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Analytical mean-field scaling theory of radio-frequency heating in a Paul trap
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While the microscopic origins of radio-frequency (rf) heating of simultaneously stored, charged particles in a
Paul trap are not yet understood in detail, a universal heating curve [J. D. Tarnas, Y. S. Nam, and R. Blümel, Phys.
Rev. A 88, 041401 (2013)] was recently discovered that collapses scaled rf heating data onto a single universal
curve. Based on a simple analytical mean-field theory, we derive an analytical expression for the universal heating
curve, which is in excellent agreement with numerical data. We find that for spherical clouds the universal curve
depends only on a single scaling parameter, λ = [q(N − 1)]2/3/T , where N is the number of trapped particles,
q is the Paul-trap control parameter, and T is the temperature.
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I. INTRODUCTION

Ever since the invention of the Paul trap in the 1950s [1],
now used worldwide in scores of laboratories for applica-
tions ranging from ultrahigh accuracy atomic clocks [2] to
quantum computers [3], experimentalists observed a curious
phenomenon of ensembles of charged particles simultaneously
stored in a Paul trap: radio-frequency (rf) heating [4–6].
Cooling in various forms, e.g., laser cooling [7] or buffer-gas
cooling [8], has to be applied to counteract this heating
phenomenon. While at this point in time we cannot yet predict
rf heating rates as a function of particle number and trap
parameters, we are able to offer an ordering principle, a
universal curve [9], onto which scaled rf heating rates of
stable, trapped particle clouds collapse. While in [9], based
on extensive numerical simulation data, the heating curve
was discovered phenomenologically, the purpose of this paper
is to reveal the physical origin of the universal curve and
derive analytically the scaling relationships that underlie the
near-exact collapse of heating data onto the universal curve.
Thus derivation and analytical investigation of this universal
curve is the main objective of this paper.

Our paper is structured in the following way. In Sec. II,
we summarize the most important Paul-trap equations and
introduce the notation. In Sec. III, based on an analytical mean-
field theory, we derive the general form of the universal heating
curve. Further developing the general expression obtained in
Sec. III, we derive, in Sec. IV, an explicit, analytical expression
for the universal heating curve and compare it with numerical
data. We find that the agreement is excellent. In Sec. V, we
uncover an as yet hidden symmetry that explains why the
universal curve is also universal in the Paul-trap q parameter.
Thus we are able to show that for spherical clouds the universal
curve depends only on a single scaling parameter, λ = [q(N −
1)]2/3/T , where N is the number of trapped particles, q is the
Paul-trap control parameter, and T is the temperature of the
cloud. This result is based on the mean-field theory developed
in Sec. III, which rests on several assumptions and numerical
observations, discussed and justified in detail in Sec. VI. In
Sec. VII we summarize and conclude our paper.

II. PAUL-TRAP EQUATIONS

We start by briefly summarizing the most important Paul-
trap equations [1,10,11], which also introduce and define

the notation [9]. In dimensionless units, the coupled set of
nonlinear Paul-trap equations is

�̈ri + γ �̇ri + [a − 2q sin(2t)]

⎛
⎝ xi

yi

−2zi

⎞
⎠

=
N∑

j = 1
j �= i

�ri − �rj

|�ri − �rj |3 , i = 1, . . . ,N, (1)

where �ri = (xi,yi,zi) is the position of the ith trapped particle,
a and q are the dimensionless Paul-trap control parameters,
and t is the dimensionless time. The set of equations (1)
completely defines the damped dynamics of N particles in
an ideal Paul trap and contains all the relevant physics of
the heating problem. We also define the second moments
s2
x , s2

y , and s2
z , where s2

x , e.g., is given by s2
x =∑N

i=1 x2
i , and

analogously for the other two moments. In addition, we define
s2 = s2

x + s2
y + s2

z . The total instantaneous energy of the set of
particles described by (1) is

E(t) = Ekin(t) + Etrap(t) + ECoul(t), (2)

where

Ekin(t) = 1

2

N∑
i=1

�̇r 2
i , (3)

Etrap(t) = 1
2 [a − 2q sin(2t)]

(
s2
x + s2

y − 2s2
z

)
, (4)

and

ECoul(t) = 1

2

N∑
i,j = 1
i �= j

1

|�ri − �rj | . (5)

Heating and cooling of the particles governed by (1) is best
described by changes in the total energy E(t) as a function of
time t . Therefore, we compute dE(t)/dt and write it in the
form

dE(t)

dt
= G(t) + S(t), (6)
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where

G(t) = −γ

N∑
i=1

�̇r 2
i = −2γEkin(t) (7)

is the dissipative term, describing energy irretrievably lost from
the system [since Ekin(t) is positive definite], and

S(t) = −2q cos(2t)
(
s2
x + s2

y − 2s2
z

)
(8)

is the source of energy for the system. Since heating or cooling
of the particles does not refer to the short-time fluctuations
and oscillations of the energy on the scale of one trap cycle
(�t = π ), but is a systematic, macroscopic effect that emerges
when E(t) is evaluated over many trap cycles, we introduce
the cycle average f̄ (t) of an arbitrary function f (t) according
to

f̄ (t) = 1

π

∫ t+π

t

f (t ′)dt ′. (9)

In a situation where heating and cooling balance on average,
i.e., a steady state is reached, it makes sense to define the
long-time average of a dynamical function f (t) as an average
over many cycles according to

f̄ = lim
M→∞

1

Mπ

∫ t+Mπ

t

f (t ′)dt ′, (10)

where, in steady state, the zero of time t is arbitrary. In steady
state, there is no net long-time gain or loss of system energy.
Therefore, we have

dE

dt
= Ḡ + S̄ = 0, (11)

from which it follows immediately that the average heating
power S̄ may be expressed with the help of the cooling power
Ḡ via

S̄ = −Ḡ = 2γ Ēkin. (12)

A consequence of (12) is that, given γ , it allows us to compute
the heating power S̄ as soon as we have an expression for
Ēkin. We derive it in pseudopotential approximation [1,4,12].
The advantage of the pseudopotential approximation is that it
allows access to average properties of the particle dynamics,
approximately keeping track of the time dependence of the
particles’ motion during a trap cycle. Splitting the trajectory
of particle number i into its macromotion part �Ri = (Xi,Yi,Zi)
and its micromotion part �χi [12], we may integrate analytically
over the micromotion part of the trajectories when computing
cycle averages and arrive at an expression for Ēkin that contains
only the macromotion parts of the particle trajectories. We
obtain [9]

Ēkin = 1

2

N∑
i=1

[(
1 + q2

8

)(
Ẋ2

i + Ẏ 2
i

)+
(

1 + q2

2

)
Ż2

i

+ q2

2

(
X2

i + Y 2
i

)+ 2q2Z2
i

]
, (13)

where the overlines indicate long-time averages according
to (10), and the terms proportional to q2 are due to the
micromotion, thus taking the micromotion into account.
Assuming ergodicity, we may replace the time averages by

ensemble averages and obtain

Ēkin = 1

2

N∑
i=1

[(
1 + q2

8

)(〈
Ẋ2

i

〉+ 〈Ẏ 2
i

〉)+
(

1 + q2

2

)〈
Ż2

i

〉

+ q2

2

(〈
X2

i

〉+ 〈Y 2
i

〉)+ 2q2
〈
Z2

i

〉]
, (14)

where ensemble averages are denoted by the angular brackets
〈· · · 〉. Given the chaotic nature of the dynamics of a trapped
Coulomb gas [10,11], replacing time averages with ensemble
averages is expected to be an excellent approximation.

III. MEAN-FIELD THEORY

In order to evaluate the ensemble averages in (14), we need
the distribution function f ( �V1, . . . , �VN ; �R1, . . . , �RN ), where �Vi

is the macromotion velocity of particle number i, i.e.,

�Vi = �̇Ri. (15)

Since positions and velocities are not coupled in the N -particle
Hamiltonian of the trap, the distribution function separates
into a velocity-dependent part and a space-dependent part
according to

f ( �V1, . . . , �VN ; �R1, . . . , �RN )

= fV ( �V1, . . . , �VN ) fR( �R1, . . . , �RN ), (16)

where

fV ( �V1, . . . , �VN ) = (2πT )−3N/2 exp

(
− 1

2T

N∑
i=1

�V 2
i

)
. (17)

In (17) we introduced the temperature T of the trapped particle
clouds. This may look like a dangerous proposition given
that the dynamics (1) of the trapped particles are explicitly
time dependent. Indeed, the temperature of the cloud changes
during a trap cycle and may even be different in the radial and
the z directions. However, the concept of temperature is well
defined if it refers to the temperature of the macromotion [13]
and care is taken to evaluate T always at the same phase
during a trap cycle, i.e., T has to be evaluated stroboscopically.
Moreover, focusing, for now, on the case of spherical clouds
eliminates the problem of different temperatures in different
directions and a single temperature T , as used in (17), is well
defined.

The pseudo-oscillator energy of the macromotion is

Vosc( �R1, . . . , �RN ) = 1

2

N∑
i=1

(
ω2

xX
2
i + ω2

yY
2
i + ω2

zZ
2
i

)
, (18)

where [11]

ω2
x = ω2

y ≈ a + q2/2, ω2
z ≈ 2(q2 − a). (19)

The Coulomb energy of the macromotion is

VCoul( �R1, . . . , �RN ) =
N∑

i,j = 1
j > i

1

| �Ri − �Rj |
, (20)
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and the distribution function of the macromotion positions is

fR( �R1, . . . , �RN )

= NR exp

{
− 1

T
[Vosc( �R1, . . . , �RN ) + VCoul( �R1, . . . , �RN )]

}
,

(21)

where

NR =
[ ∫

exp

{
− 1

T
[Vosc( �R1, . . . , �RN )

+VCoul( �R1, . . . , �RN )]

}
d3N �R

]−1

. (22)

Instead of including all particle-particle correlations in our
analytical analysis, we imagine that we focus on a single

trapped particle at position �R with velocity �V = �̇R, moving in
the mean field set up by the other N − 1 particles. This defines
a mean-field picture in which all correlations are neglected
and all particles are described by the same single-particle
distribution function

f ( �V , �R) = β( �V )ρ( �R), (23)

where β( �V ) describes the probability distribution of velocity
and ρ( �R) is the space-distribution function of any one of the
particles in the cloud. The velocity distribution function is the
single-particle version of (17), i.e.,

β( �V ) = 1

(2πT )3/2
exp

(
− 1

2T
�V 2

)
= βx(Vx)βy(Vy)βz(Vz),

(24)

where

βl(Vl) = 1

(2πT )1/2
exp

(
− 1

2T
V 2

l

)
, (25)

and l = x, y, or z. The single-particle space-distribution
function is

ρ( �R) = N exp

{
− 1

T
[Vosc( �R) + VCoul( �R)]

}
, (26)

where

N =
[ ∫

exp

{
− 1

T
[Vosc( �R) + VCoul( �R)]

}
d3 �R

]−1

(27)

is the normalization factor,

Vosc( �R) = 1

2

(
ω2

xX
2 + ω2

yY
2 + ω2

zZ
2
)
, (28)

and

VCoul( �R) = (N − 1)
∫

ρ( �R′)d3 �R′

| �R − �R′| . (29)

Using (29) in (26), we obtain an integral equation for ρ

according to

ρ( �R) =N [ρ] exp

{
− 1

T

[
Vosc( �R)+(N − 1)

∫
ρ( �R′)d3 �R′

| �R − �R′|

]}
,

(30)

where the notation N [ρ] indicates that the normalization
constant (27) via (29) is a functional of ρ. We now notice
that Vosc and VCoul are homogeneous functions [12] of degrees
2 and −1, respectively. Therefore, scaling �R according to

�R = (N − 1)1/3 �u, (31)

together with ρ( �R)d3 �R = ρ(�u)d3 �u, allows us to write (30) in
the form

ρ(�u) = N̂ [ρ(�u)] exp

{
− (N − 1)2/3

T

[
Vosc(�u)

+
∫

ρ(�u′)d3 �u′

|�u − �u′|
]}

, (32)

where

N̂ [ρ] =
[ ∫

exp

{
− (N − 1)2/3

T

[
Vosc(�u)

+
∫

ρ(�u′)d3 �u′

|�u − �u′|
]}

d3 �u
]−1

(33)

is the new normalization constant. Equations (32) and (33)
show clearly that ρ(�u) is not a function of N and T separately,
but depends only on the ratio

κ = (N − 1)2/3

T
. (34)

Therefore, we may write

ρ(�u) = ρ(�u; a,q; κ). (35)

In [9] we defined the scaled heating rate

h = Ēkin

Ē
nig
kin

, (36)

where

Ē
nig
kin = N

2

{[(
1 + q2

8

)
ω2

x + q2

2

]
〈X2〉

+
[(

1 + q2

8

)
ω2

y + q2

2

]
〈Y 2〉

+
[(

1 + q2

2

)
ω2

z + 2q2

]
〈Z2〉

}
(37)

is the cycle-averaged kinetic energy of the trapped particles
with the Coulomb interaction switched off (noninteracting
gas). We showed that for fixed a and q a universal curve
results, independent of N and T , when h is plotted against

σ = ŝ/sc. (38)

Here,

ŝ =
√

〈s2〉 =
{

N∑
i=1

[〈
X2

i

〉+ 〈Y 2
i

〉+ 〈Z2
i

〉]}1/2

, (39)

if ŝ is evaluated at the end of each trap cycle, and sc is
the root-mean-square size of the crystal. Assuming spherical
symmetry and a homogeneous charge distribution, we evaluate
sc in pseudo-oscillator approximation, where the confining
field is a harmonic oscillator with oscillator frequencies
ωx = ωy = ωz = ω, where, according to (19), ω ≈ q. In this
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case, the charge density ρc of the crystal is a constant for
0 � R � Rc and 0 for R > Rc, where Rc is the radius of the
crystal. To determine Rc, we need to equate the mechanical
restoring force F = ω2R of the oscillator with the Coulomb
force, E, at R = Rc. From �∇ · �E = 4πρc we obtain

ρc = 3q2

4π
, (40)

and from N = 4πρcR
3
c /3 we obtain

Rc = (N/q2)1/3. (41)

This is all we need to compute

sc =
{

4πρc

∫ Rc

0
r4 dr

}1/2

=
(

3

5q4/3

)1/2

N5/6. (42)

On the basis of (35) it is now straightforward to provide a
theoretical underpinning for what in [9] was a purely heuristic
procedure. Defining

�M (ν) = 1

N

N∑
i=1

(
Xν

i Y
ν
i Zν

i

) = (〈Xν〉〈Y ν〉〈Zν〉) (43)

as the νth moments of the macromotion coordinates and

�μ(ν) =
∫ (

uν
xu

ν
yu

ν
z

)
ρ(�u; a,q; κ)d3 �u (44)

as the νth moments of the scaled density ρ(�u; a,q; κ), we
obtain with (31)

�M (2) = (N − 1)2/3 �μ(2)(a,q; κ). (45)

With (43), (44), and (45), we may express ŝ in (39) in the form

ŝ = {N[M (2)
x + M (2)

y + M (2)
z

]}1/2

= [N (N − 1)2/3]1/2
[
μ(2)

x + μ(2)
y + μ(2)

z

]1/2
, (46)

which, for large N , where (N − 1)/N ≈ 1, may also be written
as

ŝ = N5/6
[
μ(2)

x + μ(2)
y + μ(2)

z

]1/2
. (47)

We now see that, when computing σ defined in (38) as the
ratio of ŝ defined in (47) and sc defined in (42), the factor N5/6

cancels, and since the moments μ in (47) are functions of a,
q, and κ only, we obtain the result that

σ = σ (a,q; κ) (48)

is a function of a, q, and κ only, and is not dependent on N

and T separately. We also note that

1

T
�M (2) = κ �μ(2)(a,q; κ) (49)

is a function of a, q, and κ only. Assuming the same
temperature in all three directions, we have

〈Ẋ2〉 = 〈Ẏ 2〉 = 〈Ż2〉 = T . (50)

With this information in hand, we define and compute

ε(a,q; κ) = 1

NT
Ēkin

= 1

2

[
3 + 3

4
q2 + κq2

2

(
μ(2)

x + μ(2)
y

)+ 2κq2μ(2)
z

]
(51)

and

ε0(a,q; κ) = 1

NT
Ē

nig
kin = κ

2

{[(
1 + q2

8

)
ω2

x + q2

2

]
μ(2)

x

+
[(

1 + q2

8

)
ω2

y + q2

2

]
μ(2)

y

+
[(

1 + q2

2

)
ω2

z + 2q2

]
μ(2)

z

}
. (52)

Therefore, we have

h(a,q; κ) = ε(a,q; κ)

ε0(a,q; κ)
, (53)

i.e., h(a,q; κ) is a function of a, q, and κ only. Thus, for
fixed a and q, as observed numerically in [9], a one-parameter
manifold, i.e., the universal curve [9], results when h is plotted
against σ .

IV. HEATING CURVE: EXPLICIT ANALYTICAL FORM
AND COMPARISON WITH NUMERICAL DATA

At this point, because of κ scaling, we explained why the
heuristic scaling procedure outlined in [9] “works,” i.e., why,
for fixed a,q, the heating data of trapped, charged particle
clouds all collapse onto one single, universal curve. What
is missing is an explicit, analytical formula of the universal
heating curve to be compared with the numerical heating data.
Moreover, the numerical results in [9] indicate that the heating
curves for different q may also collapse onto each other. To
find the analytical form of the heating curve and to check
whether there is yet another scaling hidden in the particle
dynamics that may account for the observed near degeneracy
of heating curves for different q, we have to solve (32)
analytically. To accomplish this, we restrict ourselves to the
spherically symmetric case ωx = ωy = ωz, which, according
to (19), occurs for a ≈ q2/2. In this case we have

ωx = ωy = ωz = q (54)

and

ρ(u) = N̂ exp

[
−κ

(
1

2
q2u2 +

∫
ρ(u′)d3 �u′

|�u − �u′|
)]

. (55)

The integral term in (55) may be reduced to an expression
containing only one-dimensional integrals according to∫

ρ(u′)d3 �u′

|�u − �u′| = 4π

[
1

u

∫ u

0
(u′)2ρ(u′)du′ +

∫ ∞

u

u′ρ(u′)du′
]

.

(56)

Even with the simplification of spherical symmetry, Eq. (32)
is still a nonlinear integral equation. Therefore, we look for an
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approximate solution of (32) in the form of a Gaussian,

ρ(�u) = Ñ exp(−αu2), (57)

where the normalization constant Ñ is given by

Ñ = (α/π )3/2, (58)

and α > 0 has to be determined such that (57) is an approx-
imate solution of (32). The form (57) of ρ now allows us to
compute the integrals in (56) explicitly. Up to second order in
u we obtain∫

ρ(u′)d3 �u′

|�u − �u′| = 4πÑ
[(

1

2α

)
− 1

6
u2

]
. (59)

Therefore, up to second order in u, the integral equation (32)
now reads

Ñ exp(−αu2)

= N̂ exp

{
−κ

[
1

2
q2u2 + 2π

α
Ñ − 2π

3
Ñu2

]}
. (60)

The exponents and normalization factors are consistent if

α = 1

2
κq2 −

(
2κ

3
√

π

)
α3/2 (61)

and

N̂ = Ñ exp

[(
2π

α

)
κÑ
]
. (62)

Moving the constant term in (61) to the left-hand side and
squaring transforms (61) into a cubic equation whose solutions
may be stated analytically [14]. However, it is more instructive
to investigate the solutions of (61) for fixed N in the limits
of low and high temperatures. For T → ∞, we have κ → 0
and α → 0. Therefore, in this case, we may neglect the term
proportional to α3/2 in (61) and obtain

α = 1
2κq2 for κ → 0. (63)

For T → 0, we have κ → ∞. In this case we may neglect the
left-hand side of (61) with respect to the right-hand side and
obtain

α =
(

3q2√π

4

)2/3

for κ → ∞. (64)

This is an interesting, but expected, result. In the limit of T →
0, for fixed N , the cloud of trapped particles will transition into
the crystal state [10,11], which, due to the Coulomb repulsion,
has a finite extent. This is reflected in the fact that, according
to (64), α is a constant in this limit.

Once α is computed, either approximately according
to (63) or (64), or exactly by solving the associated cubic
equation [14], the normalization constants Ñ and N̂ are also
known and ρ(u,κ) is completely determined.

We now return to the computation of h. In the spherical
case we have

μ(2)
x = μ(2)

y = μ(2)
z = 1

2α
. (65)

Using this together with (54) in (53), we obtain

h(q; κ) = 2α(q; κ)
(
1 + q2

4

)+ κq2

2κq2
(
1 + q2

8

) . (66)

According to construction, and for fixed N , we expect that
h → 1 for T → ∞. This is indeed the case. Using (63),
applicable in the case T → ∞, we obtain h = 1. In [9] we
showed that h ≈ 1/2 in the crystal state where T = 0 and
κ → ∞. Since, according to (64), α is a constant in this case,
we obtain h = 1/[2(1 + q2/8)] ≈ 1/2 in this limit. Thus our
analytical result (66) reproduces both limits of the universal
curve.

In order to compare our analytical universal curve with the
numerical data of [9], we need an analytical expression for
σ (q; κ). In [9] we normalized the size of the particle cloud to
the size of the crystal. In our analytical model the consistent,
analogous procedure is to normalize the size of the particle
cloud at finite T to the size of the cloud at T = 0. Since

〈s2〉 = N〈X2 + Y 2 + Z2〉 = N (N − 1)2/3〈u2〉

=
(

3

2α

)
N (N − 1)2/3, (67)

we have

σ =
√

α(q; κ = ∞)

α(q; κ)
, (68)

where α(q; κ = ∞) is stated in (64).
We are now ready to plot the universal curve and compare

with the numerical data. The result is shown in Fig. 1. The
smooth line is the universal heating curve (66); the data points
are the scaled heating rates imported from Fig. 3 of [9]. We
see that, especially for small σ , i.e., in the low-temperature
regime, the agreement of the analytical prediction with the
numerical simulation data is near perfect. Deviations occur
only for large σ , i.e., in the high-temperature regime. This
observation, in fact, is odd, since the agreement is expected
to be better in the more “trivial” high-temperature regime
where the interacting Coulomb gas is expected to become
a noninteracting gas of isolated particles, perfectly described

1

 0.7

 0.5

321 σ

h

1

 0.7

 0.5

321 σ

h

FIG. 1. Scaled heating rate h versus scaled cloud size σ . Solid
line: analytical scaled heating rate (66) versus analytical cloud
size (68). Plot symbols: numerical data for scaled heating rates
obtained by simulating the dynamics of N = 50,100,200,500 par-
ticles simultaneously stored in an ideal Paul trap with q = 0.2 and
a = q2/2 (data transferred from Fig. 3 of [9]). The analytical curve
is in excellent agreement with the numerical data.
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by Ē
nig
kin [see (37)]. Since h is normalized to Ē

nig
kin , we expect

perfect agreement. As already mentioned in [9], the deviation
may have two reasons: (a) our use of the approximate
pseudo-oscillator frequencies (19) and (b) that for a = q2/2
the particle cloud, because of higher-order corrections, is not
perfectly spherical. In fact, for q = 0.2, a = q2/2, the values
of a and q used in [9], the exact pseudo-oscillator frequencies
are ωx = ωy = 0.202 and ωz = 0.205. This shows that (i) the
particle cloud is not perfectly spherical and (ii) the deviation of
the exact pseudo-oscillator frequencies from their lowest-order
approximations (19) is of the order of a few percent. Since the
deviation of the analytical universal curve from the trend of
the numerical data in Fig. 1 is also only of the order of 4%, this
may well contribute to the discrepancy. Preferring simplicity
over exactness, we used the approximate ω values to obtain
the simple, straightforward analytical form for h in (66).

V. UNCOVERING A HIDDEN, ADDITIONAL SCALING

In [9] we found that the heating data for q = 0.3 almost
collapse onto the heating curve for q = 0.2, indicating that an
additional, unexpected scaling might exist. This is indeed the
case. Let us introduce the scaling α = q4/3w, which turns (61)
into

w = 1

2
κq2/3 −

(
2κ

3
√

π

)
q2/3w3/2. (69)

Defining

λ = κq2/3 = (N − 1)2/3

T
q2/3, (70)

we have

w = 1

2
λ −

(
2λ

3
√

π

)
w3/2. (71)

Unlike (61), which depends on q and κ separately, Eq. (71)
depends only on the single scaling parameter λ. Thus we may
write the solution of (71) in the form w(λ).

Returning now to the evaluation of σ in (68), we find

σ (λ) =
(

3q2√π

4

)1/3/
[α(q; κ)]1/2

=
(

3
√

π

4

)1/3/
w(λ)1/2, (72)

which scales in the single parameter λ. Similarly, expressing
h in (66) in terms of w(λ), we find

h(q; λ) = 2q4/3w(λ)(1 + q2/4) + κq2

2κq2(1 + q2/8)

= 2w(λ)(1 + q2/4) + λ

2λ(1 + q2/8)
. (73)

For small q, we may neglect the terms quadratic in q in (73).
In this case, just like σ in (72), h depends on the single
scaling parameter λ only. In fact, for q � 0.4, the analytical
curves h(q; λ) collapse approximately onto one single curve
and cannot be distinguished as separate curves on the scale
of Fig. 1. Thus we explained the near degeneracy of heating
curves for different q values found in [9] as due to the fact that

both h and σ scale significantly only in the single parameter
λ. Thus we showed that the heating data of spherical clouds
confined in a spherical trap all collapse onto a single, universal
heating curve.

VI. DISCUSSION

In order to predict absolute heating rates of charged-particle
clouds in a Paul trap, our ultimate goal is to evaluate S(t),
the source term defined in (8), directly as a function of trap
parameters. This, however, is extremely difficult and depends
on both microscopic and macroscopic details of the trapped
particles’ dynamics. Concerning the global characteristics of
the dynamics, we found that it makes a substantial difference
whether the particle dynamics are integrable or not. For
instance, as reported in [9], replacing the two-body Coulomb
interaction in (1) with an integrable, harmonic two-body force
results in particle clouds that do not heat. This shows that the
global properties of the dynamics are an essential ingredient for
understanding rf heating. However, it has also been suggested
in the literature that close particle-particle collisions are a
source of rf heating [15–17]. This is corroborated by our
numerical simulations with two-body Coulomb interactions,
which show that large, sudden changes in E(t) are always
accompanied by close particle-particle collisions. However, in
view of our experience with integrable two-body interactions,
it is clear that close collisions are only a necessary condition
for rf heating to occur, since close collisions certainly do
occur in the case of the nonheating, harmonic two-body force,
which does not exhibit rf heating [9]. Therefore, we are led to
the conclusion that both close collisions and nonintegrable
dynamics are necessary ingredients for understanding the
rf heating phenomenon. Since both nonintegrability and
nonlinear collisions are difficult to deal with analytically,
this explains why it is so difficult to evaluate S(t), and,
by extension, S̄. Applied to the present case, for example,
neglecting collisions, but taking the micromotion into account,
it is straightforward to show that S̄ = 0, a useless result
that does not explain the rf heating phenomenon, but does
point to the importance of two-body collisions as a necessary
ingredient for the explanation of rf heating.

Side-stepping direct evaluation of S(t), we took a different
route, evaluating instead the dissipative term G(t), which,
according to (7) is simply connected with Ekin(t) and is much
more readily accessible. The price to pay is that S(t) and G(t)
are directly connected only in steady state, i.e., when a balance
exists between rf heating and dissipative cooling. Nevertheless,
this allows us to determine the universal scaling behavior of
trapped particle clouds in the form of a universal curve that all
future rf heating theories have to satisfy and may be used to
constrain these theories.

An important condition for our method to work is the
existence of a steady-state solution of (1). In order to prove
the existence of a steady state in the kinetic energy Ekin(t), we
show, in Fig. 2, Ekin(nπ ) as a function of trap cycle number
n for the case N = 20, a = 0.02, q = 0.2, and γ = 4 × 10−4.
Figure 2 shows that after an initial transient, lasting for about
3000 trap cycles (due to choosing a random initial condition
for this cloud at t = 0), Ekin(nπ ) settles down into a steady
state, fluctuating around its long-time average Ē. We checked
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FIG. 2. Stoboscopic kinetic energy Ekin(nπ ) of a 20-particle
cloud as a function of cycle number n. After an initial transient,
lasting for about 3000 cycles, Ekin(nπ ) settles down to a steady state,
exhibiting fluctuations around a constant value Ēkin.

explicitly, by continuing to run this simulation for 105 cycles
(not shown in Fig. 2), that (a) the upward spike at n ≈ 50 000
is only a local fluctuation and (b) the stationary pattern
exhibited in Fig. 2 continues as shown in Fig. 2 without
indication of any runaway heating, strongly suggesting that
for n � 3000, rf heating and cooling are always balanced
on average. While Fig. 2 shows an isolated example of the
existence of a steady state for a single N,a,q,γ combination, of
the literally thousands of N,a,q,γ combinations for which we
performed numerical heating simulations, spherical or not, we
never found a single example that would have shown runaway
heating.

At first glance, the eventual balance of heating and cooling,
i.e., the existence of stationary states for any damping
parameter γ > 0, may seem surprising. However, given the
fact that numerical evidence firmly establishes that the rf
heating rate of trapped particle clouds decreases with cloud
size (see, e.g., [10]), this phenomenon is no longer surprising.
Figure 3, a schematic sketch for the purpose of increasing
clarity, illustrates the connection between rf heating rate and
cloud size, in the following referred to as the rate function. We
see that the overall shape of the rate function, qualitatively,
has the form of a tent. There exists a cloud size that produces
a maximal heating rate (tip of the tent), and the heating rate
decreases to both sides of the tip. Let us first focus on large
clouds (right wing of the rate function). Let us also assume
that cooling is switched on with a damping constant γ that
results in the cooling power Ḡ(γ ), indicated by the dashed
line in Fig. 3. If in this situation, we start with a cloud whose
size corresponds to point R on the rate function, the rf heating
power produced by the cloud is insufficient to counteract the
cooling power Ḡ. Consequently, kinetic energy is drained from
the cloud, and its size shrinks. Indicated by the arrow in Fig. 3,
the cloud will move from point R toward point Q. Conversely,
if we start with a smaller cloud, corresponding to point P , the
rf heating power of the cloud will exceed the cooling power
Ḡ. As a consequence, the kinetic energy of the cloud will
increase, the cloud will expand, and, as indicated by the arrow
in Fig. 3, will move toward point Q. Thus clouds larger than
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FIG. 3. Schematic diagram of rf heating rate vs cloud size (rate
function) in the presence of cooling power Ḡ(γ ). The rate function
has the shape of a tent consisting of two wings with decreasing
rf heating power as a function of increasing (right wing) cloud
size or decreasing (left wing) cloud size. Starting a cloud in states
corresponding to points P or R on the right wing of the rate function,
the corresponding clouds move toward Q. Starting a cloud in a state
corresponding to point R′, cooling wins over rf heating and the cloud
quickly crystallizes. Starting a cloud in point P ′, rf heating wins over
cooling, the cloud “goes over the top” of the rate function, and settles
in the vicinity of Q. Thus Q is a stable stationary point, while Q′

is unstable. The diagram also shows that a runaway event in which
the cloud expands due to uncontrollable heating is impossible for any
γ , since the cloud always ends up in one of the two possible, stable,
stationary states, either in Q or as a crystal.

those corresponding to point Q will cool, shrink, and move
toward Q, and clouds smaller than those corresponding to
point Q will heat, expand, and also move toward Q. Thus, for
given damping constant γ , point Q is a stable stationary point.
It is apparent that no matter how small γ , a stable stationary
point always exists on the right wing of the rate function.

A technical point is in order here. We did not extend the plot
of the rate function toward very large cloud sizes, since, at this
point in time, we do not know whether the rate function actually
intersects the cloud-size axis, or approaches it asymptotically.
Clearing up this question is computationally expensive, since
the smaller the damping constant γ , the longer the simulations
have to run in order to establish the stationary point Q. Luckily,
for the statement that Q exists on the right wing of the rate
function, independent of the size of γ (as long as γ is small
enough so that Ḡ is below the tip of the rate function), it does
not matter whether the rate function intersects the cloud-size
axis, or whether it only approaches it asymptotically. Based
on this discussion, and, in particular, based on the decreasing
nature of the rate function for large cloud sizes (see Fig. 3), a
runaway event, in which from some time t∗ on the rf heating
power beats the cooling power (on average) for all times t > t∗,
leading to an ever-expanding cloud, is strictly impossible.

Let us now discuss what happens if we start the cloud in
point R′ on the left wing of the rate function. In this case the rf
heating power of the cloud is smaller than the cooling power.
Therefore, the cloud will lose kinetic energy, and become
even smaller. In fact, indicated by the arrow in Fig. 3, the
cloud will move away from point Q′ and rapidly collapse into
the crystal state. Conversely, a cloud started in point P ′ has
more rf heating power than can be counteracted by the cooling
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power Ḡ. Thus, as indicated by the arrow in Fig. 3, the cloud
will move away from Q′, reach the top of the rate function,
and keep expanding, but with decreasing rf heating power,
until it reaches the stationary point Q. From thereon, it will
fluctuate around Q, just like a cloud that was started on the
right wing of the rate function. Therefore, clouds started on
the left wing of the rate function have two possibilities: either
they collapse into the crystalline state (a stationary point), or
they go “over the top” and end up at the stationary point Q.
In any case, no matter where we start the cloud, on the left
wing or on the right wing, the cloud will always end up in
a stationary state and not exhibit a runaway heating event.
This is important for our analysis, because our theory depends
crucially on the existence of the stable, stationary point Q.
We remark that Q′ corresponds to an unstable state, since the
slightest perturbation, either up or down on the rate function,
sends the cloud either to Q or into the crystalline state.

In many places in this paper we make extensive use of the
pseudopotential approximation [1,4,12] and the question is
whether its use is justified in the present context. The essential
feature of the pseudopotential method is to decompose the
trajectory xi(t) of particle number i in the trap into a slow,
guiding-center motion �Ri(t) and a fast oscillatory motion �χi(t)
according to

�xi(t) = �Ri(t) + �χi(t), (74)

where

�Ri(t) =
⎛
⎝Xi(t)

Yi(t)
Zi(t)

⎞
⎠, (75)

as introduced in Sec. II, and

�χi(t) =
⎛
⎝ξi(t)

ηi(t)
ζi(t)

⎞
⎠. (76)

As discussed in Sec. II, the motion described by �R(t) is
referred to as the macromotion and the motion described
by �χ (t) is referred to as the micromotion. The two names
are chosen, since, in general, the macromotion describes the
large-amplitude excursions of a trapped particle, while the
micromotion describes the small-amplitude, high-frequency
oscillations of a trapped particle around the macromotion.
Thus the basis of (74) is a time-scale analysis, which allows
an approximate solution of (1) of the form (74), where �Ri(t)
satisfies the coupled set of equations [12]

�̈Ri + γ �̇Ri +

⎛
⎜⎝

ω2
xXi

ω2
yYi

ω2
zZi

⎞
⎟⎠ =

N∑
j = 1
j �= i

�Ri − �Rj

| �Ri − �Rj |3
, i = 1, . . . ,N,

(77)

where the pseudo-oscillator frequencies ωx , ωy , and ωz are
defined in (19), and [12]

ξi(t) = −q

2
Xi(t) sin(2t), ηi(t) = −q

2
Yi(t) sin(2t),

ζi(t) = qZi(t) sin(2t). (78)

Apparently, the main effect of the pseudopotential approx-
imation is to represent (not eliminate) the effect of the
rapid micromotion in the equations of the macromotion (77)
by time-independent force terms, derived from an effective
potential, the pseudopotential. In our experience this method
is highly accurate as long as (i) q is small [see [18] and the fact
that the ratios of the micromotion and macromotion amplitudes
in (78) are proportional to q] and (ii) the trap frequency is large
compared to the pseudo-oscillator frequencies ωx , ωy , and
ωz. In fact, in our experience, q < 1/2 and a ratio of 2:1 for
the ratio of trap frequency and pseudo-oscillator frequencies
are sufficient to guarantee acceptable accuracy. Since the set
of equations (1) is unstable for q � 0.45 (Mathieu stability
limit), for stable three-dimensional trapping the condition
q < 1/2 is automatically satisfied. Since for spherical clouds
ω ≈ q, and since in our units the trap frequency is equal
to 2, the other condition is also fulfilled. The accuracy of
the pseudopotential approximation improves quickly with
decreasing q and increasing trap frequency. We conclude that,
for the parameter sets used in this paper, the pseudopotential
approximation is reliable.

The first time the pseudopotential approximation is used in
this paper is in the derivation of (13). It is important to empha-
size that (13) is not obtained by discarding the micromotion;
it is derived taking full account of the micromotion by writing
�xi(t) in the form (74), with the components of �χ(t) given
by (78), and then processing the explicitly time-dependent
terms originating from the micromotion �χ (t) explicitly and
analytically.

In (14) we replaced time averages by ensemble averages,
and a few comments concerning this procedure are in order.
To start the discussion, it is important to point out that in our
numerical simulations we do not make this approximation.
The numerical data points in Fig. 1, e.g., are computed via
time averages, as required. The replacement of time averages
by ensemble averages is necessary only for our analytical
calculations. In Sec. II we argued that, because of the chaotic
nature of the trapped particles’ dynamics [10], the replacement
is most likely justified. While it is known that chaos does
not necessarily imply ergodicity [19], it likely does so in
the case of hard chaos [20], in which there are no regular
islands in phase space. In our case, in the presence of weak
damping, regular islands correspond to attractors. To the
best of our knowledge, based on extensive experience with
trapped-particle simulations, there is only a single attractor in
phase space, the one that corresponds to the crystal state. Apart
from this attractor, we never encountered any others (except
for crystals with different geometric orderings that are close
in phase space). In addition, the phase-space volume of the
basin of attraction [20] of the crystal attractor is vanishingly
small compared with the total accessible phase space. A rough
upper bound for the ratio of the phase-space volume of the
crystal basin, Vc, to the total phase-space volume, V , may
be estimated in the following way. Let us assume that the
ratio of the available spatial dimensions of a cloud to the
spatial dimensions of the basin is 2:1 (a gross underestimate),
and that the same is assumed for the velocities. Then, in the
case of N = 20 particles, an upper bound for the ratio of
the phase-space volumes is Vc/V < [(1/2)6]20 ≈ 10−36. This
shows that, while in the cloud state, the presence of the crystal
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FIG. 4. Velocity distribution P̄x(Vx) of N = 20 trapped particles
(solid line) together with the theoretically expected Gaussian (dotted
line), computed according to (25) with a temperature T̄ extracted
from the macromotion of the particles.

attractor is irrelevant for the cloud dynamics and therefore, for
clouds, an assumption of ergodicity, allowing the approximate
replacement of time averages with ensemble averages, is likely
justified.

A final point concerns the notion of temperature in our
manifestly time-dependent system. It is clear that a constant
temperature cannot be defined for the trapped cloud during
all phases of a trap cycle. According to (78), during a trap
cycle, the cloud is first compressed in the radial direction while
expanding in the z direction, and then it is compressed in the
z direction while expanding in the radial direction. This is a
nonequilibrium situation in which a temperature seemingly
has no place. However, in the stationary state of a cloud,
in which rf heating and cooling balance, the temperature of
the macromotion is well defined [13]. It is the macromotion
temperature, i.e., the thermal motion of �Ri(t), that we refer
to in our mean-field calculations. To test this picture, and to
prove that the assumption of a Gaussian velocity distribution
is valid, we computed, as an example, the distribution of the
x component of the velocity of N = 20 trapped particles
in the stationary state for the case a = 0.02, q = 0.2, and
γ = 4 × 10−4. To improve the statistics we computed the
combined ensemble and temporal average P̄x(Vx) of the x

component of the velocity distribution, defined as

P̄x(Vx) = 1

N

N∑
i=1

p̄x(Vi,x), (79)

where px(Vi,x)d3 �V is the probability of finding particle
number i in the velocity volume element d3 �V , and the time

average, in the stationary state, was extended over 10 000 trap
cycles. Since our simulations return ẋi(t), but not Ẋi(t), as
required for the computation of P̄x(Vx), we obtain Ẋi(t) by
compensating for the micromotion. With (78) we have

Vi,x = Ẋi(nπ ) = ẋi(nπ ) + qxi(nπ ). (80)

The solid line in Fig. 4 shows P̄x(Vx), where the macromotion
velocities Vi,x were evaluated according to (80).

To compare with the theoretically expected Gaussian
velocity distribution (25), we also computed the temperature

T̄ = 1

N

N∑
i=1

Ẋ2
i (81)

as the temporal and ensemble average over all N = 20
particles and over 10 000 trap cycles, where the velocities Ẋi

were again evaluated according to (80). Using T̄ computed
according to (81) in (25) with l = x, we obtain the Gaussian
plotted as the dotted line in Fig. 4. We see that P̄x and
the Gaussian are reasonably close both in shape and in
width. We note that there are no free parameters in this
comparison, since the temperature, determining the width,
is extracted from the numerical simulations as well. Thus
the quantitative, parameter-free agreement between the two
curves in Fig. 4 corroborates our assumption of (i) a Gaussian
velocity distribution (agreement of shapes) and (ii) the notion
of a temperature (agreement of widths).

VII. SUMMARY AND CONCLUSIONS

In this paper we provided the analytical underpinning of
the scaling results found in [9]. We showed that a simple
analytical mean-field theory is capable of explaining both
existence and form of the universal heating curve [9]. The
scaling we found is a consequence of the fact that both
the pseudo-oscillator potential and the mean-field Coulomb
potential are homogeneous functions of degrees 2 and −1,
respectively. In addition we found an unexpected scaling that
explains why the heating curve depends only on the single
scaling parameter λ = [q(N − 1)]2/3/T . We observe excellent
agreement between our analytical mean-field theory and the
available numerical data.
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