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The multiconfiguration Dirac-Hartree-Fock method is employed to calculate atomic electric dipole moments
in the ground states of 225Ra, 199Hg, and 171Yb. For the calculations of the matrix elements we extend the
relativistic atomic structure package GRASP2K. The extension includes programs to evaluate matrix elements of
PT -odd electron-nucleus tensor-pseudotensor and pseudoscalar-scalar interactions, the atomic electric dipole
operator, the nuclear Schiff moment, and the interaction of the electron electric dipole moment with nuclear
magnetic moments. The interelectronic interactions are accounted for through valence and core-valence electron
correlation effects. The electron shell relaxation is included with separately optimized wave functions of opposite
parities.
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I. INTRODUCTION

The existence of a nonzero permanent electric dipole
moment (EDM) of an elementary particle or a composite
system of particles would violate time-reversal symmetry
(T ), as well as the combined charge conjugation and parity
symmetry (CP), due to the CPT theorem [1]. One of the
principal motivations behind the experimental searches of
EDMs is to shed light on the observed matter-antimatter
asymmetry in the universe, which in turn is linked to an
asymmetry in the Big Bang baryon-antibaryon production.
The standard model of elementary particles cannot explain the
matter-antimatter asymmetry in the universe, as the standard
model predicts sources of CP violation (and of EDMs) several
orders of magnitude weaker than those needed to account for
the observed baryon numbers. This leads to proliferation of
the extensions to the standard model. Some of these extensions
predict larger EDMs, sometimes within the reach of current
experiments. The experimental searches have not yet detected
a nonzero EDM, but they continue to improve the limits on
EDMs of individual elementary particles, as well as limits
on CP-violating interactions, usually parametrized by the
interaction constants CT and CP (see Sec. II for details and
Table II in Ref. [2] for a summary). These limits constrain
the theoretical extensions of the standard model of elementary
particles. In recent years these constraints have been set by
the measurements of EDMs of neutrons [3], electrons in a
paramagnetic atom (a thallium atom experiment [4]), electrons
in a diamagnetic atom (mercury atom [2]), and in TlF and YbF
molecules [5,6]. The search for EDMs is not restricted to the
above species though; see, e.g., [7,8].

The search for a permanent electric dipole moment of
an elementary particle, or a composite system of particles
(see [1], or Ref. [9] for a recent review), is a challenge not only
for experiments, but also for theories of composite systems.
Heavy atoms are excellent examples of composite systems
with large EDMs due to the existence of mechanisms that may
induce atomic EDMs several orders of magnitude larger than
an intrinsic particle EDM. In the present paper we computed
the EDMs in the ground states of three diamagnetic atoms

225Ra, 199Hg, and 171Yb. The purpose of the present paper
is fourfold. First, we test the recently developed programs to
evaluate matrix elements of PT -odd electron-nucleus (e-N )
tensor-pseudotensor and pseudoscalar-scalar interactions, the
atomic electric dipole operator, the nuclear Schiff moment,
and the interaction of the electron electric dipole moment
with nuclear magnetic moments. Second, we generate the
atomic wave functions in several different approaches in order
to test the dependence of the calculated atomic EDMs on
options available in the GRASP2K [10] implementation of the
multiconfiguration Dirac-Hartree-Fock (MCDHF) method.
The approaches depend on the choice of variational energy
functional (average level versus optimal level, with different
numbers of optimized levels), the choice of wave functions
built on a common orbital set or several separately optimized
orbital sets (in the latter case biorthogonal transformations
of wave functions had to be applied), and specific methods
of one-electron orbital generation. All these approaches are
discussed in more detail in Secs. III B–III E and presented in
Tables I–III. Third, we sequentially generate several layers
of virtual (correlation) orbitals for each of the three elements
and observed the effects of electron correlation on atomic
EDMs. All valence and core-valence electron correlation
effects are included through single and restricted double
electron substitutions from core and valence shells to virtual
orbitals. Finally, we provide independently calculated atomic
EDMs in the J = 0 ground states of 225Ra, 199Hg, and
171Yb and compare our results with those of other authors.
Our results, presented in Tables IV–VII, are obtained within
the MCDHF method, using the relativistic atomic structure
package GRASP2K [10], which, in addition to one paper [11]
on the Schiff moment in radium, has been employed in
the calculations of matrix elements of PT -odd e-N tensor-
pseudotensor and pseudoscalar-scalar interactions, the nuclear
Schiff moment, and the interaction of the electron electric
dipole moment with nuclear magnetic moments. (Preliminary
results of these calculations were presented in [12].)

The three atoms 225Ra, 199Hg, and 171Yb have been chosen
on the grounds that they have similar valence shell structure.
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All these elements are diamagnetic, with a closed outer s shell
(225Ra 6p67s2, 199Hg 5d106s2, and 171Yb 4f 146s2). In the
future we will be able extend these calculations to closed-p-
valence-shell atoms, as well as to any other closed- or open-
shell system. Our current MCDHF machinery [10] is robust
enough to deal with electron correlation effects in arbitrary
atomic systems, including the lanthanides and actinides.

II. EDM THEORY

This section is based on the review by Ginges and
Flambaum [7]. We present here only the expressions for the
four PT -odd operators described in Sec. I above, and the
corresponding matrix elements necessary for the discussion of
the results. The reader is referred to the review in [7] for full
explanations and to [13] for the explicit form of the matrix
elements (the only difference is the prefactor 1/r , which is
absorbed in the definition of radial wave functions).

The interactions that mix atomic states of different parities
and induce a static electric dipole moment of an atom are
quite weak. Therefore, an atomic state function (ASF) of a
mixed-parity state can be expressed as

�̃(JMJ ) = a�(γPJMJ ) +
∑

i

bi�(γi(−P )JiMJi
), (1)

where the coefficient a of the dominant contribution can be
set to 1. The expansion coefficients of opposite-parity (−P )
admixtures bi can be found using first-order perturbation
theory

bi = 〈�(γi(−P )JiMJi
)|Ĥint|�(γPJMJ )〉

E(γPJ ) − E(γi(−P )Ji)
, (2)

where Ĥint represents the Hamiltonian of the PT -odd interac-
tion, which mixes states of opposite parities. The mixed-parity
state of a particular atomic level 2S+1LJ induces a static EDM
of an atom

d int
at = 〈�̃(γ JMJ )|D̂z|�̃(γ JMJ )〉

= 2
∑

i

bi〈�(γPJMJ )|D̂z|�(γi(−P )JiMJi
)〉, (3)

where D̂z represents the z projection of the electric dipole
moment operator. Eventually, an atomic EDM can be written
as a sum

d int
at = 2

∑
i

〈0|D̂z|i〉〈i|Ĥint|0〉
E0 − Ei

, (4)

where |0〉 represents the ground state |�(γPJMJ )〉, with
J = 0 and even parity, and the summation runs over excited
states |�(γi(−P )JiMJi

)〉, with Ji = 1 and odd parity. Here E0

and Ei are energies of ground and excited states, respectively.
In practice, this sum needs to be truncated at some level.
Calculations of atomic EDMs require evaluation of the matrix
element of the static EDM 〈0|D̂z|i〉 and the matrix element
of the interactions that induced EDMs in an atom 〈i|Ĥint|0〉.
The operators associated with the above matrix elements are
all one-particle operators.

For the general tensor operator T̂ k
q , the matrix element

between states of different parity can be expressed by the

Wigner-Eckart theorem as

〈�(γPJMJ )|T̂ k
0 |�(γi(−P )JiMJi

)〉

= (−1)J−MJ
√

2J + 1

(
J k Ji

−MJ 0 MJi

)
× [�(γPJ )‖T̂ k‖�(γi(−P )Ji)]. (5)

Expanding the wave functions in configuration state functions
(CSFs) �(γPJ ) that are built from one-electron Dirac orbitals
(see Sec. III), the reduced matrix elements of T̂ k

q can be written

[�(γPJ )‖T̂ k‖�(γi(−P )Ji)]

=
∑
r,s

crcs[�(γrPJ )‖T̂ k‖�(γs(−P )Ji)], (6)

where cr and cs are mixing coefficients of CSFs (even and odd
parity, respectively). The matrix elements between the CSFs in
turn can be written as sums of single-particle matrix elements

[�(γrPJ )‖T̂ k‖�(γs(−P )Ji)] =
∑
a,b

dk
ab(rs)[naκa‖t̂ k‖nbκb].

(7)

In the latter expansion, the dk
ab(rs) are known as spin angular

coefficients that arise from using Racah’s algebra in the
decomposition of the many-electron matrix elements [14,15].
Expressions (5)–(7) are general and can be used for any
one-particle operator.

We consider the following four mechanisms that may
induce atomic EDMs: tensor-pseudotensor (TPT) interaction
ĤTPT, pseudoscalar-scalar (PSS) interaction ĤPSS, Schiff mo-
ment (SM) interaction ĤSM, and the electron EDM interaction
with the nuclear magnetic field ĤB . The interactions, which are
all of rank k = 1, are discussed in more detail in the following
sections. In addition, the expression for the electric dipole
interaction is given.

A. Electric dipole operator

The electric dipole moment operator has the rank k = 1
in (5)–(7) and the single-particle reduced matrix element
[naκa‖t̂ k‖nbκb] in Eq. (7) can be written as

[naκa‖d̂1‖nbκb] = −[κa‖C1‖κb]
∫ ∞

0
(PaPb + QaQb)r dr,

(8)

where P and Q are large and small components of the
relativistic radial wave functions, respectively. The single-
particle angular reduced matrix elements can be expressed
as

[κa‖Ck‖κb] = (−1)ja+1/2
√

2jb + 1

×
(

ja k jb

1/2 0 −1/2

)
π (la,lb,k), (9)

where π (la,lb,k) is defined as

π (la,lb,k) =
{

1 for la + k + lb even

0 otherwise.
(10)
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B. Tensor-pseudotensor interaction

One of the possible sources of the EDM in diamagnetic
atoms is the tensor-pseudotensor interaction between electrons
and nucleons, violating both parity and time-reversal invari-
ance. It can be expressed as [1,7]

ĤTPT = i
√

2GF CT

N∑
j=1

(〈σA〉 · γj )ρ(rj ), (11)

where GF is the Fermi coupling constant, A is the number of
nucleons, γj is the Dirac matrix, and CT is a dimensionless
coupling constant of the TPT interaction and is equal to zero
within the standard model, but is finite in some theories beyond
the standard model of elementary particle physics. According

to Dzuba et al. [13],

CT 〈σA〉 =
〈
C

p

T

∑
p

σp + Cn
T

∑
n

σn

〉
, (12)

where 〈· · · 〉 represents averaging over the nuclear state with
the nuclear spin I . The nuclear charge density distribution ρ(r)
is the normalized to unity two-component Fermi function [16]

ρ(r) = ρ0

1 + e(r−b)/a
, (13)

where a and b depend on the mass of the isotope. The single-
particle reduced matrix element [naκa‖t̂ k‖nbκb] in Eq. (7) for
the tensor-pseudotensor interaction has the form

[naκa‖ĥ1
TPT‖nbκb] =

√
2GF CT 〈σA〉[naκa‖iγ̂ 1ρ(r)‖nbκb]

= −
√

2GF CT 〈σA〉
(

[−κa‖σ 1‖κb]
∫ ∞

0
PbQaρ(r)dr + [κa‖σ 1‖ − κb]

∫ ∞

0
PaQbρ(r)dr

)
, (14)

where the single-particle angular reduced matrix elements can be expressed as

[−κa‖σ 1‖κb] =
〈
lb

1
2 0 1

2

∣∣ja
1
2

〉〈
lb

1
2 0 1

2

∣∣jb
1
2

〉 − 〈
lb

1
2 1 −1

2

∣∣ja
1
2

〉〈
lb

1
2 1 −1

2

∣∣jb
1
2

〉〈
jb1 1

2 0
∣∣ja

1
2

〉 , (15)

[κa‖σ 1‖ − κb] =
〈
la

1
2 0 1

2

∣∣ja
1
2

〉〈
la

1
2 0 1

2

∣∣jb
1
2

〉 − 〈
la

1
2 1 −1

2

∣∣ja
1
2

〉〈
la

1
2 1 −1

2

∣∣jb
1
2

〉〈
jb1 1

2 0
∣∣ja

1
2

〉 . (16)

C. Pseudoscalar-scalar interaction

The interaction Hamiltonian for the pseudoscalar-scalar
interaction between the electrons and the nucleus reads [1,7]

ĤPSS = −GF CP

2
√

2mpc

N∑
j=1

γ0(∇j ρ(rj )〈σA〉), (17)

where CP is dimensionless coupling constant of the PSS
interaction. Analogously to the TPT interaction, the constant
CP is zero within the standard model. According to Dzuba
et al. [13],

CP 〈σA〉 =
〈
C

p

P

∑
p

σp + Cn
P

∑
n

σn

〉
. (18)

The single-particle reduced matrix element [naκa‖t̂ k‖nbκb] in
Eq. (7) for the pseudoscalar-scalar interaction has the form

[naκa‖ĥ1
PSS‖nbκb] = − GF CP

2
√

2mpc
〈σA〉[naκa‖γ0∇1ρ(r)‖nbκb]

= − GF CP

2
√

2mpc
〈σA〉[κa‖C1‖κb]

×
∫ ∞

0
(PaPb − QaQb)

dρ(r)

dr
dr. (19)

D. Schiff moment

The Hamiltonian of this interaction can be expressed
as [7,17]

ĤSM = 3

B

N∑
j=1

(S · rj )ρ(rj ). (20)

The Schiff moment S is directed along the nuclear spin
I and S ≡ S I/I , with S being the coupling constant and
B = ∫ ∞

0 ρ(r)r4dr . The single-particle reduced matrix element
[naκa‖t̂ k‖nbκb] in expansion (7) for the Schiff moment can be
factorized into a reduced angular matrix element and a radial
integral

[naκa‖ĥ1
SM‖nbκb] = 3

B
S[naκa‖r̂1ρ(r)‖nbκb]

= 3

B
S[κa‖C1‖κb]

×
∫ ∞

0
(PaPb + QaQb)ρ(r)r dr.

(21)

E. Electron electric dipole moment

The operator for the electron EDM interaction with the
magnetic field of a nucleus in a different form may be
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expressed as [13]

ĤB = −ide

N∑
j=1

(γj B), (22)

where de represents the electron electric dipole mo-
ment and B the magnetic field of the nucleus. The

single-particle reduced matrix element [naκa‖t̂ k‖nbκb] in
expansion (7) for the operator of the electron EDM inter-
action with a magnetic field of a nucleus can be factor-
ized into a reduced angular matrix element and a radial
integral

[naκa‖hel
B‖nbκb] = deμ

2mpc

(
− 3[−κa‖C1‖ − κb]

∫ ∞

R

QaPb

r3
dr − 3[κa‖C1‖κb]

∫ ∞

R

PaQb

r3
dr − [−κa‖σ 1‖κb]

∫ ∞

R

QaPb

r3
dr

−[κa‖σ 1‖ − κb]
∫ ∞

R

PaQb

r3
dr + 2[−κa‖σ 1‖κb]

∫ R

0

QaPb

R3
dr + 2[κa‖σ 1‖ − κb]

∫ R

0

PaQb

R3
dr

)
, (23)

where R and μ represent the nuclear radius and nuclear
magnetic moment, respectively.

We extended the GRASP2K [10] package for the calculation
of the matrix elements (7) and for the calculation of single-
particle reduced matrix elements (8), (14), (19), (21), and (23).
The extension, presented in this work, includes subroutines
for calculation of matrix elements of type 〈i|Ĥint|0〉 in Eq. (4)
for the tensor-pseudotensor ĤTPT, pseudoscalar-scalar ĤPSS,
Schiff moment ĤSM, electron EDM interaction with nuclear
magnetic field ĤB , and electric dipole moment D̂z.

III. MCDHF CALCULATIONS

A. MCDHF theory

We used the MCDHF approach to generate numerical
representations of atomic wave functions. An atomic state
function �(γPJMJ ) is obtained as a linear combination
of configuration state functions �(γrPJMJ ), eigenfunctions
of the parity P , and total angular momentum operators J 2

and MJ :

�(γPJMJ ) =
∑

r

cr�(γrPJMJ ), (24)

where cr are configuration mixing coefficients. The multicon-
figuration energy functional was based on the Dirac-Coulomb
Hamiltonian, given (in a.u.) by

ĤDC =
N∑

j=1

[cαj · pj + (βj − 1)c2 + V (rj )] +
N∑

j<k

1

rjk

,

(25)
where α and β are the Dirac matrices and p is the momentum
operator. The electrostatic electron-nucleus interaction V (rj )
has been generated from a two-parameter Fermi nuclear charge
distribution (13). The effects of the Breit interaction, as well
as QED effects, were neglected since they are expected to
be small at the level of accuracy attainable in the present
calculations.

B. Energy functionals

Several different methods of wave-function generation were
employed in order to test the dependence of the calculated
atomic EDMs on options available in the GRASP2K [10]
implementation of the MCDHF method. One option is related

to the variational energy functional in the wave-function
optimization procedure. Two general forms of the energy
functional are implemented in the GRASP2K [10] package.

1. Extended optimal level

One-electron orbitals based on the extended optimal level
(EOL) form are optimized to minimize the energy functional,
which is defined through Eq. (39) in Ref. [16], where
generalized weights [Eq. (40) in Ref. [16]] determine a specific
ASF (or a set of ASFs). Consequently, the orbitals in the EOL
approach are optimal for a specific ASF or a set of ASFs.

2. Extended average level

One-electron orbitals based on the extended average level
(EAL) form are optimized to minimize the (optionally
weighted) sum of energies of all ASFs that may be constructed
from a given set of CSFs, so eventually it yields an (optionally
weighted) average energy of a set of atomic states. This
approach is computationally much cheaper, but usually less
accurate than the approach based on the EOL functional.

C. Virtual orbital sets

The numerical wave functions were obtained independently
for the two parities. The calculations proceeded in two phases.
Spectroscopic (occupied) orbitals were obtained in the Dirac-
Hartree-Fock approximation. They were kept frozen in all
subsequent calculations. Then virtual (correlation) orbitals
were generated in several consecutive steps. At each step the
virtual set has been extended by one layer of virtual orbitals.
A layer is defined as a subset of virtual orbitals, usually with
different angular symmetries, optimized simultaneously in one
step, and usually frozen in all subsequent steps. In the present
paper up to five layers of virtual orbitals of each of the s, p,
d, f , and g symmetries were generated. At each stage only
the outermost layer is optimized and the remaining orbitals
(spectroscopic as well as other virtual layers) are kept frozen.
Virtual orbitals were generated in an approximation in which
all single and restricted double substitutions from valence
orbitals and a subset of core orbitals to subsequent layers of
virtual orbitals were included. The restriction was applied to
double substitutions in such a way that only one electron was
substituted from core shells; the other one had to be substituted
from the valence shells (i.e., from the 7s shell in the case of

012528-4



MULTICONFIGURATION DIRAC-HARTREE-FOCK . . . PHYSICAL REVIEW A 90, 012528 (2014)

TABLE I. Contributions to the atomic EDM from TPT, PSS, SM, and electron EDM interactions, calculated for 225Ra, using orthogonal
(Orth) and nonorthogonal (Nonorth) orbital sets. The number for the VOS in the first column is the number of virtual orbital layers. Transition
energies are experimental.

TPT PSS SM eEDM

VOS Orth Nonorth Orth Nonorth Orth Nonorth Orth Nonorth

0 (DF) −16.3 −15.81 −59.7 −57.87 −6.53 −6.32 −55.6 −46.67
1 −14.5 −15.51 −53.3 −57.09 −6.28 −7.01 −48.1 −43.69
2 −18.8 −19.90 −69.0 −72.95 −7.79 −8.16 −63.5 −58.07
3 −19.9 −20.68 −70.3 −75.83 −8.27 −8.59 −66.9 −60.13
4 −20.28 −74.42 −8.63 −58.45

the even-parity ground state of radium atom, 7s and 7p shells
in the case of the odd-parity excited states of radium, and 6s

and 6p in the cases of mercury and ytterbium). Five layers
of virtual orbitals were generated for Hg and four layers for
Ra and Yb. The combined contribution of the n = 3 shells to
the hyperfine constants of the 7s7p 1P state was evaluated in
a previous paper [18] and found to be negligible, while the
combined contribution of the n = 4 shells was below the 1%
level. Therefore, in the present calculations the innermost core
orbitals 1s, 2s, 2p, 3s, 3p, and 3d of the radium atom were
kept closed for electron substitutions. All other core orbitals, as
well as valence orbitals, were subject to electron substitutions.
By a similar argument, the innermost core orbitals 1s, 2s, and
2p of Hg and Yb were kept closed for electron substitutions.
The reader is referred to Refs. [18,19] for further details of
wave-function generation.

D. Nonorthogonal orbital sets

The matrix elements of all interactions were calculated
between the ground state ns2 (J = 0) and excited states with
total angular momentum J = 1 and opposite parity for 225Ra,
199Hg, and 171Yb. In principle, the optimal wave functions
for calculations of EDM matrix elements are obtained in
the extended optimal level form (see Sec. III B 1 above)
separately for each parity. The wave functions optimized
separately for the ground and excited states are built from
independent sets of one-electron orbitals. The two sets are
mutually nonorthogonal and they automatically account for
relaxation effects involved in calculations of matrix elements
between different atomic states [11,20]. On the other hand,
the transition energies obtained from wave functions based
on separately optimized orbital sets may be less accurate
than transition energies obtained from calculations based on
a common set of mutually orthogonal one-electron orbitals.
The above situation often arises when multiconfiguration
expansions are tailored specifically to include only those
electron correlation effects that are important for one-electron
expectation values. For one-electron matrix elements involved
in the present calculations the dominant contributions arise
from single and restricted double substitutions. We have not
included the unrestricted double substitutions, i.e., the electron
correlation effects with dominant contributions to the total
energy, as well as higher-order substitutions, since their impact
on EDMs is indirect and usually small [21].

We evaluated the effect of the relaxation of the wave
functions by performing two parallel sets of calculations based
on a common orbital set (orthogonal) and on two separately
optimized orbital sets (nonorthogonal), respectively. Table I
lists the atomic EDM for 225Ra, calculated in several approxi-
mations. The first line [with the entry 0 (DF) in the first column]
lists the results obtained with uncorrelated Dirac-Fock wave
functions. The following lines provide the results obtained
with different numbers (1–4) of virtual orbital layers included
in the virtual orbital set (VOS). The number of virtual orbital
layers in a given VOS is quoted in the first column. We
skipped the orthogonal calculation with four virtual orbital
layers since the preceding lines show clearly that the effects
of nonorthogonality (i.e., the relaxation of wave functions) are
of the order of a few percent, up to 11% for the interaction of
the electron electric dipole moment with the nuclear magnetic
field (the eEDM entry in Table I).

The calculation of matrix elements in the nonorthogonal
case requires a transformation of one-electron orbitals from
which the wave functions of ground and excited states are
built. The program BIOTRA2 [10] was applied to transform
both wave functions to a biorthonormal form [22,23], which
then permits one to use standard Racah algebra in evaluation
of matrix elements.

E. Extended optimal level calculations

The final values of atomic EDMs, presented in the
Tables IV–VII, were obtained with the extended optimal level
optimization procedure described in Sec. III B 1 above. At
each stage of generation of virtual orbital sets, a decision
had to be made with respect to the number of atomic levels
included in the variational energy functional. Table II presents
the contributions dTPT

at to the atomic EDM of 225Ra from the
tensor-pseudotensor interaction (11). The contributions from
particular atomic states are listed in subsequent lines. The ra-
dial wave functions were optimized within the EOL procedure,
with different numbers of EOLs: 4, 6, 8, 10, or 12 levels, as
indicated in the column headings of Table II. These data were
obtained with experimental transition energies quoted from
the National Institute of Standards and Technology (NIST)
Atomic Spectra Database (ASD) [24].

An inspection of the Table II (in particular, the first entry
on the last line, sum all) indicates that the dTPT

at expectation
value becomes stable when eight or more levels are included
in the extended optimal level energy functional. Analogous
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TABLE II. The dTPT
at contribution to the atomic EDM, calculated with the EOL method for the first VOS, using different numbers of

optimized levels and experimental transition energies, in units of 10−20CT 〈σA〉|e| cm, for 225Ra. Numbers in square brackets represent powers
of 10.

Levels 4 6 8 10 12

7s7p 3P −5.00 −4.46 −4.63 −4.59 −4.63
7s7p 1P −1.03[1] −8.80 −8.70 −8.69 −8.57
7s8p 3P 0.39 0.30 0.33 0.44
7s8p 1P −1.12 −0.96 −1.01 −1.24
sum s-p −1.53[1] −1.40[1] −1.40[1] −1.40[1] −1.40[1]
6d7p 3D 2.53[−3] −7.72[−4] 2.96[−2] −9.30[−2] −6.91[−2]
6d7p 3P 1.98[−1] −3.08[−2] −1.13[−1] 3.55[−2] 7.34[−2]
sum s-d 2.00[−1] −3.16[−2] −8.33[−2] −5.75[−2] 4.25[−3]
s-p + s-d −1.51[1] −1.40[1] −1.41[1] −1.41[1] −1.40[1]
6d8p 3D −4.79[−2] −9.44[−3] −3.63[−3]
6d8p 3P −1.15[−1] −4.90[−2] −8.36[−2]
7p8s 3P −1.96[−2] −2.20[−2]
7p8s 1P −6.02[−3] −6.31[−3]
6d7p 1P −5.12[−3]
8s8p 3P 1.50[−3]
sum D −1.63[-1] −8.41[−2] −1.19[−1]
sum all −1.51[1] −1.40[1] −1.42[1] −1.41[1] −1.41[1]

decisions were made for all virtual orbital sets, as well as for
the other two elements. The final calculations were made with
varying numbers of EOLs, between 2 levels for uncorrelated
Dirac-Fock wave functions, with 6–8 levels in most correlated
calculations, and up to 13 levels in one case.

F. Orbital contributions

Another interesting conclusion arises from the analysis of
contributions of particular one-electron orbitals generated in
the EOL optimization procedure. The analysis presented in
Table II was made with only one virtual orbital layer because
the extended optimal level optimization procedure described
in Sec. III B 1 above becomes unstable with the increasing
numbers of virtual layers and EOLs. However, already at
this level of approximation the dominant contributions come
from the singlet 7s7p 1P1 and triplet 7s7p 3P1 excited states.
The states 7s8p 1P1 and 7s8p 3P1, involving the 8p orbital,
contribute 9% and 3%, respectively (and their contributions
partially cancel due to different signs). All other states
contribute less than 1% each. The following lines present
contributions of singlet and triplet states generated by single or
double electron substitutions from the reference configuration
7s7p to the lowest available orbitals 8s, 8p, and 6d. The line
with the first entry sum s-p shows the contributions of the four
dominant states generated by single electron substitutions from
the reference configuration. The line with the first entry sum
s-d shows the sum of entries from the preceding two lines of
the 6d7p configuration; the line with the first entry s-p+s-d
shows the sum of all preceding contributions. The next six lines
present the contributions of higher-lying levels and the line
with the first entry sum D show the sum of the contributions
from these six preceding lines. The last line, with the first entry
sum all, shows the total sum of all contributions of all states
listed in the preceding lines. We present the partial sums (s-p,
s-d, s-p+s-d, and sum D) to show their dependence on the

number of EOLs. The contributions of individual levels are
not very stable and in particular the small contributions may
vary significantly, but the partial sums are more stable and the
total sum (sum all) is strongly stabilized by the contributions
from the dominant states.

It is interesting to make a comparison of Table II with
Table VI from Ref. [25]. In Ref. [25] the contributions from
7s1/2-7p1/2 and 7s1/2-8p1/2 single-particle matrix elements
(pairings in their language) are of comparable sizes, −324.468
and −306.133, respectively, while in our calculations the
relative sizes of the contributions from 7s1/2-8p1/2, with
respect to the contribution from the 7s1/2-7p1/2 pairing, are
9% and 3% for singlet and triplet states, respectively. Also,
there are differences with respect to the contributions of
higher-symmetry orbitals. For instance, the contribution from
d5/2 orbitals is of the order of 4% (see Table VII in Ref. [25]),
while in our calculations the contributions from d5/2 orbitals
are below 1%.

It is difficult to explain these differences, but one possible
explanation is due to differences in optimization procedures
and radial shapes of one-electron orbitals that resulted from
these procedures, as discussed in Sec. III E. Different com-
positions of particular atomic states are likely consequences
of differences in radial bases. The authors of Ref. [25] used
Gaussian basis sets, while in our calculations we use numerical
orbitals defined on a grid. We do not have insight into the
details of the calculations presented in Ref. [25], but their
Gaussian basis sets are likely to be evenly distributed over the
entire configurational space.

Different theories use different methods of construction for
atomic states. A consequence of these differences is the fact
that comparisons of contributions from particular atomic states
or from individual one-electron orbitals are not meaningful.
All excited and virtual orbitals generated in our calculations
were optimized with multiconfiguration expansions designed
for valence and core-valence electron correlation effects,
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resulting in virtual orbital shapes with maximal overlaps with
valence and outer core spectroscopic orbitals. Consequently,
the correlation corrections to the wave function are likely to
be larger for the lower states included in the extended optimal
level procedure. We performed comparison calculations with
virtual orbitals generated with three different methods: the
extended average level procedure, as described in Sec. III B 2;
virtual orbitals generated within the screened hydrogenic
approximation; and virtual orbitals from the Thomas-Fermi
potential. As described in Sec. III B 2, one-electron virtual
orbitals generated with the EAL functional are optimized to
minimize the sum of energies of all states. Hydrogenic and
Thomas-Fermi virtual orbitals are not variationally optimized;
they just form orthogonal bases. Our comparison calculations
indicate that calculations based on extended average level, hy-
drogenic, and Thomas-Fermi virtual orbitals converge slower
than extended optimal level calculations and the contributions
of higher-lying levels are larger compared to EOL results.

G. Transition energies

The summation in Eq. (4) runs over all excited states
of appropriate parity and symmetry. The contributions of
higher-lying levels are gradually decreasing since they are
suppressed both by the energy denominators and by decreasing
values of electric dipole matrix elements, as well as by
decreasing overlaps of one-electron radial orbitals, entering
integrals in Eqs. (14), (19), (21), and (23). In numerical
calculations they have to be cut off at certain level of accuracy.
Except where indicated otherwise, the results presented in
the present paper were computed with experimental transition
energies in the denominators of the matrix elements in Eq. (4).
The transition energies were calculated from the NIST ASD
database [24] and we included levels up to 6d7p 3P1 for
225Ra, 6s8p 1P1 for 171Yb, and 6s9p 1P1 for 199Hg. However,
several levels are missing in [24], so we employed an approach
where those transition energies that were not available were
replaced by the energies calculated with one of the three
different methods: (i) using theoretical energies obtained from
the MCDHF approach, (ii) with the energy of the upper
level replaced by the energy of the lowest excited state,
or (iii) with the energy of the upper level replaced by the
experimental ionization limit. The choice was made between
the above three options in the case of each missing level,
based on the availability of a reliable theoretical energy or
alternatively on the proximity of the lowest excited state or
the experimental ionization limit. To verify this approach
we performed test calculations where all three choices were
used together. Table III presents the contributions from the
tensor-pseudotensor interaction to the atomic EDM of radium
isotope 225Ra. Transition energies in Table III were taken
from the MCDHF relativistic self-consistent-field (RSCF)
calculation (column heading RSCF), MCDHF relativistic
configuration-interaction (RCI) calculation (column heading
RCI), experimental data (Expt.), experimental ionization limit
(Expt. IL), and experimental energy of the lowest excited level
(Expt. 1). The MCDHF RSCF case was a self-consistent-field
Extended Optimal Level calculation, with 2, 7, 6, 8, and 6 EOL
levels for DF, 1, 2, 3, and 4 VOS, respectively. The MCDHF
RCI case was a configuration-interaction calculation with

TABLE III. Tensor-pseudotensor interaction contributions to the
EDM for 225Ra, in units of 10−20CT 〈σA〉|e| cm, calculated with
the EOL method and compared with data from other methods.
Transition energies are taken from MCDHF RSCF calculation
(RSCF), experimental data (Expt.), the MCDHF RCI calculation
(RCI), the experimental ionization limit (Expt. IL), experimental
value of lowest excited level (Expt. 1) (see the text for explanation).
The number for the VOS in the first column is the number of virtual
orbital layers.

225Ra

VOS RSCF RCI Expt. Expt. IL Expt. 1

0 (DF) −18.31 −18.31 −15.81 −15.81 −15.81
1 −10.37 −11.81 −15.51 −14.70 −13.92
2 −12.04 −12.58 −19.90 −20.08 −20.45
3 −20.68 −21.22 −22.52
4 −20.28 −21.16 −22.32
Ref. [13] (DHF) −3.5
Ref. [13] (CI+MBPT) −17.6
Ref. [13] (RPA) −16.7
Ref. [25] (CPHF) −16.585

100 levels included. Their differences indicate the deviation
incurred when the number of EOLs is varied. It should be noted
that experimental values of the energies of the 7s7p levels
were used in all cases in columns Expt., Expt. IL, and Expt.
1. The lowest nsnp levels yield the largest contributions to
all EDM matrix elements in the present calculations and their
energies are available for all elements in question; therefore,
replacements were made only for higher-lying levels. The
number for the VOS in the first column of Table III represents
the number of virtual orbital layers. These data indicate the
sizes of errors, which may arise from replacing experimental
transition energies with the experimental ionization limit
(Expt. IL) or the experimental energy of the lowest excited
level (Expt. 1). As can be seen, the deviation is less than 10%
in the case of radium. The deviations of the data obtained with
calculated transition energies are larger due to the nature of
the wave functions built from nonorthogonal orbital sets, as
explained in Sec. III D above.

H. Summation over excited states

As mentioned in Sec. III G above, the summation in
Eq. (4) runs over all excited states of appropriate parity and
symmetry. In numerical calculations the summation has to be
truncated at finite number of terms and in the present paper
up to five terms of each symmetry are explicitly evaluated.
The contribution of the remaining part of the sum may be
estimated by extrapolation. Let us consider as an example
the contributions from the Rydberg series of the triplet states
6snp 3P1 of 199Hg. After explicit numerical calculation of large
contributions arising from low values of principal quantum
number n, the contributions of higher-lying states entering the
sum in Eq. (4) may be evaluated from the asymptotic behavior
of the matrix elements in the numerator and of the transition
energy in the denominator. The electric dipole matrix element
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FIG. 1. (Color online) Large components P (r) of the one-
electron np radial orbitals of the triplet states 6snp 3P1 (n = 6,7,8,9)
of 199Hg. The solid line (colored) sections represent the radial shapes
of the orbitals inside the 199Hg nucleus. The P (r) are in arbitrary units
and the radial grid is in atomic units. See the text for further details.

scales with principal quantum number n as [26,27]

(E0 − En)|〈0|D̂z|6snp 3P1〉|2 ∼ (n∗)−3, (26)

where n∗ is the effective quantum number of the running np

electron in the series 6snp 3P1, i.e., n∗ = n − δ, δ being the
quantum defect (for the series 6snp 3P1 of 199Hg the quantum
defect δ = 4.293). The calculations of the matrix elements
of the PT -odd interactions involve radial integrals of atomic
one-electron orbitals and all these integrals include factors in
the integrands, which effectively cut off the integrals outside
the nucleus [see Eqs. (14), (19), (21), and (23)]. Therefore,
the dominant contribution to each integral comes from within
or in the vicinity of the nucleus. The Dirac equation near the
origin has a power-series solution and the n dependence near
the origin is as follows [28–30]:

P (r) ∼ (n∗)−3/2, (27)

Q(r) ∼ (n∗)−3/2, (28)

where P (r) and Q(r) are large and small components of radial
wave functions, respectively. Figure 1 shows the numerical
large components P (r) of the one-electron np radial orbitals,
in the vicinity of the nucleus, for n = 6,7,8,9, extracted from
the triplet states 6snp 3P1 in 199Hg. The solid line (colored)
sections represent the radial shapes of the orbitals inside the
199Hg nucleus. The solid line sections of these components
are monotonic and scale with n∗ approximately as in Eq. (27).
The small components Q(r) scale similarly. (In the vicinity
of the nucleus the amplitudes of the small components are
large compared to the amplitudes of the large components.)
Therefore, the integrands in the matrix elements of thePT -odd
interactions considered in this paper also scale with n∗ of the
running np electron as

〈6snp 3P1|Ĥint|0〉 ∼ (n∗)−3/2. (29)

The energy denominator in Eq. (4) saturates at the ionization
energy for large-n values along the Rydberg series; therefore,
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FIG. 2. (Color online) Tensor-pseudotensor interaction contribu-
tions to the atomic EDM in 199Hg, multiplied by the energy
denominators, as a function of the effective quantum number n∗ of the
np orbitals (n = 6,7,8,9,10) from the triplet 6snp 3P1 (blue solid line
with circles) and the singlet 6snp 1P1 (red dashed line with squares)
individual states of 199Hg. See the text for further details.

the overall n dependence of subsequent terms in the sum in
Eq. (4) involves a product of right-hand sides of Eqs. (26)
and (29), which together yield the contribution from a
particular 6snp 3P1 state d int

at (6snp 3P1) ∼ (n∗)−3. Eventually,
the infinite sum in Eq. (4) may be evaluated in the following
way. The first four terms are explicitly calculated from the
numerical wave functions. The upper bound on the remaining
terms is approximately evaluated by the Riemann ζ function.
The relative correction, i.e., the contribution from the trailing
terms (called the Riemann ζ tail) divided by the contribution
from the four leading terms, is of the order of 1.5%, again
with the assumption that the energy denominators saturated
at the ionization energy. With the above assumption lifted,
the relative correction would be smaller than 1.5% since the
presence of the energy denominators increases the relative
weights of the leading terms. The matrix elements in Eqs. (26)
and (29) can be either positive or negative and not infrequently
change sign partway up a series. Sign changes would of course
decrease the relative correction mentioned above.

In order to validate the above reasoning we perform a
separate calculation for 199Hg, where singlet 6snp 1P1 and
triplet 6snp 3P1 states of 199Hg are separately generated for n =
6,7,8,9,10. Let us consider the contribution dTPT

at (6snp 3P1) to
the total atomic EDM from the individual 6snp 3P1 triplet state,
i.e., from one term of the sum on the right-hand side of Eq. (4).
When both sides of this equation are multiplied by the energy
denominator, what remains on the right-hand side scales with
(n∗)−3 of the running np electron:

dTPT
at (6snp 3P1)(E0 − En)3/2

= 2〈0|D̂z|6snp 3P1〉〈6snp 3P1|ĤTPT|0〉 ∼ (n∗)−3. (30)

Figure 2 shows the relation (30) in log-log coordinates
obtained for the triplet 6snp 3P1 and the singlet 6snp 1P1

(n = 6,7,8,9,10) states of 199Hg. The straight-line linear fits
yield the slope −4.6 for the triplet 6snp 3P1 state (blue solid
line with circles) and −7.3 for the singlet 6snp 1P1 state
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(red dashed line with squares). Both slope values should be
compared to −3.0 obtained from the considerations presented
in the preceding paragraphs. Analogous linear fits for other
Rydberg series of all three elements 225Ra, 199Hg, and 171Yb
and for all four PT -odd interactions yield the slopes in the
range from −3.9 to −9.1. The singlet series exhibit larger
slope values compared to the triplet series. The large values
of the slope, the large range of slope values, and noticeable
deviations from linear fits reflect the fact that the slopes are
fitted to the calculated data obtained from the leading terms
in Eq. (4), corresponding to the lowest atomic levels of a
particular Rydberg series. The lowest levels of a Rydberg
series are not truly Rydberg-like in the sense that the valence
electrons are not yet completely screened by the electronic core
and they exhibit strong deviations from Rydberg regularities,
due to interelectronic interactions.

Eventually, the upper bounds on the trailing terms in all
cases were evaluated by partial summation of Riemann ζ

function. Based on these analyses, we concluded that the first
four terms of each Rydberg series in Eq. (4) yield 98% or
more of the series’ contribution to the total atomic EDMs of
all three elements 225Ra, 199Hg, and 171Yb, and for all four
PT -odd interactions.

I. Uncertainty estimates

Estimates of uncertainty in ab initio calculations are far
more difficult and uncertain than the calculations themselves,
particularly in situations where an atomic property is evalu-
ated, which has not been calculated before within the same
approach for any other element. We can indicate possible
sources of uncertainties, but their sizes are difficult to estimate.
The possible sources of uncertainties are the following.

1. Electron correlation effects

In extensive large-scale calculations the relative accuracy
can reach 1%–5%, depending on the expectation value in ques-
tion (see, e.g., [18,19]). An estimate of uncertainty associated

TABLE IV. Tensor-pseudotensor interaction contributions to the
EDM, calculated with the EOL method in different virtual sets, in
units of 10−20CT 〈σA〉|e| cm, for 225Ra, 199Hg, and 171Yb, compared
with data from other methods.

225Ra 199Hg 171Yb

VOS Expt. Expt. IL Expt. 1 Expt. Expt.

0 (DF) −15.81 −15.81 −15.81 −6.15 −3.31
1 −15.51 −14.70 −13.92 −4.86 −1.94
2 −19.90 −20.08 −20.45 −5.70 −3.71
3 −20.68 −21.22 −22.52 −6.10 −4.03
4 −20.28 −21.16 −22.32 −5.53 −4.24
Ref. [13] (DHF) −3.5 −2.4 −0.70
Ref. [31] (DHF) −2.0
Ref. [13] (CI+MBPT) −17.6 −5.12 −3.70
Ref. [13] (RPA) −16.7 −5.89 −3.37
Ref. [31] (RPA) −6.0
Ref. [32] (RPA) −6.75
Ref. [25] (CPHF) −16.585 −3.377
Ref. [33] (CCSD) −4.3

TABLE V. Pseudoscalar-scalar interaction contributions to the
EDM, calculated with the EOL method in different virtual sets in
units of 10−23CP 〈σA〉|e| cm for 225Ra, 199Hg, and 171Yb, compared
with data from other methods.

VOS 225Ra 199Hg 171Yb

0 (DF) −57.87 −21.49 −10.84
1 −57.09 −17.16 −6.31
2 −72.95 −19.94 −12.20
3 −75.83 −21.53 −13.26
4 −74.42 −19.45 −13.94
Ref. [13] (DHF) −13.0 −8.7 −2.4
Ref. [13] (CI+MBPT) −64.2 −18.4 −12.4
Ref. [13] (RPA) −61.0 −20.7 −10.9

with the electron correlation effects can be obtained in several
ways. In the limit of a very large number of virtual orbital layers
an estimate of uncertainty may be related to oscillations of the
calculated expectation value plotted as a function of the size
of the multiconfiguration expansion [19]. In the present paper
an estimate of the uncertainty was based on the differences
between the data obtained with the largest two multiconfigura-
tion expansions, represented by three and four layers of virtual
orbitals in Tables IV–VII. We abstained from extending the vir-
tual sets beyond the fourth layer because there are several other
possible sources of uncertainty in the present calculations. An
inspection of the tables indicates that the differences between
the last two lines range between 0.47% for the Schiff moment
of Ra and 15.77% for the Schiff moment of Hg (Table VI). We
may assume the latter as an estimate of uncertainty associated
with the neglected electron correlation effects.

2. Wave-function relaxation

As explained in Sec. III D, the effects of wave-function
relaxation were partially accounted for in the present calcula-
tions by using nonorthogonal orbital sets for opposite parities.
An inspection of Table I indicates that the uncertainty that may
arise from wave-function relaxation effects is of the order of
10%, although this estimate is based on relaxing only the ASF

TABLE VI. Schiff moment contributions to the atomic EDM,
calculated with the EOL method in different virtual sets, in units of
10−17[S/(|e| fm3)]|e| cm, for 225Ra, 199Hg, and 171Yb, compared with
data from other methods.

VOS 225Ra 199Hg 171Yb

0 (DF) −6.32 −2.46 −1.54
1 −7.01 −2.45 −0.88
2 −8.16 −2.23 −1.83
3 −8.59 −2.98 −2.05
4 −8.63 −2.51 −2.15
Ref. [13] (DHF) −1.8 −1.2 −0.42
Ref. [13] (CI+MBPT) −8.84 −2.63 −2.12
Ref. [13] (RPA) −8.27 −2.99 −1.95
Ref. [34] (CI+MBPT) −8.5 −2.8
Ref. [35] (TDHF) −2.97 −1.91
Ref. [33] (CCSD) −5.07
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TABLE VII. Contributions of the electron EDM interaction with
a magnetic field of nucleus to the atomic EDM are calculated with
the EOL method in different virtual sets, in units of de × 10−4, for
225Ra, 199Hg, and 171Yb, compared with data from other methods.

VOS 225Ra 199Hg 171Yb

0 (DF) −46.67 13.41 5.37
1 −43.69 9.58 3.17
2 −58.07 12.22 5.72
3 −60.13 12.80 6.09
4 −58.45 11.45 6.44
Ref. [13] (DHF) −11 4.9 1.0
Ref. [36] (DHF) 5.1
Ref. [13] (CI+MBPT) −55.7 10.7 5.45
Ref. [13] (RPA) −53.3 12.3 5.05
Ref. [36] (RPA) 13

wave function of the ground state on the one hand and the ASF
wave functions of all excited states taken together on the other.
A more general albeit far more expensive approach would be
to generate separate atomic state functions for the ground state,
as well as for each excited state, implying nonorthogonality
between all ASFs of both parities.

3. Energy denominators

As discussed in Sec. III G, the summation in Eq. (4) runs
over all excited states of appropriate parity and symmetry.
The NIST ASD [24] is of course finite; therefore, several
levels with unknown energies had to be included in the
present calculations. The uncertainty that may arise due to
replacements described in Sec. III G should not exceed 10%
in the case of the radium atom and we expect the same order
of magnitude in the case of ytterbium and mercury.

4. Systematic errors

The possible sources of systematic errors include neglecting
the contribution of the core excitations to the sum over
states (4); truncation of the summation in Eq. (4); contribution
of the continuum in Eq. (4); omission of double, triple, and
higher-order substitutions; the effects of the Breit interaction;
and QED effects. Because of the singular nature of the P-odd
and PT -odd operators, the contribution of the core excitations
to the sum (4) can be quite large and tends to decrease the final
result. Table VII in Ref. [13] shows the core contributions,
of the order of 10%–20%, for each of the three elements of
interest (Yb, Hg, and Ra) with opposite sign with respect to the
final result. The upper bound on the sum of the trailing terms in
Eq. (4) was evaluated in Sec. III H above and it is less than 2%.
The contribution of the continuum is difficult to estimate since
it is partially accounted for by the virtual set. In the present
paper we neglected the explicit summation over the continuum,
we assumed that the continuum spectrum contribution may be
included into the error budget, and we computed only the
contribution of the bound states. The calculations of EDMs
involve radial integrals of atomic one-electron orbitals and
all these integrals include factors in the integrands, which
effectively cut off the integrals outside the nucleus, so the
contribution to the integral comes from within or in the vicinity
of the nucleus. Therefore, an estimate of systematic errors due

to multiple electron substitutions can be made by comparing
the EDM calculations with hyperfine-structure calculations,
where an integrand in the form r−2 appears in a one-electron
integral, which in turn renders the dominant contribution from
the first half of the radial orbital oscillation, i.e., near the
nucleus. In certain cases in the hyperfine-structure calculations
the effects of double and triple substitutions can be quite
sizable, of the order of 10%–20%, but they often partly cancel
and the net deviation is often smaller than 10% [37,38].
The effects of quadruple and higher-order substitutions are
negligible. The effects of the Breit interaction and QED are
usually of the order of 1%–2% or less for neutral systems.

5. Error budget

Based on the above estimates, the relative root-mean-square
deviation of the present calculations yields σ = 25%.

IV. FINAL RESULTS, DISCUSSION, AND OUTLOOK

A. Summary

Atomic EDMs arising from PT -odd tensor-pseudotensor
and pseudoscalar-scalar electron-nucleon interactions, the nu-
clear Schiff moment, and the interaction of the electron electric
dipole moment with the nuclear magnetic field are presented in
Tables IV–VII for the J =0 ground states of 225Ra, 199Hg, and
171Yb. The matrix elements and atomic EDMs were calculated
using recently developed programs in the framework of the
GRASP2K code [10]. One of the objectives of the present
calculations was to test these programs. Therefore, the results
are compared with the data obtained by other methods:
random-phase aproximations (RPAs), many-body perturbation
theory and configuration-interaction (CI+MBPT), coupled-
cluster single-double theory (CCSD) technique, and coupled
perturbed Hartree-Fock (CPHF) theory. These methods are
usually more accurate in calculations of properties of closed-
shell atoms. We should mention that in Tables IV–VII we
quoted the final results from Ref. [13], corresponding to
the CI+MBPT method, as well as their intermediate results,
corresponding to the Dirac-Hartree-Fock (DHF) and RPA
methods. A similar distinction applies to the RPA and DHF
methods in Refs. [31,36].

An inspection of the tables indicates that the differences
between our results and the data obtained with the above-
mentioned methods [13,31,32,34–36] range between 1.5% for
the Schiff moment of Ra (Table VI) and 22.1% for the tensor-
pseudotensor interaction of Hg (Table IV), all of them within
the error bounds estimated in Sec. III I 5 above. Despite the
reasonable agreement at the level of the correlated calculations,
very large differences should be noted at the uncorrelated
levels: the DF approximation in our calculations and the DHF
approximation in Refs. [13,36]. We used the different symbols
to visually differentiate the results obtained with different
numerical codes, but the DF and DHF approximations are
formally identical within the Dirac-Fock theory and should
yield similar values, within numerical accuracies of the Dirac-
Fock codes. A possible explanation for these large differences
may be the fact that in our (DF) calculations the summation
in Eq. (4) runs over only the two lowest excited states, the
singlet nsnp 1P and triplet nsnp 3P , which are generated at the
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Dirac-Fock level of the GRASP2K code [10]. On the other hand,
in Refs. [13,36] the summation was probably carried over all
excited states, which can be constructed from a suitable set of
virtual orbitals. Otherwise, we do not have an explanation.

Large differences at the level of the correlated calculations
should be noted between our results and the data obtained with
the CPHF theory [25]. The differences are 18% for the TPT
interaction of Ra and 39% for the TPT interaction of Hg (see
Table IV). The largest disagreement appears to be between
the result of the present calculations and the value obtained
with the CCSD theory [33] for the Schiff moment of Hg (see
Table VI). The difference amounts to 102%. It is difficult to
explain some of the above-mentioned differences. They may be
due to different orbital shapes and contributions, and relaxation
effects, discussed in Secs. III F and III D, respectively.

Another objective of the present calculations was to test the
methods of wave-function generation, as described in more
detail in Sec. III A, and of multiconfiguration expansions
designed to account for valence and core-valence electron
correlation effects. The reasonably good agreement of our
results with the data obtained within the RPA and CI+MBPT
methods [13,31,32,34–36] seems to indicate that the multi-
configurational model employed in the present calculations
accounts for the bulk of the electron correlation effects.
With adequate computer resources, these calculations may be
extended in the future and include also core-core electron
correlation effects, as well as the contribution of the core
excitations to the sum over states in Eq. (4). Based on the
experiences with other atomic properties, as well as on the
present EDM calculations, we expect that the accuracy of the
EDM calculations may be improved by a factor of 10 with
respect to the current relative root-mean-square deviation of
the order of 25%.

B. Outlook

Several refinements are possible with respect to the methods
used in the present paper. To account more accurately for the

electron relaxation, separate wave functions for the leading
contributors to EDMs may be generated. A more general albeit
far more expensive approach would be to generate separate
ASFs for the ground state, as well as for each excited state,
relaxing orthogonality of the orbital sets between all ASFs of
both parities. The upper bound on the tail of the sum over
bound states in Eq. (4) can be lowered by generating one or
more virtual orbital layers. The evaluation of the sum in Eq. (4)
over the continuum part of the spectrum can in principle be
carried out fully numerically.

The expectation values d int
at were calculated with theoretical

(if reliable) and experimental (if available) transition energies,
as explained in Sec. III G. In fully correlated calculations
theoretical transition energies would have to be evaluated with
all single and unrestricted double substitutions. They would be
computationally much more expensive than those presented in
the present paper, but possible with the currently available
massively parallel computers. Electron correlation effects can
also be accounted for using the partitioned correlation function
interaction method [39], which allows contributions from
single and unrestricted double substitutions deep down in the
atomic core to be summed up in a very efficient way. In the near
future we should be able to perform fully ab initio calculations
for atoms with arbitrary shell structures.
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