helium atom has been
approximately treated as a hydrogenlike atom with an at-
tractive Coulomb potential V (r) = −Z/r , since in this case
the analytical expression for the continuum scattering state
ψC

p (r) is accessible. The net nuclear charge Z is chosen as
Z = 1.3443 to faithfully reproduce the ground-state energy
of the helium atom. Although the excited-state energy slightly
deviates from the real value, this does not affect the conclusions
of this work. The expression of ψC

p (r) and an analytical
formula for a(p) are given in Ref. [10]. We point out that
a(p) does not depend on the azimuth angle, φp, due to
the axial symmetry of the coherently coupled wave function
with respect to the z axis. It follows that the angle-resolved
photoelectron energy spectrum can be described by the double
differential ionization probability (DDIP):

D(E,θp) = ∂2P

∂E sin θp∂θp

= 2π
√

2E |a(
√

2E,θp,0)|2, (6)

where E = p2/2 is the kinetic energy of photoelectrons. The
absolute energy-dependent differential asymmetry parameter,
Ad (E), in the direction of the XUV pulse polarization can be
defined as Ad (E) = D(E,0) − D(E,π ).

The simulation parameters used in our calculation are the
following: The maximum radial distance is rmax = 150 a.u.
with 300 finite elements and eight basis functions in each
element, the maximum angular quantum number is lmax = 8,
the time step of wave function propagation is δt = 0.01 a.u.,
and the Arnoldi-Lanczos propagation order is M = 40.

III. RESULTS AND DISCUSSION

A. Quantum beats from TDSE calculation

We assume that the prepared EWP, ψ(r,t), is probed by
measuring the photoionization induced by an isolated attosec-
ond XUV pulse with variable delay. Note that different phase
shifts, γ (t), correspond to different pump-probe temporal
delays. Equal populations (α2

i = 1/4) for each stationary
state in ψ(r,t) are assumed. The parameters of the attosecond
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FIG. 1. (Color online) Differential ionization asymmetry param-
eter, Ad , as a function of the electron energy and of the pump-probe
temporal delay. Equal populations for 1s, 2p0, 3p0, and 4p0 stationary
states are assumed in the prepared EWP. The parameters of the probe
XUV pulse are peak intensity I0 = 1.0 × 1012 W/cm2, transform-
limited duration τ = 130 as, central photon frequency ω0 = 36 eV,
chirp rate ξ = 3, and carrier envelope phase ϕ0 = 0.

probe pulse considered in the calculations are the following:
transform-limited peak intensity I0 = 1.0 × 1012 W/cm2,
transform-limited duration τ = 130 as, central photon energy
ω0 = 36 eV, chirp rate ξ = 3 (related to the intrinsic chirp of
the XUV pulses [24,25]), and CEP value ϕ0 = 0. These pulse
parameters can be obtained experimentally by employing, for
example, the polarization gating technique [26].

We have first calculated the energy-dependent differential
asymmetry parameter, Ad (E), as a function of the temporal
delay, γ (t): The result is presented in Fig. 1. A series of tilted
interference fringes are produced, with different oscillation
frequency and time-dependent envelope. The important in-
formation embedded in Fig. 1 can be extracted by Fourier
analysis of the interferogram. The frequency-energy map
shown in Fig. 2(a) has been obtained by calculating the Fourier
transform of the asymmetry parameter Ad shown in Fig. 1
along the delay axis at each electron energy. The Fourier map
clearly shows quantum beats between three pairs of atomic
states. To highlight the quantum beat signal, we performed
the integration of Fig. 2(a) along the electron energy axis so
that a one-dimensional function of the oscillation frequency is
obtained. The calculated result is shown in Fig. 2(b), where the
three main peaks are clearly visible, which correspond to the

FIG. 2. (Color online) (a) Two-dimensional quantum beats ob-
tained from Fourier transform of the map shown in Fig. 1 along the
delay axis at each electron energy. (b) One-dimensional quantum
beats obtained by integrating panel (a) along the electron energy axis
at each oscillation frequency. Inset is the close-up of quantum beats
signal in the region of low oscillation frequencies.

FIG. 3. (Color online) Differential ionization asymmetry, Ad , as
a function of the electron energy and the pump-probe temporal delay,
calculated for chirp rate ξ = 0. Other parameters are the same as in
Fig. 1.

quantum beat between 1s-2p, 1s-3p, and 1s-4p pairs of states
with opposite parity. In order to measure the quantum beat
corresponding to a pair of states with the same parity, spectral
overlap between the continuum electron produced from one
state by one-photon ionization and from the other state by
two-photon ionization is required. In the case of the parameters
used in our calculation and due to the small probability of two-
photon ionization, the resulting quantum beat signal between
identical parity states is rather weak. Indeed, as we expect,
the quantum beat between 3p-4p, 2p-3p, and 2p-4p pairs of
states can be observed by magnifying the curve reported in
Fig. 2(b) in the region of low frequencies, as shown in the
inset of Fig. 2(b). We have also calculated the energy-resolved
and delay-dependent asymmetry parameter, Ad , for different
chirp rates, ξ , while keeping other pulse parameters identical.
We note that the chirp rate of attosecond pulses can be varied,
for example, by using thin metallic filters [27]. It is found that
the energy-delay map of Ad exhibits a pattern similar to that
shown in Fig. 1, except for the fringe slope, which depends on
the chirp rate. In particular, in the case of transform-limited
XUV pulses (ξ = 0), the fringes become vertical, as reported
in Fig. 3. By using the Fourier analysis it is possible to show
that the retrieved quantum beat frequencies do not depend on
the chirp rate of the attosecond pulse used to probe the EWP.

B. Analytical investigation

We have then used a simple analytical model to analyze
the ionization of the bound EWP by the attosecond probe
pulse. For the helium atom, the two-photon double ionization
is energetically forbidden for the XUV photon energy lower
than 39.5 eV [28]. In our work, the central photon energy of the
probe XUV pulse is chosen as 36 eV, leading to the dominant
one-photon single ionization. Consequently, we can neglect
the influence of the recollision of the computed EWP with the
second electron. Assuming that the XUV probe pulse promotes
each stationary state of the EWP to the final continuum state,
the probability amplitude for the free EWP in the spectral
domain can be expressed as

Mf (E,θp,td ) =
4∑

j=1

αjMj (E,θp) exp[iφj (E,θp) − iθj (td )],

(7)
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where Mj (E,θp) and φj (E,θp) are the energy- and angle-
dependent amplitude and phase created from the station-
ary state j , respectively. Here θj (td ) represents the delay-
dependent phase, given by θ1(td ) = 0, θ2(td ) = γ (td ), θ3(td ) =
�I13
�I12

γ (td ) + β3, and θ4(td ) = �I14
�I12

γ (td ) + β4, where td is the
temporal delay. Thus the photoelectron spectrum, which is a
function of the delay, td , and of the angle, θp, can be written as

D(E,θp,td ) = |Mf (E,θp,td )|2, (8)

and the corresponding differential asymmetry parameter is
given by

Ad (E,td ) = D(E,0,td ) − D(E,π,td ). (9)

The positive frequency component of the XUV pulse
spectrum, obtained by calculating the Fourier transform of
Ez(t), is given by E+(ω) = 1

2a(ω)eiη(ω) with

a(ω) =
√

I0

ω0

√
π

2 ln 2
ωτ exp

[
− 1

8 ln 2
(ω − ω0)2τ 2

]
, (10)

and

η(ω) =ωt0+ξτ 2(ω − ω0)2

8 ln 2
− ϕ0, (11)

where ω gives the XUV photon energy. We consider the
dominant single-photon ionization in the case of XUV photon
energy above the ionization potential of the target atom.
Therefore, the spectrum of the XUV pulse is directly mapped
onto the free EWP [29], leading to

φj (E,θp) = η(E + Ij ), (12)

and

Mj (E,θp) = Sj (E,θp)a(E + Ij ), (13)

where Sj (E,θp) is the ionization amplitude in the monochro-
matic case. By incorporating Eqs. (7)–(13), we have

Ad (E,td ) =
4∑

j=2

α1αja(E + I1)a(E + Ij )|S1(E,0)Sj (E,0)|

× cos ��1j (E,td ), (14)

where the phase difference between state 1 and state j is given
by

��1j (E,td ) = �I1j

[
td + ξτ 2

4 ln 2
E
]

+ C1j . (15)

Here for simplicity the expression of C1j independent of E and
td is not written explicitly.

We can see from Eqs. (14) and (15) that the two-dimensional
asymmetry parameter, Ad , is characterized by an oscillatory
pattern as a function of td , with different frequencies �I1j . The
position of maxima and minima is given by ��1j (E,td ) = nπ

(n = 0,±1,±2, . . .), which yields the relationship between td

and E , i.e., td = kE + nπ−C1j

�I1j
with k = − ξτ 2

4 ln 2 . It is evident
that the fringe slope k is proportional to ξ . We can analytically
calculate for ξ = 3 the slope value equal to k = 31, which is in
very good agreement with the slope value, ke = 30, extracted
directly from Fig. 1. Moreover, in the case of transform-limited
XUV pulses (ξ = 0), td = nπ−C1j

�I1j
, in agreement with the result

of Fig. 3 showing vertical fringes. Our results demonstrate
the possibility to directly read the linear chirp rate of the
isolated attosecond pulse by measuring the fringe slope in
the Ad interferogram. The case of states with the same parity
cannot be included in this simple analytical model, where only
single-photon ionization is considered.

We note that the quantum beats encode information on
the population of the states involved in the EWP formation.
Indeed, the strength of the one-dimensional quantum beats
defined by the integration over E , directly extracted from
Eq. (14), can be written as

Q1j ∝ α1αjR1j , (16)

with R1j = ∫
a(E + I1)a(E + Ij )|S1(E,0)Sj (E,0)|dE and j =

2,3,4. It is found that the information about the population of
the states involved in the formation of the EWP is encoded in
the quantum beat pattern in the form of α1αj . We concentrate
on the relative strength of quantum beats:

Q12

Q13
= α2R12

α3R13
and

Q12

Q14
= α2R12

α4R14
. (17)

These expressions suggest a feasible way for the mea-
surement of the relative population ratios α2/α3 and α2/α4

between the excited-state components, since Q12/Q13 and
Q12/Q14 can be obtained from the experiment, while R12/R13

and R12/R14 can be obtained from the calculations. In the
example considered in this work the relative height of the
peak in Fig. 2(b) gives Q12/Q13 = 2.9988 and Q12/Q14 =
5.7558, while direct calculation gives R12/R13 = 2.8570 and
R12/R14 = 5.2191 which are not related with any dynamical
process. Consequently, we can obtain the retrieved population
ratios (α2/α3)M = 1.0496 and (α2/α4)M = 1.1028, in excel-
lent agreement with the real value α2/α3 = α2/α4 = 1.

C. Lifetime retrieval

It is also possible to demonstrate that the temporal evolution
of the EWP can be obtained from the quantum beat map. We
have artificially imposed a lifetime for each excited state. For
the free propagation of the EWP, the lifetime is introduced by
multiplying a decay factor to the excited-state wave function.
In this case the temporal evolution of the prepared EWP can
be expressed by simply modifying Eq. (1) as follows:

ψ(r,t) = α1ψ1(r) + α2e
− �I12 t

2τ2
−iγ (t)

ψ2(r)

+α3e
− �I12 t

2τ3
−iβ3−iγ (t) �I13

�I12 ψ3(r)

+α4e
− �I12 t

2τ4
−iβ4−iγ (t) �I14

�I12 (r), (18)

where τ2, τ3, and τ4 represent the lifetimes of 2p0, 3p0, and
4p0 states, respectively, in units of 1/�I12. Equation (18)
shows that the probability of finding the electron in a particular
excited state decreases with time t as exp(−�I12

τj
t) (j = 2,3,4).

When the EWP interacts with the XUV probe pulse, we take
into account the state lifetimes by applying the projection
operator,

P = 1 −
4∑

j=2

�I12

2τj

�t |ψj (r)〉〈ψj (r)|, (19)
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FIG. 4. (Color online) (a) Differential ionization asymmetry, Ad ,
as a function of the electron energy and the pump-probe temporal
delay, calculated in the case of the limited lifetime artificially imposed
on each excited state. Other simulation parameters are the same as
in Fig. 1. (b) Quantum beats obtained from Fourier transform of
Ad along the delay axis. The red dashed lines indicate the edges of
the filter function that is used to separate the different quantum beat
signal. Regions A, B, and C correspond to the beat signals 1s-2p,
1s-3p, and 1s-4p, respectively.

to act on the wave function at each propagation step of the
small time interval �t , so that the contribution of excited states
can be gradually removed from the total wave function. Note
that the projection operator originates from the approximation
relationship:

exp

(
−�I12

2τj

�t

)
≈ 1 − �I12

2τj

�t.

FIG. 5. (Color online) Top: Temporal evolution of the amplitude
in the time domain, obtained by performing the inverse Fourier
transform of the separated quantum beat 1s-2p. Bottom: Comparison
of the measurement signal (blue solid line), which is obtained by
integrating the top panel along the electron energy axis, with the fitting
curve (red dashed line), which has the function form of x1 exp[− γ (t)

2x2
].

FIG. 6. (Color online) Top: Temporal evolution of the amplitude
in the time domain, obtained by performing the inverse Fourier
transform of the separated quantum beat 1s-3p. Bottom: Comparison
of the measurement signal (blue solid line), which is obtained by
integrating the top panel along the electron energy axis, with the fitting
curve (red dashed line), which has the function form of x1 exp[− γ (t)

2x2
].

Let us assume that the lifetime parameters are given
by τ2 = 100π , τ3 = 80π , and τ4 = 60π . The asymmetry
parameter, Ad , can be obtained by exact solution of the 3D
TDSE as a function of the electron energy E and of the
pump-probe delay, γ (t). The results are reported in Fig. 4(a),
which displays a periodic oscillation structure characterized
by an amplitude which decreases upon increasing the temporal
delay. The Fourier transform of Ad along the delay axis yields
the two-dimensional map of quantum beats as a function of
the electron energy and the oscillation (Fourier) frequency, as
shown in Fig. 4(b). We apply square filter functions, whose
edges are denoted as red dashed lines in Fig. 4(b), to separate
the quantum beat signal into three different regions A–C
corresponding to beats 1s-2p, 1s-3p, and 1s-4p, respectively.
Then the quantum beat filtered from one of the regions is
inverse Fourier transformed back to the time domain. Since we
only filter out the positive frequency component, the inverse
Fourier transform should give the temporal evolution of the
amplitude information for the separated quantum beat 1s-2p,
1s-3p, and 1s-4p, as shown in the top panel of Figs. 5–7,
respectively, which show a clear decay. The corresponding
integral signal obtained by summing over the electron energy

FIG. 7. (Color online) Top: Temporal evolution of the amplitude
in the time domain, obtained by performing the inverse Fourier
transform of the separated quantum beat 1s-4p. Bottom: Comparison
of the measurement signal (blue solid line), which is obtained by
integrating the top panel along the electron energy axis, with the fitting
curve (red dashed line), which has the function form of x1 exp[− γ (t)

2x2
].

013403-5



LIU, ZENG, LI, XU, AND NISOLI PHYSICAL REVIEW A 90, 013403 (2014)

is plotted by blue solid curves in the bottom panel of Figs. 5–7.
We perform the curve fitting of the integral signal with the
function form x1 exp[− γ (t)

2x2
] in order to obtain the lifetime,

given by the fitting parameter x2. The fitting results are shown
by red dashed curves in the bottom panel of Figs. 5–7, and
the retrieved lifetimes are given by τ2 = 108π , τ3 = 86π , and
τ4 = 64π , in excellent agreement with the imposed ones. It
is worth mentioning that this retrieval approach is universal
and only dependent on the observable quantum beats signal,
without requiring any prior information on the XUV pulse and
on the atomic structure.

IV. CONCLUSIONS

We have discussed an approach for the characterization
of an EWP generated by the coherent superposition of many
atomic states. The EWP is probed by an isolated attosecond
pulse, which ionizes the wave packet at various temporal
delays. By numerically solving the 3D TDSE we have
demonstrated that the differential asymmetry parameter in the
direction of the polarization of the attosecond probe pulse
can be used for the characterization of the EWP. The Fourier

analysis of the asymmetry parameter in the energy-delay
representation directly shows the quantum beats between pairs
of stationary states, thus giving the energy difference between
pairs of atomic states and the time scale of the corresponding
electronic motion. By using an analytical model, we obtained
a quantitative relationship between the fringe slope in the
energy-delay map of the asymmetry parameter and the chirp
rate of the probe pulse. Moreover, the relative population
ratio between excited states and their lifetimes related to the
temporal evolution are encoded in the quantum beat signal, so
that they can be easily retrieved.
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