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We present elastic cross sections for electron interactions with arsine (AsH3) in gas phase over an extensive
energy range from 0.5 to 5000 eV by combining two computational methods. The ab initio R-matrix method
is employed for low-energy computations up to 15 eV and the intermediate to high-energy calculations were
performed using the spherical complex optical potential (SCOP) method. The elastic cross section computed
through the R matrix and SCOP formalism shows consistency at crossover energy (11–12 eV) and gives reasonable
accord with the available data. Besides elastic cross sections, the differential cross section at low and intermediate
incident electron energies is reported. The electronic excitation cross section is also reported at low energies.
Shape resonance is observed at around 2.4 eV due to the formation of a transient negative ion state.
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I. INTRODUCTION

Arsine (AsH3) is a highly toxic gas. It is one of the
simplest compounds of arsenic and is used for the synthesis of
organoarsenic compounds [1]. Despite its toxicity, it is exten-
sively used in the semiconductor industry for epitaxial growth
of gallium arsenide (GaAs) and GaInAsN. For microelectronic
applications, arsine is provided via a subatmospheric gas
source. Heteroepitaxial films of GaInAs have been grown
on GaAs substrates by the reaction of triethylindium and
trimethylgallium with arsine gas [2]. It is also used to make
the semiconductor GaAs by metal organic chemical vapor
deposition [3]. Besides, AsH3 gas is frequently used as an
n-type dopant for Ge [4–6] and SiGe [7] in metal organic
vapor phase epitaxy and chemical vapor deposition technique
in microelectronic devices. In fact, plasma etching, plasma
deposition, and several other plasma-based processes are the
foundation of the microelectronics industry. Therefore electron
interaction data for arsine are required for the study and
effective use in plasma-assisted thin-film deposition, plasma
etching, and for surface treatment and cleaning.

Recently, arsine has been detected in the atmosphere of Sat-
urn [8]. Low-energy electronic excitation of molecular targets
is an important energy-loss mechanism in molecular gases.
Therefore, the scattering of slow electrons by molecules and
the respective cross sections are of crucial importance in the
modeling of planetary atmosphere. The relevant cross sections
are also required in determining the electron velocity distri-
bution in gaseous discharge, electron drift experiments [9],
and in the description of cold plasma [10–12] and laser
development [13].

Due to its lethality, to perform an electron scattering
experiment with this molecule is quite difficult. Conse-
quently, more work is required on the collision cross-section
measurement for e-AsH3. Winstead et al. [14] computed
integral, differential, and momentum transfer elastic cross
sections for e-AsH3 scattering using the all-electron Schwinger
multichannel method (SMCAE) [15]. Bettega et al. [11] have
reported theoretical electron-impact elastic cross sections in
the energy range 10–30 eV by employing the Schwinger
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multichannel method with psuedopotentials (SMCPP) [16]
approximation. Later, Bettega and Lima [17] calculated the
integral cross section for the 0.5–8 eV energy regime. It is
clear that cross-section data reported for this molecule are quite
fragmentary and have been restricted to a limited energy range.

In this article, the elastic cross section is reported over a
wide energy range (0.5–5000 eV) by utilizing two computa-
tional methods adjoining each other at about the ionization
potential of the target. For the low incident electron energies,
calculations were performed using the R-matrix [18] method
through the QUANTEMOL-N software package [19]. For ener-
gies above the ionization threshold, spherical complex optical
potential (SCOP) [20–23] formalism is employed. Our focus
is also on localizing the resonance which appears as a sharp
feature in the cross-section curve. Resonance occurs due to
the formation of a transient negative ion state by temporary
trapping of the incident electron inside the molecule at well
defined energy. A resonance may lead to the dissociation of the
molecule into neutral and anionic fragments or leave the target
molecule in the vibrationally excited state after the ejection of
impinging electron. In addition to this, we report the excitation
and differential cross sections for e-AsH3 system for low
electron-impact energies using the close-coupling R-matrix
method. The differential cross section (DCS) is also calculated
at intermediate energies using SCOP formalism.

The subsequent sections will give an account of the the-
oretical methodologies applied for the computations, results,
and discussion, and finally the conclusions.

II. THEORETICAL METHODOLOGY

In this section a brief idea about our theoretical approaches
applied for evaluating various cross sections are presented. The
low-energy ab initio calculations below 15 eV were carried
out using the R-matrix method through the QUANTEMOL-N

software package. For incident electron energies above the
ionization threshold of the target (up to 5 keV), SCOP
formalism is employed. The accuracy of cross sections
calculated through the R-matrix method depends primarily
on the correct representation of the target. This is verified
by comparing the target parameters obtained using the best
available wave function, so, it is mandatory to discuss the
target model employed for the low-energy calculation before
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FIG. 1. (Color online) Structure of arsine.

we proceed to explain the theoretical methodologies used to
calculate the cross sections.

A. Target representation

Arsine has ammonialike trigonal pyramidal geometry, but
with a smaller bond angle (Fig. 1). Although the natural
symmetry of AsH3 belongs to the C3v point group; we have
considered it in the Cs point group with the cc-pVDZ basis set
while defining its wave function due to the restriction of the
R-matrix code. The Cs point group is considered as it is the
subgroup of C3v. A1, A2, and E irreducible representations
of C3v correlate to A′, A′′ and A′+A′′ of Cs, respectively.
The ground state Hartree-Fock electronic configuration is 1a′2,
2a′2, 1a′′2, 3a′′2, 4a′2, 5a′2, 2a′′2, 6a′2, 7a′2, 8a′2, 3a′′2, 4a′′2,
9a′2, 10a′2, 11a′2, 12a′2, 13a′2, and 14a′2. Among these, 18
core electrons of the target are frozen and do not take part in
the calculations. The remaining 18 electrons are kept in the
active space. The orbitals corresponding to frozen electrons
are 1a′, 2a′, 3a′, 4a′, 5a′, 6a′, 7a′, 1a′′, and 2a′′ whereas the
active space involves the following orbitals: 8a′, 9a′, 10a′,
11a′, 12a′, 13a′, 14a′, 15a′, 3a′′, 4a′′, 5a′′, and 6a′′. The idea
here is to keep an optimum number of electrons in the active
region for reliable scattering calculations. A total number of
7954 configuration state functions (CSFs) are generated for
the 12 target states for the ground state and 155 channels are
incorporated into the scattering calculations.

A correct target representation yields reliable target param-
eters in the inner region, which ensures good cross-section
data in the outer region. The target parameters obtained from
the inner region calculations employing the present model
are shown in Table I. There is good agreement of calculated
parameters with the available comparisons.

TABLE I. Target properties.

Properties of AsH3 Present Experimental Theoretical

Ground-state –2235.906 – –2235.826 [24]
energy (hartree)

First excitation 6.339 – –
energy (eV)

Rotational 3.8015 3.75154 [25] –
constant (cm−1)

Dipole moment (D) 0.2863 0.20 [26] 0.2638 [17]

B. Low-energy formalism

The ab initio R-matrix method is one of the widely used
approaches for electron scattering calculations besides other
close-coupling formalisms such as the complex Kohn varia-
tional method (CKVM) [27] and the Schwinger multichannel
(SMC) method [15]. All these methods are well established
and have underlying similarities among them. The basic idea
in all of the three variational methods is designing the wave
function to solve the Schrödinger equation for the scattering
system of N+1 electrons in a fixed nuclei approximation. In
the SMC method, the Schrödinger equation is replaced by
the Lippmann-Schwinger equation. This equation involves the
use of the Green’s function to perform the computations. The
advantage of the SMC method is that all matrix elements,
including those of the Green’s function, involve the electron-
molecule interaction which vanishes at large radial distances.
In contrast, in the CKVM and R-matrix methods no boundary
conditions have to be satisfied by a trial wave function,
which is taken care of by the Green’s function in the SMC
method. On the other hand, the CKVM method is a more
computationally stable approach as it avoids the computation
of the Green’s function matrix elements. Only matrix elements
of the Hamiltonian appear in the calculations. Exchange
matrix elements involving continuum functions are eliminated
rigorously from these calculations. The asymptotic behavior
of the trial wave function must be specified in this method.
In general all three methods are found to be quite successful
in calculating the cross section and predicting the resonances
located at low energies.

In the present work we have employed the R-matrix
method, which is an accurate procedure for low-energy
electron scattering studies. The method works on the principle
of division of configuration space into two concentric spherical
regions, namely, the inner and outer regions. The inner region
radius is chosen such that all the short-range interactions
are contained within it. The target wave function and cor-
responding charge density are assumed to be completely
included in this sphere and the electron-target interaction
is represented through exchange and correlation potentials.
Invariably, the physics in this region is sophisticated and the
R-matrix method is realized numerically by the adaptation
of quantum chemistry codes. However, the solution is energy
independent and hence required to be solved only once. On
the other hand, the outer region is solved with simplified
equations. Here, long-range multipolar interactions of the
scattering electrons with different target states are considered
using a single center close-coupling approximation. At the
interface, the energy-independent solutions from the inner
region are used to construct an energy-dependent R matrix.
The inner region radius is taken as 10 ao whereas the outer
region spans to 100 ao.

The inner region wave function is constructed using the
close-coupling approximation. Within this framework the
inner region wave function is written as

ψN+1
k = A

∑
I

ψN
I (x1, . . . ,xN )

∑
j

ξj (xN+1)aIjk

+
∑
m

χm(x1, . . . ,xN+1)bmk, (1)
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where A is the antisymmetrization operator and aIjk and bmk

are variational coefficients determined by the diagonalization
of the Hamiltonian matrix. The space-spin coordinates of the
electron are represented by xN (rN ,σN ). The first summation
takes into account the close coupling of all the target-plus-
continuum states and has a single Hartree-Fock target state
in the static exchange calculation. The second summation
involves configurations χm and has zero amplitude on the
R-matrix boundary. Here, all electrons are placed in the associ-
ated target molecular orbitals and they permit relaxation of the
orthogonalization between the continuum and target orbitals
and include target polarization effects. Then, the Hartree-Fock
self-consistent method gives a complete description of the
virtual and occupied orbitals using Gaussian-type molecular
orbitals and continuum orbitals of Faure et al. [28]. Here we
have included orbitals up to g, i.e., l = 4. The molecules with
dipole moment have a cross section that becomes very large
at low scattering energies and angles and therefore corrections
are made in the calculations. For this the contributions due to
higher partial waves (i.e., l > 4) are included by applying a
Born correction at all energies.

In the fixed nuclei (FN) approximation, the elastic cross
section of molecules with permanent dipole moment usually
diverges in a forward scattering direction. This divergence can
also be attributed to the long-range nature of dipole interaction
in an electron-molecule collision. Since the electron-molecule
interactions decay slowly with the distance between them, the
partial-wave expansion often converges slowly. To overcome
these obstacles and accelerate the convergence of higher
partial waves, the Born closure method has been proposed.
This closure method implements the Born correction using
two approaches. The first approach is to use a closure
formula at the partial cross-section level and in the second
approach correction is implemented at the T-matrix level. The
expressions for the partial as well as full Born cross sections
are required for correction at the cross-section level. In the
closure approximation, there is an evaluation of partial cross
section σR

l and σB
l in the R matrix and Born approximation,

respectively, for all the partial values up to the g wave. Then,
the integrated Born cross section, σB is added as follows to
obtain the Born corrected cross section:

σ =
4∑

l=0

(
σR

l − σB
l

) + σB. (2)

After obtaining the R matrix at the boundary, the next
objective is to obtain the final, energy-dependent solutions
of the scattering problem. However, there are two major
obstacles in these calculations. The first problem is due to the
lower symmetry of the target and much stronger long-range
potentials. The second is due to several degenerate channels
associated with each target state. The common practice to
address the outer region problem involves two stages. First the
R matrix is propagated from the inner region boundary (r =
10 ao) to the outer region boundary. Here the non-Coulomb
potential can be neglected beyond the asymptotic region. To
obtain the asymptotic solution, the expansion method given
by Gailitis [29] is employed. Thus the outer region solution
for the wave function is obtained in the form of K matrices
In fact, all the scattering observables can be extracted from

the K matrices. Using K matrices the eigenphase sum can be
obtained from its eigenvalues as

δ =
∑

i

arctan(Kii). (3)

The resonance parameters, viz., position and width, are
extracted from the eigenphase sum using the resonance
detection program RESON [30], which matches the eigenphase
sum to a Breit-Wigner form [31]. However, to determine the
scattering cross section we should evaluate the T matrices,
which can be derived from the K matrices using the expression

T = 2iK

1 − iK
. (4)

By employing these T matrices the total cross sections
are evaluated using standard relations. The differential cross-
section (DCS) data at low energies are also calculated using
the K matrices through the POLYDCS program of Sanna and
Gianturco [32].

C. High-energy formalism

For incident electron energies above the ionization thresh-
old of the target molecule, the calculations have been carried
out using the well established SCOP formalism. The e-
AsH3 scattering dynamics is represented in terms of the
interaction potential called the spherical complex optical
potential [20–23]. This complex optical potential comprises
real and imaginary parts, represented as

Vopt(r,Ei) = Vst(r,Ei) + Vex(r,Ei) + Vp(r,Ei)

+ iVabs(r,Ei), (5)

wherein the real potentials, Vst, Vex, Vp, and Vabs, are
the static, exchange, polarization, and absorption potentials,
respectively. Vst is the electrostatic Coulomb interaction of
the incoming projectile (electron) with the target, Vex fulfills
the antisymmetrization criteria on the wave function, and Vp

results from the correlation between the projectile and the
target due to the induced dipole moments in the field of
the incoming electron. The Vabs appearing in the expression
accounts for the loss of scattered flux to the outgoing chan-
nels. Altogether, these potentials describe an electron-target
scattering system and depend primarily on the radial charge
distribution, dipole polarizability, and the ionization potential
of the target. The molecule radial charge density is determined
from the atomic charge densities formulated through the
parametrized Hartree-Fock (HF) wave function of Cox and
Bonham [33]. In the present case a lighter hydrogen atom is
attached with a relatively heavier arsenic atom. The atomic
hydrogen charge density is expanded from the center of the
arsenic atom using the Bessel function expansion method given
by Gradashteyn and Ryzhik [34] and the sum of the charge
density of the arsenic atom and the expanded charge densities
of hydrogen atoms gives the molecular charge distribution.
For the static potential, the HF parameters given by Cox and
Bonham [33] were employed. Hara’s free electron model [35]
and the correlation model of Zhang et al. [36] are used for
the exchange and polarization potentials, respectively. In the
model of Zhang et al. [36] various multipole nonadiabatic
corrections are incorporated in the intermediate region to give
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the appropriate asymptotic form. The imaginary part of the
interaction potential is modeled from the potential introduced
by Staszewska et al. [37] given by

Vabs(r,Ei) = −ρ(r)

√
Tloc

2

(
8π

10k3
F Ei

)

θ
(
p2 − k2

F − 2

)
(A1 + A2 + A3), (6)

where the local kinetic energy, Tloc = Ei − (Vst + Vex + Vp),
and the parameters A1, A2, A3 are defined as

A1 = 5k3
f

2

; A2 = −k3

f

(
5p2 − 3k3

f

)
(
p2 − k2

f

)2 ;

A3 = 2θ
(
2k2

f + 2
 − p2)
(
2k2

f + 2
 − p2
)5/2

(
p2 − k2

f

)2 .

p2 = 2Ei , kF = [3π2ρ(r)]1/3 is the Fermi wave vector and

 is the energy parameter. The energy parameter prevents
ionization or excitation of the target below the ionization
threshold and consequently leads to Vabs = 0 for 
 � I .
Further, θ (x) is the Heaviside unit step function where x =
p2 − k2

F − 2
. Now, these model potentials are incorporated
into the Schrödinger equation which is solved by partial-wave
analysis implementing the Numerov method for the present
scattering system. The solutions are obtained in terms of
complex phase shifts (δl) that have the signature of electron-
target interaction for each partial wave. The convergence of
the partial waves was checked for obtaining reliable results.
Thus for higher energies a large number of phase shifts were
required as compared to low incident electron energies. The
inelasticity or the absorption factor is then calculated from the
phase shifts for each partial wave and is given by

ηl = exp(−2Imδl). (7)

The elastic cross sections [38] are computed from the
absorption factor by the expressions

Qel(Ei) = π

k2

∞∑
l=0

(2l + 1)|ηlexp(2iReδl) − 1|2. (8)

FIG. 2. (Color online) Doublet eigenphase sum for arsine.

FIG. 3. (Color online) Present elastic cross section for e-AsH3

collisions. Solid line: present (with Born correction); dashed line:
present (without Born correction); short dash dot: present Q-mol
(SE); short-dashed line: present SCOP; dash-dot-dot line: Bettega
and Lima (SMCPP) [17]; dash-dot-dash line: Winstead et al.
(SMCAE) [14].

III. RESULTS AND DISCUSSION

The results obtained in the present calculation are discussed
in this section. In Fig. 2, we have plotted the eigenphase sum
which is quite important to identify resonance structures at low
energies. The elastic cross section over an extensive range of
energy from 0.5 to 5000 eV is plotted in Fig. 3. As discussed
earlier the two methodologies are applied for evaluating data
over such a wide energy range. There is an excellent matching
at the overlapping energy (�11–12 eV), which justifies the use
of two formalisms at two energy regimes. The excitation and
differential cross sections at low electron energies calculated
by the R-matrix method are presented in Figs. 4 and 5, re-
spectively. Differential cross sections are also calculated using
SCOP formalism for intermediate energies as shown in Fig. 6.

FIG. 4. (Color online) Electronic excitation cross section for e-
AsH3 scattering to different singlet and triplet states.
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FIG. 5. (Color online) Elastic DCS for e-AsH3 scattering. Solid line; present; dashed line: Winstead et al. (SMCAE) [14]; dash-dot line:
Bettega et al. (SMCPP) [11].

Figure 2 illustrates the energy dependence of the eigenphase
sum for the e-AsH3 system. In the low-energy regime, the
study of the eigenphase sum finds significance as it reflects
the position of the resonance structure in this energy range.
In Fig. 2 the eigenphase sum for different symmetries of the

Cs point group involved in the scattering event are depicted.
The present calculation identifies a shape resonance at around
2.4 eV corresponding to the E symmetry of the C3v group
with a resonance width of 1.4 eV. There is a lowering of the
symmetry from C3v to Cs which causes the twofold degenerate
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FIG. 6. (Color online) Elastic DCS for e-AsH3 scattering. Solid line: present; dashed line: Varella et al. (SMCPP) [39]; dash-dot line:
Bettega et al. (SMCPP) [11].

E symmetry to split into the degenerate A′ and A′′ components
in the Cs point group. Being degenerate symmetries, the
position of resonance in A′ and A′′ should be located at the
same energy. However, a deviation of 0.13 eV is observed in
our calculation due to the unbalanced treatment of polarization
between the A′ and A′′ symmetries of the Cs point group.

Figure 3 shows the present elastic cross section for the
e-AsH3 scattering in static exchange (SE) and close-coupling
approximation along with the theoretical results of Winstead
et al. [14] and Bettega and Lima [17]. Qualitatively, the present
elastic cross sections show fair agreement in terms of peak
position at low energies with Bettega and Lima [17]. Also, the
nature of the cross section is similar to Bettega and Lima [17]
and a noticeable dip is also observed at around 4 eV. The
cross-section curve shows a sharp structure at around 2.4 eV
due to the twofold-degenerate E symmetry of the C3v group,
which splits into the A′ and A′′ symmetries of the Cs group
which corresponds to the characteristic resonance observed as
discussed earlier. Resonance phenomena signify the temporary
trapping of electrons within the unoccupied molecular orbitals
or can excite any of the occupied molecular orbitals.

The present cross section without Born correction is in good
accord with the previously reported theoretical values. The
present elastic cross section is plotted up to 5000 eV and shows
slightly higher but close agreement with Bettega and Lima [17]

for the compared energy range. The cross section with Born
correction includes the effect of higher partial waves and also
the target dipole moments. So, the cross section obtained with
Born correction is higher than those without Born correction.
Present methodology includes the polarization effect which
usually gives better results than calculations having static
exchange in their formalism. The peak positions of the cross
section reported by Winstead et al. [14] are a little higher than
the present cross-section values. They have reported resonance
for the E symmetry at 3.5 eV. This may be due to the neglect
of target polarization effects and scattering due to other open
channels. However, the nature and magnitude of the present
cross section in the SE approximation agree fairly well with
those of Winstead et al. [14]. The resonance structure identified
in the present SE approximation is at 3.25 eV which is in close
proximity to the resonance position predicted by Winstead
et al. [14] using the same approximation. The cross section
beyond 10 eV decreases monotonically and shows a transition
of cross-section data calculated using two methods at crossover
energy (11–12 eV).

Figure 4 shows the excitation cross section for electron-
arsine scattering to various singlet and triplet excited states
(A′ and A′′) from the ground state due to the excitation of
the target from occupied (hole) orbitals to a set of allowed
unoccupied (particle) orbitals. From the curve we can infer
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TABLE II. Excitation threshold energies.

States Vertical excitation energy (eV)

1A′ 0.00
3A′ 6.33
3A′′ 6.33
3A′ 7.59
1A′ 8.10
1A′′ 8.16
1A′ 8.65
3A′ 8.87
3A′′ 8.92
3A′ 9.11
3A′′ 9.87
1A′′ 9.95

that the thresholds of excitation for triplet and singlet states
are 6.33 and 8.10 eV, respectively. The threshold for the 3A′′
and 3A′ excitation cross section is exactly the same. It is evident
from the figure that the triplet excitations contribute more than
other excitations. Moreover, the cross sections for triplet states
are larger than the corresponding singlet states due to their
larger spin multiplicity and lower thresholds. The threshold
of excitation and the excitation cross-section values for the
AsH3 molecule is reported for the first time. Table II reports
the calculated vertical excitation energies for different singlet
and triplet excitations.

The DCS is calculated for energies from 0.5 to 15 eV
at the scattering angles 0°–180° employing R-matrix codes.
However, for brevity it is plotted only for energies for which
comparisons are available. Figures 5(a)–5(f) show the DCSs
for energies 4, 6, 8, 10, 14, and 15 eV. The DCS is compared
with the results of Bettega et al. [11] and Winstead et al. [14].
The present results show very good agreement with other
theoretical results presented here. The large cross sections in
the forward direction are due to the dipolar nature of the target.
The oscillatory behavior in the DCS curve may be due to the
coupling of higher partial waves of the heavier arsenic atom
in the electron collision process. There is excellent accord
at forward scattering angles, but a slight deviation occurs
at backward scattering angles. Our results are a little lower
than previous results [11,14] at backward scattering angles
as also observed for the disilane molecule [23]. This may be
attributed to the constraints in the R-matrix method due to
which some virtual orbitals are localized within the R-matrix
sphere. So, our close-coupling calculations incorporate the
polarization effects at short range where they are strongest.
When the electron is outside the R-matrix sphere, long-range
polarization comes into play. However, there is an intermediate
region where our calculations cannot properly model the
polarization effects. Thus, the systematic inclusion of polar-
ization at short, intermediate, and long range could alter the
calculated large-angle behavior. However, such calculations

are computationally expensive and are yet to be implemented
for many targets. We have also computed DCS using SCOP
formalism for 20, 25, and 30 eV as shown in Figs. 6(a)–6(c).
The computed DCS is compared with the available results
of Varella et al. [39] and Bettega et al. [11]. They have
computed elastic DCS using the SMCPP method in the SE
approximation. The agreement of the present results is fair
enough as compared to previous results [11,39]. In fact all
the previous results along with the present one show some
deviation from each other. An experimental investigation for
these energies would be useful to quantify the results.

IV. CONCLUSION

A detailed study of electron collision with arsine molecule
is undertaken in this work. We have presented the results for
various cross sections, viz., elastic, excitation, and differential
cross sections for the e-AsH3 scattering. The elastic cross
section is reported over a wide energy domain from 0.5 to
5000 eV using two theoretical formalisms: R matrix and
SCOP. The target properties obtained in the present calculation
are found to compare very nicely with existing values. We
have identified a prominent shape resonance at around 2.4 eV
corresponding to the E symmetry of the C3v point group
which splits into the two components A′ and A′′ symmetries
of the Cs group. Resonance in the cross-section curve is a
manifestation of the formation of a negative molecular ion for
a finite time that decays into the energetically open channels.
The elastic cross section presented here gives satisfactory
agreement with previous theoretical values wherever available.
We have not found any comparisons for elastic cross sections
above 40 eV for e-AsH3 scattering. The DCS reported by
us also shows good comparison with the available values of
Winstead et al. [14], Bettega et al. [11], and Varella et al. [39]
at selected energies. The differences of cross section between
present and previous theories may be due to the incorporation
of polarization effects besides static and exchange in our
calculation. It has been already understood that the model
which includes polarization effects such as static exchange
plus polarization (SEP) or close coupling gives better results
compared to SE results, especially at low incident energies.
The present DCS shows good agreement with the previous
results, in terms of shape and magnitude at forward angles.
However, our results seem to underestimate them towards the
backward scattering region.

We hope that the dearth of data on the e-AsH3 scattering
system compels experimental and further theoretical investi-
gations, considering its applications along with its hazardous
effects.
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