Calculation of screened Coulomb potential matrices and its application to He bound and resonant states

Li Guang Jiao^{*} and Yew Kam Ho[†]

Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 106, Taiwan

(Received 8 May 2014; published 21 July 2014)

We present two analytical methods, Taylor expansion and Gegenbauer expansion, to efficiently and accurately calculate the two-electron screened Coulomb potential matrix elements with Slater-type configuration-interaction basis functions. The former permits great advantages in fast computation of the potential matrices at small screening parameters and the latter allows accurate calculation of the matrices at all screening parameters. The bound and resonant states of a He atom embedded in the screening environment are calculated by employing the variational and complex-scaling methods, respectively, and the results are compared with other theoretical predictions. The expectation values of some physical quantities for He ground state are compared with the recent calculation of Ancarani and Rodriguez [Phys. Rev. A **89**, 012507 (2014)] and extended to stronger screening environment. The energies and widths for the doubly excited resonant states are in good agreement with previous calculations, while the interelectronic angle $\arccos(\cos(\theta_{12}))$ show significant discrepancies with the Feshbach projection calculated for the resonant states investigated here. We conclude that the present methods in the framework of complex scaling enable us to get reliable energy, width, and other physical quantities of the resonant states in a variety of screening conditions.

DOI: 10.1103/PhysRevA.90.012521

PACS number(s): 31.15.ve, 31.15.vj, 32.80.Zb

The screening effects of SCP on the two-electron bound

I. INTRODUCTION

Investigation of the screened Coulomb potential (SCP) has attracted considerable attention in the past years due to its fundamental importance and wide applications in different areas, such as atomic physics, nuclear physics, plasma physics, semiconductors, and quantum chemistry [1-15]. In a variety of formalism, the exponential type in the form $Z_i Z_j e^{-\lambda r_{ij}}/r_{ij}$ with λ the screening parameter is of particular interest. For example, it can be used to describe the Coulomb interactions of atoms embedded in weakly coupled plasmas within the Debye-Hückel model where the screening parameter is a function of plasma temperature and number density of charged particles [1-7], the interactions of elementary particles in nuclear structure calculations where the SCP is always referred to as Yukawa potential [8,9], and the static field generated by impurity doping in semiconductor materials where the screening parameter is related to the impurity charge and electron and impurity concentrations [10,11]. The SCP has also shown its special advantages in implementation of the range-separated density-functional theory [12,13]. With the recent advances [14,15] in employing the Slater-type orbitals as the basis sets in the quantum chemistry calculations, the exponential function $e^{-\lambda r_{ij}}$, which in combination with the r_{ii}^{-1} factor gives the exponential-type SCP, appears as a natural choice of the complementary error function in the range-separated density-functional theory.

Earlier interests of SCP in atomic systems are mostly related to the one-electron problems for which the energies and transitions of the ground and excited states have been investigated extensively by many authors [16–20].

1050-2947/2014/90(1)/012521(16)

systems have also been performed in the framework of variational method by authors employing different types of basis sets, such as the product of a hydrogenlike basis [21], the Slater-type configuration-interaction (CI) basis [22,23], the Hylleraas basis [24–27], the exponential correlated basis [28–30], and the *B*-spline CI basis [31,32]. Bound energies of the ground, singly excited, and some doubly excited metastable bound states for the two-electron atoms or exotic three-body systems have been calculated with very high accuracy. Most recently, Ancarani and Rodriguez [33] have investigated the evolution of radial expectation values for the ground state of H⁻, He, and Li⁺ atoms with respect to the screening parameter by using a C3-like basis. Such investigations on physical quantities other than bound energy are of special interest in furthering our understandings about the system structure and dynamics in a screening environment. However, their calculations are restricted to relatively weak screening conditions and the accuracy of their results is somewhat limited. Alternative investigations on this problem are warranted.

Recent theoretical interests for atoms interacting with SCPs have been concentrated on the autoionizing resonant states due to their important roles in the processes of photoionization, electron-atom scattering, laser-atom interaction, etc. Several powerful methods originally developed for atoms in pure Coulomb interactions have been extended to the screening situation. For example, those methods based on scattering mechanism extract the resonance parameters by calculating the cross sections, phase shifts, or eigenphase sums and fitting them with the Breit-Wigner formula, such as the close-coupling method [34,35] and the *R*-matrix method with pseudostates [36,37]. Other widely used methods calculate the resonances in more "direct" ways, in either the real or the complex energy plane, by using the bound-state (L^2) -type

^{*}guang5678@gmail.com

[†]ykho@pub.iams.sinica.edu.tw

wave functions, such as the stabilization method [38-40] and the complex-scaling method [41–43]. Although a considerable number of efforts have been made throughout years on a variety of atomic targets [34-43], most of these works were focused on the resonance energy and width. The studies on other physical properties of resonant states are very scarce. Ordóñez-Lasso et al. [44] have recently made a comprehensive investigation on the energy, width, and average interelectronic angle [calculated by $\arccos(\cos(\theta_{12}))$ for the resonant states lying below the $\text{He}^+(N=2)$ threshold by using the Feshbach projection method with Hylleraas basis functions. It has been shown that, in some circumstances, the evolution of average interelectronic angle against the screening parameter is very complicated, while the variations of resonance energy and width are generally in regular ways. It is known that the quantity $\langle \cos(\theta_{12}) \rangle$ is important in classifying the two-electron resonances into different series labeled by approximate quantum numbers $_{N}[K,T]_{n}$ [45,46]. The investigation on such quantity would provide more information on the classification of resonant states in screening environment. Moreover, the stabilization and the Feshbach projection methods adopted by previous authors are more applicable in investigating the resonances lying below the first autoionization threshold. For resonances associated with higher-lying thresholds, investigations on their expectation values for physical quantities in relation to the radial, angular, and momentum correlations are still not available in the literature. Such work is very interested in revealing the isomorphic patterns between resonances associated with different thresholds.

In this work, we employ the complex-scaling method [47-49] to investigate the variation of resonant states for a He atom embedded in screening environment. The evolutions of resonance energy, width, and other important physical quantities against the screening parameter are demonstrated in detail. The CI basis functions constructed by the products of one-electron Slater-type orbitals are used to expand the system wave functions. Although it is well known that such a nonexplicitly correlated basis does not fulfill the Kato cusp condition [50] at the two-electron coalescence, reasonably good energies for the lower-lying bound and resonant states can be obtained by using suitably chosen, large numbers of basis functions. On the other hand, for the higher-lying states where the two electrons populate areas far away from each other, the contribution of electron correlations is relatively small and the CI basis would get accurate results comparable to those by the explicitly correlated basis.

The paper is organized as follows. In Sec. II, we present two methods to analytically deal with the two-electron SCP matrices with CI basis functions. They are then applied into the variational and complex-scaling methods to calculate the bound and resonant states, respectively. In Sec. III, the He bound states 1snl for $n \leq 6$ and the doubly excited resonant states associated with the He⁺ (N = 2, 3, and 4) thresholds in $^{1}S^{e}$ and $^{1}P^{o}$ configurations are calculated. Comparisons with other theoretical predictions are made with special emphasis on the variations of expectation values of the interelectronic angle and momentum quantity. Section IV gives a summary of present work and some future applications of the present method. Atomic units are used unless otherwise noted.

II. THEORY

The nonrelativistic Hamiltonian of a two-electron system interacting with SCPs is given by

$$H = -\frac{1}{2\mu}\nabla_1^2 - \frac{1}{2\mu}\nabla_2^2 - \frac{1}{M}\nabla_1 \cdot \nabla_2 - Z\frac{e^{-\lambda r_1}}{r_1} - Z\frac{e^{-\lambda r_2}}{r_2} + \frac{e^{-\lambda r_{12}}}{r_{12}},$$
(1)

where r_1 and r_2 are the radial coordinates of the two electrons from the nucleus with positive charge Z and mass M, and r_{12} is the relative distance between the two electrons. $\mu = mM/(m+M)$ is the reduced mass of the electron with respect to the nucleus. The screening parameter λ is defined by $\lambda = 1/D$, where D is often referred to as Debye length in weakly coupled plasmas.

The following CI basis functions are used to represent the two-electron system wave functions:

$$\Psi(r_1, r_2) = (1 - \hat{P}_{12}) \sum_{l_a, l_b} \sum_{i, j} C_{a_i, b_j} \eta_{a_i}(r_1) \eta_{b_j}(r_2)$$
$$\times Y_{l_a, l_b}^{LM}(\hat{r}_1, \hat{r}_2) S(\sigma_1, \sigma_2).$$
(2)

 η is the radial part of the one-electron Slater orbital,

$$\eta_{a_i}(r) = r^{n_{a_i} - 1} e^{-\alpha \xi_{a_i} r}, \tag{3}$$

in which α is a nonlinear scaling parameter to be determined in the calculation. η will be suitably chosen depending on the problem investigated. Y and S are the two-electron total angular momentum and spin-wave functions, respectively. Although the wave functions of Eq. (2) may not produce highly accurate results as the correlated ones, it deserves to be considered due to several advantages: (a) The kinetic energy operators can be easily handled without expanding them on the nonindependent coordinates; (b) the calculation of the expectation values of some physical quantities through CI wave functions is more direct; (c) the CI wave functions are more easy to extend to multielectron systems than the correlated ones which makes further applications of the computational techniques presented here.

The evaluations of the one-electron kinetic and potential matrix elements have no difficulties, while accurate treatment of the two-electron potential part,

$$V_{12}(\lambda) = \langle i, j | \frac{e^{-\lambda r_{12}}}{r_{12}} | k, l \rangle, \qquad (4)$$

is more involved. In addition, to calculate the resonant states in the complex-scaling method where all the radial coordinates in the Hamiltonian are rotated by an angle θ ,

$$r_{ij} \to r_{ij} e^{i\theta},$$
 (5)

one has to deal with the complex potential matrices,

$$V_{12}(\lambda,\theta) = \langle i,j | \frac{\exp(-\lambda r_{12}e^{i\theta})}{r_{12}e^{i\theta}} | k,l \rangle.$$
(6)

By making the substitution

$$\lambda' = \lambda e^{i\theta},\tag{7}$$

Eq. (6) transforms to

$$V_{12}(\lambda',\theta) = \langle i,j|\frac{e^{-\lambda' r_{12}}}{r_{12}}|k,l\rangle e^{-i\theta},\tag{8}$$

where λ' is a complex screening parameter. Equation (4) can be considered as a special case of Eq. (8) at $\theta = 0$. Many methods based on expansion techniques have been promoted to calculate the above equation, such as the Legendre expansion, series expansion, and the Gegenbauer expansion of the SCP [51,52]. However, these methods contain either a numerical quadrature algorithm or special functions must be calculated numerically. Furthermore, the feasibility of applying these method into complex-scaling formalism still needs further consideration. In the following work, we introduce two analytical methods and demonstrate how to efficiently and accurately calculate the complex-scaled two-electron SCP matrices.

A. Taylor expansion

A direct method to expand the two-electron SCP is through the Taylor expansion,

$$\frac{\exp(-\lambda r_{12}e^{i\theta})}{r_{12}e^{i\theta}} = \sum_{n=0}^{n_{\max}} (-1)^n \frac{\lambda^n}{n!} r_{12}^{n-1} e^{i(n-1)\theta}.$$
 (9)

The infinite summation over *n* is truncated at n_{max} due to computational limitation. The Taylor series is expected to be converged for screening parameters $\lambda < 1$, provided the number of expansion terms is large enough. In our previous work [42], we have tentatively applied this method to calculate the He resonances with SCPs but employing a linear approximation $(r_{12} \approx r_1 + r_2)$ for the r_{12} coordinate. Admittedly, such an approximation would lead to unreliable results for the resonances in a strong screening environment. To perform an exact calculation of the r_{12}^{n-1} factors, we use the multipole expansion given by Perkins [53],

$$r_{12}^{\nu} = \sum_{q=0}^{L_1} P_q(\cos\theta_{12}) \sum_{k=0}^{L_2} C_{\nu,q,k} r_{<}^{q+2k} r_{>}^{\nu-q-2k}, \qquad (10)$$

where, for even values of v, $L_1 = \frac{1}{2}v$ and $L_2 = \frac{1}{2}v - q$, and for odd values of v, $L_1 = \infty$ and $L_2 = \frac{1}{2}(v + 1)$. $r_<$ and $r_>$ are the smaller and larger of r_1 and r_2 , respectively. $P_q(\cos \theta_{12})$ is the Legendre polynomial

$$P_q(\cos\theta_{12}) = \frac{4\pi}{2q+1} \sum_{m=-q}^{q} Y_{q,m}^*(\hat{r_1}) Y_{q,m}(\hat{r_2}), \qquad (11)$$

and the coefficient $C_{\nu,q,k}$ has the following expression:

$$C_{\nu,q,k} = \frac{(2q+1)}{(\nu+2)} \frac{(\nu+2)!}{(2k+1)!(\nu-2k+1)!} \\ \times \prod_{t=0}^{\min\{(q-1), [(\nu+1)/2]\}} \frac{(2k+2t-\nu)}{(2k+2q-2t+1)}.$$
 (12)

The r_{12}^{n-1} coordinates are decomposed into $r_{<}$ and $r_{>}$ and, therefore, all the integrals can be calculated analytically. The Taylor expansion has special advantages in fast performing the complex-scaling calculations due to the separation of the radial

coordinate r_{12} (or $r_{<}$ and $r_{>}$) with the screening parameter λ and rotation angle θ . One only needs to calculate the matrix elements of $\langle i, j | r_{12}^{n-1} | k, l \rangle$ one time by using Eq. (10) for all values of *n* needed; the data can be used repeatedly for arbitrary rotational angles in various screening conditions of $\lambda < 1$. The only price to pay is that the convergence of the Taylor series should be examined carefully.

B. Gegenbauer expansion

Due to the major restriction of the Taylor expansion method, the screening parameter cannot be very large where the Taylor expansion is cumbersome or has even failed; an alternative method by using Gegenbauer expansion [54] has been proven to be effective. The two-electron SCP is expanded by

$$\frac{e^{-\lambda r_{12}}}{r_{12}} = \sum_{L=0}^{\infty} (2L+1) \frac{I_{L+\frac{1}{2}}(\lambda r_{<})}{(r_{<})^{\frac{1}{2}}} \frac{K_{L+\frac{1}{2}}(\lambda r_{>})}{(r_{>})^{\frac{1}{2}}} P_{L}(\cos\theta_{12}),$$
(13)

where I(z) and K(z) are modified Bessel functions of the first and second kinds, respectively. The parameter λ can be any complex values. Previous investigations [32,36,37,52] based on such expansion relied on numerical computations of the Bessel functions as well as the two-dimensional integration. Under some circumstances, accurate calculation of the Bessel function itself with complex variables might become very difficult. An analytical treatment turns out to be helpful.

The Gegenbauer expansion reproduces (at $\lambda = 0$) the Laplace expansion of the pure Coulomb potential,

$$\frac{1}{r_{12}} = \sum_{L=0}^{\infty} \frac{(r_{<})^{L}}{(r_{<})^{L+1}} P_{L}(\cos \theta_{12}).$$
(14)

Therefore, the general process to calculate the two-electron pure Coulomb potential matrices can be extended to the screened situation. The integration of Eq. (4) is separated into radial and angular parts, and the radial part has the form

$$R^{L+\frac{1}{2}}(i,j,k,l) = \int_{0}^{\infty} dr_{1} \int_{0}^{\infty} dr_{2}(2L+1)r_{1}^{2}r_{2}^{2}$$
$$\times \eta_{i}(r_{1})\eta_{j}(r_{2})\eta_{k}(r_{1})\eta_{l}(r_{2})$$
$$\times \frac{I_{L+\frac{1}{2}}(\lambda r_{<})}{(r_{<})^{\frac{1}{2}}} \frac{K_{L+\frac{1}{2}}(\lambda r_{>})}{(r_{>})^{\frac{1}{2}}}.$$
 (15)

We then split the two-dimension integration into two ranges,

$$R^{L+\frac{1}{2}}(i,j,k,l) = (2L+1)R^{L+\frac{1}{2}}_{\Delta}(i,j,k,l) + (2L+1)R^{L+\frac{1}{2}}_{\Delta}(j,i,l,k), \quad (16)$$

where in the range $r_1 \leq r_2$ it has

$$R_{\Delta}^{L+\frac{1}{2}}(i,j,k,l) = \int_{0}^{\infty} dr_{1}r_{1}^{(n_{i}+n_{k}-\frac{1}{2})}e^{-(\xi_{i}+\xi_{k})r_{1}}I_{L+\frac{1}{2}}(\lambda r_{1})$$

$$\times \int_{r_{1}}^{\infty} dr_{2}r_{2}^{(n_{j}+n_{l}-\frac{1}{2})}e^{-(\xi_{j}+\xi_{l})r_{2}}K_{L+\frac{1}{2}}(\lambda r_{2}).$$
(17)

The following procedure concerns finding the solution of Eq. (17). After the pioneering work of Seth and Ziegler [14], the exact expression of this integral has been derived by Rico

FIG. 1. (Color online) Relative error of Taylor expansion in calculating Eq. (18) with respect to the expansion number n_{max} at different Debye length *D*.

et al. [15]. However, the derivation processes of these authors are quite complicated and not easily followed. There are also some typos in their formalism. In the Appendix, we present a much easier process to reproduce the final expression.

C. Convergence

Although from Eq. (9) it can be roughly estimated that the error of the potential by using Taylor expansion truncated at n_{max} is about $\lambda^{n_{\text{max}}+1}$, it is necessary to quantitatively estimate the convergence of the matrix elements at different screening parameters. We have calculated the matrices,

$$V_{12}(\lambda) = \langle (1s, 2p)^1 P^o | \frac{e^{-\lambda r_{12}}}{r_{12}} | (1s, 2p)^1 P^o \rangle, \qquad (18)$$

for Debye length *D* at 100, 20, 10, 7, 5, 4, 3, 2.5, and 2 a.u. by using n_{max} from 1 to 35. The relative error to the "exact" results calculated by employing Gegenbauer expansion method is defined by

$$\varepsilon = \left| \frac{V_{\text{Taylor}} - V_{\text{Gegenbauer}}}{V_{\text{Gegenbauer}}} \right|. \tag{19}$$

All the results are displayed in Fig. 1 and some numerical values at D = 10 are shown in Table I.

It can be seen that the Taylor series exponentially converge to the "exact" value with increasing the expansion number. The relative error of the matrix elements is slightly larger than that for the potential operator itself. We can generally conclude that, for $D \ge 10$, the use of $n_{\text{max}} = 15$ in Taylor expansion is sufficiently large to get the matrix elements with more than 10 significant digits.

D. Complex-scaling method

For atomic bound states, the Rayleigh-Ritz variational method is applicable to find the local minimum of the system energy with respect to the variational parameter α shown in Eq. (3). For the resonant states where their wave functions diverge in the asymptotic region, the employing of

TABLE I. Convergence of the Taylor expansion at D = 10. "Exact" refers to the result calculated by using the Gegenbauer expansion. a(b) represents $a \times 10^{-b}$.

n _{max}	V	ε
0	0.205 829 770 475 454	5.7136(-01)
1	0.105 829 770 475 454	1.9207(-01)
2	0.137 652 027 002 609	5.0872(-02)
3	0.129 460 363 548 303	1.1665(-02)
4	0.131 305 946 154 959	2.4245(-03)
5	0.130 926 910 857 889	4.6914(-04)
6	0.130 999 624 447 825	8.5976(-05)
7	0.130 986 384 692 241	1.5099(-05)
8	0.130 988 698 208 708	2.5626(-06)
9	0.130 988 307 144 906	4.2289(-07)
10	0.130 988 371 468 016	6.8174(-08)
11	0.130 988 361 126 646	1.0775(-08)
12	0.130 988 362 757 411	1.6745(-09)
13	0.130 988 362 504 481	2.5644(-10)
14	0.130 988 362 543 150	3.8774(-11)
15	0.130 988 362 537 312	5.7942(-12)
16	0.130 988 362 538 184	8.6262(-13)
Exact	0.130988362538071	

the complex-scaling method [47–49] is convenient to predict the resonance energy and width. Expectation values of physical quantities can also be calculated through the complex-scaled resonance wave function. A brief review of this method is given here.

After the rotation of radial coordinates by using Eq. (5), the Hamiltonian is transformed into complex energy plane. The eigenvalues and eigenvectors of the system are calculated by solving the generalized eigenvalue problem at different scaling parameter α and rotational angle θ . The resonance poles are determined by finding the positions where the complex eigenvalues exhibit the most stabilized characters with respect to the changes of both α and θ ,

$$\left. \frac{\partial E_{\rm res}}{\partial \theta} \right|_{\alpha = \alpha_{\rm opt}} = \min, \quad \left. \frac{\left| \partial E_{\rm res} \right|}{\partial \alpha} \right|_{\theta = \theta_{\rm opt}} = \min.$$
 (20)

Once the position of a resonance is determined at α_{opt} and θ_{opt} in the complex energy plane, the resonance energy (E_r) and total width (Γ) are given by

$$E_{\rm res} = E_r - \frac{1}{2}i\Gamma. \tag{21}$$

In the complex-scaling method, the divergent outgoing wave function for a resonant state becomes square integrable after rotating the interparticle coordinates. The corresponding incoming wave should be used as its adjoint state,

$$\langle \Psi(-\theta) | = \langle \Psi(\theta)^* |. \tag{22}$$

This is necessary since $H(\theta)$ is no longer self-adjoint; i.e., if $|\Psi(\theta)\rangle$ is a right eigenvector of $H(\theta)$ with eigenvalue E_{res} , $\langle \Psi(-\theta)|$ is the left eigenvector corresponding to the same eigenvalue [55,56]. After the normalization of the resonance wave function

$$\langle \Psi_i(-\theta) | \Psi_i(\theta) \rangle = \delta_{ij}, \tag{23}$$

we can calculate the expectation value of the operator \hat{O} for a single resonance,

$$\langle \hat{O} \rangle_i = \langle \Psi_i(-\theta) | \hat{O}(\theta) | \Psi_i(\theta) \rangle,$$
 (24)

such as $\langle r_1^n \rangle$, $\langle r_{12}^n \rangle$, $\langle r_{\langle} \rangle$, $\langle T_{\langle} \rangle$, $\langle V \rangle$, $\langle \mathbf{r}_1 \cdot \mathbf{r}_2 \rangle$, $\langle \mathbf{p}_1 \cdot \mathbf{p}_2 \rangle$, and $\langle \cos(\theta_{12}) \rangle$. Due to the fact that $\cos(\theta_{12})$ is irrelevant to the radial coordinates, there is no rotation on it. $\langle r_{12}^n \rangle$ can be calculated through Eq. (10), and $\langle \mathbf{r}_1 \cdot \mathbf{r}_2 \rangle$ and $\langle \mathbf{p}_1 \cdot \mathbf{p}_2 \rangle$ can be followed from Ref. [57]. It should be kept in mind that the expectation values of these quantities for resonant states are always complex. For the Hamiltonian itself, the imaginary part is half of the decay width Γ [see Eq. (21)] and it can be interpreted as the uncertainty of the energy observable due to decay of the resonance. In such sense, the imaginary part of the expectation value for these physical quantities describes an additional broadening of the distribution of the corresponding observable which is an intrinsic requirement of quantum mechanical uncertainty [56].

III. RESULTS AND DISCUSSIONS

A. Bound states

In this section, we investigate the screening effect of SCP on the bound states of a He atom with infinite nuclear mass $(M = \infty)$. The CI basis is constructed by using three groups of Slater orbitals defined in Eq. (3): The first group contains 10 s-, 10 p-, 9 d-, 8 f-, 7 g-, 6 h-, 5 i-, 4 k-, 3 l-, 2 m-, and 1 *n*-type Slater orbitals with all $\xi = 1.0$, the second one contains 5 s-, 5 p-, 4 d-, 3 f-, 2 g-, and 1 h-type orbitals with $\xi = 0.4$, and the third one has 3 s-, 3 p-, 2 d-, and 1 f-type orbitals with $\xi = 0.2$. These three groups would couple to a total of 648 and 1020 terms in the expansion of system wave functions in ${}^{1}S^{e}$ and ${}^{1}P^{o}$ symmetries, respectively. Such a basis set corresponds to an extensive representation of the system wave function in both the close- and far-range space sectors. To estimate the quality of this basis set, we have calculated the energies of the ground and lowest five excited states for He atom in pure Coulomb interactions where highly accurate results are available. From Table II it can be seen that our results generally have six significant digits in agreement as compared with the Hylleraas calculations of Yan and Drake [59,61], except for the ground state, where our result is about 0.00004 a.u. higher. This is not surprising due to the strong correlations of the two electrons in the same shell. The results would improve further if optimized ξ values are used in each group. We have also compared our results with the recent B-spline CI calculations of Lin et al. [32,58] using an almost 4000 basis. It is found that the present results are even better for the ground state.

The variations of bound-state energies for He atom in screening environment have already been investigated by authors employing different types of basis, such as the threeparameter correlated wave function of Lam and Varshni [21], the Hylleraas basis of Dai *et al.* [24] and Hashino *et al.* [26], the 15-parameter correlated wave function based on Slater orbitals of Saha *et al.* [25], the exponential correlated basis of Kar and Ho [29,30], the *B*-spline CI basis of Lin *et al.* [32], and the parameter-free C3-like basis of Ancarani and Rodriguez [33]. The present calculations are performed by using the CI

TABLE II. Energies and $\langle \cos(\theta_{12}) \rangle$ for the He ground and the lowest five singly excited state in ${}^{1}S^{e}$ and ${}^{1}P^{o}$ symmetries. All results are given in atomic units.

${}^{1}S^{e}$	Ε	$\langle \cos(\theta_{12}) \rangle$	${}^{1}P^{o}$	Ε	$\langle \cos(\theta_{12}) \rangle$
$1s^2$	- 2.903 683	- 0.064 22			
	-2.903582^{a}	-0.06427^{a}			
	- 2.903 724 3 ^b	-0.06459°			
1s2s	-2.145964	-0.01466	1s2p	-2.123839	-0.00478
	-2.145965^{a}	-0.01466^{a}		-2.123832^{a}	-0.00479^{a}
	- 2.145 974 0 ^b	-0.01470°		-2.1238430^{d}	-0.00488°
1s3s	-2.061265	-0.00432	1 <i>s</i> 3 <i>p</i>	-2.055144	-0.00118
	-2.061269^{a}	-0.00432^{a}		$-2.055143^{\rm a}$	-0.00118^{a}
	- 2.061 271 9 ^b	-0.00433°		-2.0551463^{d}	-0.00125°
1s4s	-2.033581	-0.00180	1s4p	-2.031067	-0.00047
	-2.033585^{a}	-0.00180^{a}		-2.031068^{a}	-0.00047^{a}
	- 2.033 586 7 ^b	-0.00180°		-2.0310696^{d}	-0.00047°
1s5s	-2.021172	-0.00091	1s5p	-2.019904	-0.00023
	-2.021176^{a}	-0.00091^{a}		-2.019905^{a}	-0.00023^{a}
	- 2.021 176 8 ^b	-0.00091°		-2.0199059^{d}	-0.00023°
1s6s	-2.014558	-0.00052	1s6p	-2.013831	-0.00013
	-2.014563^{a}	-0.00052^{a}		-2.013833^{a}	-0.00013^{a}
	- 2.014 563 0 ^b	-0.00052°		-2.0138339^{d}	- 0.000 13 ^c

^aLin *et al*. [32,58].

^bDrake and Yan [59].

^cKoga *et al*. [60].

^dDrake and Yan [61].

basis introduced above and utilizing the methods presented in Sec. II. The results at $\infty \leq D \leq 20$ are calculated by Taylor expansion with $n_{\text{max}} = 15$ and they show no differences from those obtained by Gegenbauer expansion for practical purpose. A comprehensive comparison between these predictions is illustrated in Fig. 2 and the ground-state energies are shown in Table III for some selected values of D. In the relatively strong screening environment ($\lambda > 1$), our results agree very well with the calculations of Kar and Ho [29] and Lin et al. [32], while the results of Lam and Varshni [21] and Saha [25] would exceed the He⁺(1s) threshold at $\lambda = 2$. Taking a detailed look at Table III, it is interesting to find that our results show systematically higher energies (0.00004 a.u. as in the pure Coulomb situation) than the most accurate results of Kar and Ho [29], except at $\lambda \ge 2$, where our results are converged to lower energies. Another striking aspect is that the present calculations employing a much smaller number of basis are close to or slightly better than the B-spline CI calculations of Lin *et al.* [32]. The diffuse character of Slater orbitals, multiple groups of basis functions, and accurate computation of matrix elements in analytical expressions are probably responsible for such result. Previous investigations on the singly excited states are very limited. In Fig. 2(b) we compare our results mainly with the B-spline CI calculation of Lin et al. [58]. The agreement is generally within the same accuracy as those shown in Table II at $\lambda = 0$.

The investigation on the evolution of physical quantities of He ground state is motivated by the work of Ancarani and Rodriguez [33]. Their investigations are restricted to the radial quantities and in a relatively weak screening environment ($\lambda \leq 1.2$). In this work, we present a detailed research on the

FIG. 2. (Color online) Variation of the He bound-state energies ($\Delta E = E_{\text{He}} - E_{\text{He}^+(1s)}$) against the screening parameter λ . (a) Ground state; (b) singly excited states, where n = 2-5 represent lines from bottom to top. Present results are compared with the calculations of Kar and Ho [29], Lin *et al.* [32], Lam and Varshni [21], Saha *et al.* [25], Ancarani and Rodriguez [33], and Dai *et al.* [24].

variations of expectation values not only for radial quantities $\langle r_1^n \rangle$, $\langle r_{12}^n \rangle$, $\langle r_{<} \rangle$, $\langle r_{>} \rangle$, but also for those including angular correlations $\langle \mathbf{r}_1 \cdot \mathbf{r}_2 \rangle$, $\langle \mathbf{p}_1 \cdot \mathbf{p}_2 \rangle$, $\langle \cos(\theta_{12}) \rangle$, as well as the virial theorem $-\langle V \rangle / \langle T \rangle$ in the entire screening range where the ground state exists. Comparisons of the present results with

FIG. 3. (Color online) Variation of the expectation values of some physical quantities for the He ground state against the screening parameter λ . (a) $\langle r_1 \rangle$, $\langle r_{12} \rangle$, $\langle r_{<} \rangle$, $\langle r_{>} \rangle$, and $-\langle V \rangle / \langle T \rangle$; (b) $\langle \mathbf{p_1} \cdot \mathbf{p_2} \rangle$, $\langle \cos(\theta_{12}) \rangle$, and $\langle \mathbf{r_1} \cdot \mathbf{r_2} \rangle$. Present results are compared with the calculations of Ancarani and Rodriguez [33] when they are available.

the prediction of Ancarani and Rodriguez [33] and other state-of-the-art calculations at $\lambda = 0$ in the literature [62,63] are shown in Fig. 3 and Table IV. The radial scale of He atom increases monotonously when the ground state approaches the bound limit ($E_{\text{He}(1s^2 \ \ S^e)} = E_{\text{He}^+(1s)}$), while the angular correlation quantities show some different trends. The cosine

TABLE III. Energies of the He $(1s^{2} S^{e})$ ground state and He⁺(1s) threshold at different Debye length D. All results are given in atomic units.

${}^\infty_0$	100 0.01	10 0.1	5 0.2	2 0.5	1 1	0.5 2	0.45 2.222 222
-2.000000	- 1.980 075	- 1.807 266	- 1.628 232	- 1.163 678	- 0.592 468	- 0.041 143	- 0.007 030
-2.90368	-2.87380	-2.61481	-2.34696	-1.65536	-0.81817	-0.05174	-0.00870
-2.90358	-2.87370	-2.61471	-2.34686	-1.65526	-0.81809	-0.05172	-0.00871
-2.903724	-2.873838	-2.614852	-2.347006	-1.655401	-0.818214	-0.05169	-0.0081
-2.90372	-2.87383	-2.61485	-2.34700		-0.81821	-0.05034	
-2.903716	-2.873830			-1.655267	- 0.815 999	+0.012209	
-2.90337		-2.61451	-2.34666	-1.65504	-0.81704		
-2.90243	-2.87255	-2.61350	-2.34549	-1.65253	-0.80851	-0.00630	
	$\begin{array}{c} \infty \\ 0 \\ \hline \\ -2.903\ 68 \\ -2.903\ 58 \\ -2.903\ 724 \\ -2.903\ 72 \\ -2.903\ 716 \\ -2.903\ 37 \\ -2.902\ 43 \end{array}$	$\begin{array}{c cccc} \infty & 100 \\ 0 & 0.01 \\ \hline \\ -2.000\ 000 & -1.980\ 075 \\ -2.903\ 68 & -2.873\ 80 \\ -2.903\ 58 & -2.873\ 70 \\ -2.903\ 724 & -2.873\ 838 \\ -2.903\ 72 & -2.873\ 83 \\ -2.903\ 716 & -2.873\ 830 \\ -2.903\ 37 \\ -2.902\ 43 & -2.872\ 55 \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

TABLE IV. Expectation values of some physical quantities for the He ground state $(1s^2 {}^1S^e)$ at different Debye length *D*. All results are given in atomic units.

D	\propto)	100	10	5	2	1	0.5	0.45
λ	0		0.01	0.1	0.2	0.5	1	2	2.222 222
$\overline{\langle r_1^{-1} \rangle}$	1.688 317ª	1.688 31	1.688 27	1.685 01	1.67578	1.61828	1.435 43	0.677 99	0.376 80
(-)		1.687 30 ^b		1.684 06 ^b	1.674 98 ^b	1.61846 ^b	1.441 89 ^b		
$\langle r_1 \rangle$	0.929 472 ^a	0.929 47	0.929 50	0.93218	0.93974	0.98846	1.176 03	3.595 43	8.328 62
		0.929 47 ^b		0.932 15 ^b	0.93961 ^b	0.987 37 ^b	1.160 18 ^b		
$\langle r_1^2 \rangle$	1.193 483 ^a	1.193 44	1.193 52	1.201 61	1.224 39	1.37572	2.047 81	23.8657	135.609
(1)		1.192 81 ^b		1.200 82 ^b	1.223 12 ^b	1.369 56 ^b	1.954 30 ^b		
$\langle r_{12}^{-1} \rangle$	0.945 818 ^a	0.945 86	0.945 84	0.943 50	0.93693	0.89648	0.76943	0.281 26	0.127 40
(12)		0.946 32 ^b		0.943 97 ^b	0.937 44 ^b	0.897 36 ^b	0.775 52 ^b		
$\langle r_{12} \rangle$	1.422 070 ^a	1.422 08	1.422 13	1.42626	1.43795	1.51373	1.80979	5.77461	13.6107
		1.421 63 ^b		1.425 76 ^b	1.437 28 ^b	1.51143 ^b	1.782 67 ^b		
$\langle r_{12}^2 \rangle$	2.516 439 ^a	2.51640	2.51657	2.532 39	2.577 21	2.87746	4.22075	47.9065	271.539
(12)		2.514 72 ^b		2.530 43 ^b	2.57441 ^b	2.86578 ^b	4.049 53 ^b		
$\langle r_{<} \rangle$	0.602 37 ^d	0.60236	0.602 37	0.603 60	0.607 12	0.63016	0.71768	1.72896	3.66213
$\langle r_{>} \rangle$	1.256 66 ^d	1.256 58	1.25663	1.26076	1.27236	1.34677	1.63438	5.46191	12.9951
$\langle \mathbf{r}_1 \cdot \mathbf{r}_2 \rangle$	-0.064737°	-0.06476	-0.06476	-0.06459	-0.06422	-0.06301	-0.06256	-0.08758	-0.16029
$\langle \mathbf{p}_1 \cdot \mathbf{p}_2 \rangle$	0.159 069 ^c	0.15914	0.15913	0.157 49	0.15311	0.12987	0.078 14	0.00474	0.000 64
$\langle \cos(\theta_{12}) \rangle$	-0.06427^{d}	-0.06422	-0.06422	-0.06387	-0.06295	-0.05807	-0.04578	-0.01213	-0.00481
$-\langle V \rangle / \langle T \rangle$	2	2.000 00	1.989 75	1.903 88	1.81984	1.61781	1.381 16	1.084 31	1.034 30

^aDrake [62].

^bAncarani and Rodriguez [33].

^cGrabowski and Chernoff [63].

^dLin et al. [58].

of the average angle of between two electrons $\langle \cos(\theta_{12}) \rangle$ is approaching zero, and the resulting effect for $\langle \mathbf{r_1} \cdot \mathbf{r_2} \rangle$ (negative) is decreasing. Another interesting physical quantity is $\langle \mathbf{p_1} \cdot \mathbf{p_2} \rangle$, which is part of the mass polarization term when finite nuclear mass is considered [see Eq. (1)]. It also reflects the electron correlations in momentum space and its magnitude and sign offer a useful perspective on the relative motion of two electrons [64,65]. The expectation value $\langle \mathbf{p_1} \cdot \mathbf{p_2} \rangle$ decreases to zero with increasing the screening parameter λ . Because the magnitude of electron momentum is always nonzero, even the state is near the bound limit; such a trend indicates a very interesting picture of the evolution of the system in momentum space: The orientations of the two-electron momentums tend to be perpendicular to each other.

It is now clear that the increasing of screening strength would result in the decreasing of electron correlations in both coordinate and momentum spaces. The variations of expectation values of quantities related to angular correlations in ground state show similarities, to some extent, to the situation in singly excited states 1snl. With successively increasing n, correlations between the two electrons become weaker in both coordinate and momentum spaces and the expectation values of $\langle \cos(\theta_{12}) \rangle$ (shown in Table I and compared with Refs. [58,60]) and $\langle \mathbf{p}_1 \cdot \mathbf{p}_2 \rangle$ (shown in Table I of Ref. [64]) both approach zero.

B. Resonant states

The complex-scaling method is employed to investigate the resonant states of a He atom embedded in screening environment. A two-group CI basis is used in the calculation which includes 12 *s*-type, 11 *p*-type, ... and 1 *o*-type Slater orbitals with $\xi = 1.0$ in the first group, and 6 s-type, 5 p-type, ... and 1 *h*-type orbitals with $\xi = 0.4$ in the second group. The total numbers of basis functions in the expansion of system wave functions are 637 and 998 for the ${}^{1}S^{e}$ and ${}^{1}P^{o}$ states, respectively. For illustrative purpose, we only show the lowest four resonances associated with the $\text{He}^+(N = 2, 3, \text{ and})$ 4) thresholds and emphasis on the capability of the present method. The accuracy of the resonance energy and width calculated by adopting such a basis can be estimated from Table V for resonances at $\lambda = 0$. The brief notation (N - m)represents the *m*th resonance associated with the $He^+(N)$ threshold. A more physically based classification labeled by approximate quantum numbers $_{N}[K,T]_{n}^{A}$ [45,46] is also given for each resonance. The complex-scaling calculations with correlated Sturmian-type basis functions in perimetric coordinates of Bürgers and Lindroth [66] and Rost et al. [67] are included as the benchmark. From the comparison, it can be seen that the present results are generally in good agreement with the most accurate ones and the agreement improves further for higher-lying states. The worst prediction of resonance parameters in the CI calculation appears at $_{2}[-1,0]_{2}^{+}$ state, which is an intrashell resonance having the most negative K value. The two electrons in this state can be located in a close region and the fulfillment of the Kato cusp condition for the basis function is important. Another disadvantage of the present work is the determination of width for the $2[-1,0]_3^+ {}^1P^o$ resonance. An enlarged or correlated basis should be used to produce such an extremely small value. The real parts of expectation values of $(\cos(\theta_{12}))$ and $(\mathbf{p_1} \cdot \mathbf{p_2})$ for the resonant states are also shown in Table V. For the ${}^{1}S^{e}$ states, only Krause *et al.* [64] has calculated $\langle \mathbf{p}_1 \cdot \mathbf{p}_2 \rangle$ for the lowest three resonances. However, our results are significantly

TABLE V. Classifications, energies, widths, and some expectation values for the He doubly excited resonant states in ${}^{1}S^{e}$ and ${}^{1}P^{o}$ symmetries. Only the real parts of $\langle \cos(\theta_{12}) \rangle$ and $\langle \mathbf{p}_{1} \cdot \mathbf{p}_{2} \rangle$ are given. All the results are given in atomic units.

			${}^{1}S^{e}$					${}^{1}P^{o}$		
N-m	$_{N}[K,T]_{n}^{A}$	E_r	Г	$\langle \cos(\theta_{12}) \rangle$	$\langle p_1 \cdot p_2 \rangle$	$\overline{{}_{N}[K,T]_{n}^{A}}$	E_r	Г	$\langle \cos(\theta_{12}) \rangle$	$\langle p_1 \cdot p_2 \rangle$
(2-1)	$_{2}[1,0]_{2}^{+}$	-0.777855 -0.7778676^{a}	0.004 546 0.004 541 3 ^a	- 0.447 47	- 0.003 03	$_{2}[0,1]_{2}^{+}$	- 0.693 091 - 0.693 134 9°	0.001 330 0.001 373 2°	0.03296	0.015 44
		-0.777865^{b}			-0.00079^{b}		-0.69313^{d}	0.001 38 ^d	0.033 12 ^d	
(2-2)	$_{2}[-1,0]_{2}^{+}$	-0.62182	0.00015	0.291 17	0.072 53	$_{2}[1,0]_{3}^{-}$	-0.597074	0.000 004	-0.41684	0.02407
	-	-0.6219272^{a}	0.0002156^{a}			5	-0.5970738°	0.000 003 8 ^c		
		-0.621715^{b}			0.07771 ^b		-0.5970738^{d}	0.0000038^{d}	-0.416837^{d}	
(2-3)	$_{2}[1,0]_{3}^{+}$	-0.589890	0.001 360	-0.48300	-0.01362	$_{2}[0,1]_{3}^{+}$	-0.564072	0.000 287	0.01573	0.003 33
	5	-0.5898946^{a}	0.001 362 4 ^a			5	- 0.564 085 1°	0.000 301 1°		
		- 0.589 96 ^b			-0.00855^{b}		-0.5640830^{d}	0.0003002^{d}	0.015 690 ^d	
(2-4)	$2[-1,0]^+_3$	-0.548067	0.000 061	0.44231	0.01067	$2[-1,0]_{3}^{-}$	-0.547090	_	0.13435	0.01108
	5	-0.5480855^{a}	0.0000747^{a}				-0.5470927°	$\approx 1E - 8^{\circ}$		
							-0.5470921^{d}	$<\!2E - 8^{d}$	0.135 95 ^d	
(3-1)	$_{3}[2,0]_{3}^{+}$	-0.353538	0.003 011	-0.60080	-0.00274	$_{3}[1,1]_{3}^{+}$	-0.335625	0.007 036	-0.25645	0.002 86
. ,		-0.3535385^{a}	0.003 009 8 ^a				-0.3356259°	0.007 023 7 [°]		
							-0.335626^{d}	0.007028^{d}	-0.256^{d}	
(3-2)	$_{3}[0,0]_{2}^{+}$	-0.317467	0.006 663	-0.03279	0.004 05	$_{3}[2,0]_{4}^{-}$	-0.285951	0.000 034	-0.60426	0.01477
. ,	51 / 15	-0.3174578^{a}	0.006 659 8ª			5 C / 34	-0.2859507°	0.000 034 1°		
							-0.2859507^{d}	0.0000341^{d}	-0.604259^{d}	
(3-3)	$_{3}[2.0]_{4}^{+}$	-0.281072	0.001 502	-0.62966	-0.01211	$3[-1,1]^{+}_{2}$	-0.282821	0.001 453	0.209 10	0.017 02
()	51 7-14	-0.2810727^{a}	0.001 501 4 ^a			51 7 15	-0.2828289°	0.001 462 0 ^c		
							-0.282826^{d}	0.001462^{d}	0.209 14 ^d	
(3-4)	3[0,0] ⁺	-0.263388	0.002418	0.03261	0.007.08	$_{3}[1,1]_{4}^{+}$	- 0.271 193	0.002 901	-0.29670	-0.00244
(= .)	510,014	-0.2633883^{a}	0.0024187^{a}			51-7-14	-0.2711934°	0.002 896 2°		
							-0.271193^{d}	0.002898^{d}	-0.29668^{d}	
(4-1)	4[3.0] ⁺	-0.200989	0.001 939	-0.69015	-0.00051	$_{4}[2,1]^{+}_{4}$	-0.194513	0.003 575	-0.41265	0.00141
()	41* , * 14	-0.2009895^{a}	0.001 938 3ª			41-,-14	-0.1945121°	0.003 574 3°		
							-0.194513^{d}	0.003574^{d}	$-0.412.6^{d}$	
(4-2)	4[1,0] ⁺	-0.187835	0.004915	-0.20018	0.003 56	₄[0,1] ⁺	-0.178799	0.004 770	-0.01062	0.002.76
()	41-9-14	-0.1878346^{a}	0.0049167^{a}			410,214	-0.1787987°	0.0047731°		
							-0.17880^{d}	0.00478^{d}	-0.0107^{d}	
(4-3)	$4[-1.0]^{+}$	-0.168261	0.002.163	0.109.55	0.007.85	₄ [3,0] ⁻	- 0.168 846	0.000.046	-0.69745	0.009.80
()	4[1,0]4	-0.1682613^{a}	0.0021723^{a}	0.109.00	0.007.00	4[0,0]5	-0.1688460°	0.000 046 1°	0.077	0.007 00
		01100 2010	0.0021/20				-0.1688609^{d}	0.0000460^{d}	-0.69745^{d}	
(4-4)	₄[3,0] ⁺	-0.165734	0.001210	-0.70941	-0.00889	$_{4}[2,1]_{5}^{+}$	-0.161252	0.002.168	-0.44616	-0.00388
(, ,)	410,015	-0.1657340^{a}	0.0012100^{a}	0.702 11	0.000 07	412,115	-0.161.252	0.002.167.8°	0.11010	0.000 00
		0.105 / 5+0	0.0012100				-0.161251^{d}	0.002 167 8 0.002 168 ^d	-0.446179^{d}	

^aBürgers et al. [66].

^bKrause et al. [64].

^cRost *et al.* [67].

^dEiglsperger et al. [68].

different from theirs and only the signs of these values can be identified. Eiglsperger *et al.* [68] have calculated $\langle \cos(\theta_{12}) \rangle$ for the ¹*P*^o resonances by using a CI basis in Coulomb-Sturmian functions. The agreement between our results and theirs are generally in the same orders of magnitude as that for the energy and width.

The screening effects of SCP on the resonance energy and width have been investigated by Kar and Ho [38–40] using the stabilization method with exponential correlated basis. Accurate resonance parameters have been obtained in a wide range of screening strength, but only for resonances lying below the He⁺(N = 2) threshold. This may due to the limitation of the stabilization method that the plotted stabilization plateaus become quite complicated for multichannel resonances. Subsequently, the complex-scaling method based on Hylleraas basis functions was applied to calculate the ${}^{1}S^{e}$ resonances associated with the He⁺(N = 2, 3, and 4) thresholds by Chakraborty and Ho [41]. Their results are probably the most accurate predictions of the ${}^{1}S^{e}$ resonance with SCP in the literature up to the present. Most recently, Ordóñez-Lasso *et al.* [44] have presented a systematic study on the ${}^{1,3}S^{e}$, ${}^{1,3}P^{o}$, and ${}^{1,3}D^{e}$ resonances below the He⁺(N = 2) threshold by using the Feshbach projection method with the Hylleraas basis. The evolutions of resonance energy, width, and average interelectronic angle as a function of screening parameter are investigated for resonances in different series. In Figs. 4 and 5, we compare our results with those previous calculations for resonances in ${}^{1}S^{e}$ and ${}^{1}P^{o}$

FIG. 4. (Color online) Variation of the energy ($\Delta E = E_{\text{He}} - E_{\text{He}^+(N_s)}$) and width for the He ¹S^e resonant states associated with the He⁺(N = 2-4) thresholds against the screening parameter λ . (a), (b) N = 2; (c), (d) N = 3; (e), (f), N = 4. Present results are compared with the calculations of Kar and Ho [38], Ordóñez-Lasso *et al.* [44], and Chakraborty and Ho [41].

symmetries, respectively. The widths of (2-4) ¹*P*^o resonance are not shown here due to the reasons mentioned above. Numerical values of the lowest ¹*S*^e resonance at some selected values of *D* are shown in Table VI as an illustration. As we can see, all of the calculations predict similar trends in energy and width for resonances lying below the He⁺(N = 2) threshold. For the ¹S^e resonances associated with higher-lying thresholds, our CI calculation gets almost same results as

FIG. 5. (Color online) Variation of the energy ($\Delta E = E_{\text{He}} - E_{\text{He}^+(Ns)}$) and width for the He ${}^1P^o$ resonant states associated with the He⁺(N = 2-4) thresholds against the screening parameter λ . (a), (b) N = 2; (c), (d) N = 3; (e), (f) N = 4. Present results are compared with the calculations of Kar and Ho [39,40] and Ordóñez-Lasso *et al.* [44].

those obtained by the Hylleraas basis [41]. In Table VI, the systematic behavior of the present calculated resonance parameters is found, like the situation in the ground state (see Table III). The complex-scaling method based on the CI basis show slightly higher energy (0.000 012 a.u.) and wider width

(0.000005 a.u.) than the most accurate results [41] at all screening parameters.

The isomorphic changes of resonance width in a series N[K,T] against the screening parameter have been demonstrated by Ordóñez-Lasso *et al.* [44] for resonances associated

D	∞	100	50	20	10	7	5	3
λ	0	0.01	0.02	0.05	0.1	0.142 857	0.2	0.333 333
$He^+(2s)$	-0.500000	-0.480297	- 0.461 173	- 0.407 104	- 0.327 085	- 0.267 535	- 0.199 713	- 0.085 619
$\operatorname{He}^{+}(2p)$	-0.500000	-0.480248	-0.460981	-0.405970	-0.322962	-0.259782	-0.186138	-0.057934
E_r								
Present	-0.777855	-0.748223	-0.719320	-0.636844	-0.512818	-0.419094	-0.311064	-0.127938
Chakraborty and Ho [41]	-0.777867	-0.748236	-0.719333	-0.636856	-0.512829	-0.419105	-0.311073	
Kar and Ho [40]	-0.77783	-0.74819	-0.71929	-0.63683	-0.51279	-0.41906	-0.31105	-0.12792
Ordóñez-Lasso et al. [44]	-0.77794	-0.74831	-0.71941	-0.63694	-0.51291	-0.41919	-0.31114	-0.12798
Г								
Present	0.004 546	0.004 542	0.004 529	0.004 441	0.004 153	0.003 790	0.003 185	0.001 564
Chakraborty and Ho [41]	0.004 541	0.004 537	0.004 524	0.004 436	0.004 149	0.003 786	0.003 181	
Kar and Ho [40]	0.004 549	0.004 545	0.004 533	0.004 450	0.004 159	0.003 794	0.003 191	0.001 569
Ordóñez-Lasso et al. [44]	0.004 60	0.004 59	0.004 56	0.004 45	0.004 13	0.003 75	0.003 13	0.001 52

TABLE VI. Energies and widths for the He $_{2}[1,0]_{2}^{+1}S^{e}$ resonant state and bound energies for the He⁺(2*s*,2*p*) thresholds at different Debye length *D*. All results are given in atomic units.

with the $\text{He}^+(N=2)$ threshold. Furthermore, as one can see from Fig. 5, the isomorphism also exists among resonances in different shells, for example, the (2-2) $_{2}[1,0]_{3}^{-}$, (3-2) $_{3}[2,0]_{4}^{-}$, and (4-3) $_{4}[3,0]_{5}^{-1}P^{o}$ resonances shown in Figs. 5(b), 5(d), and 5(f), respectively. This phenomenon can be understood from the molecular picture originated by Herrick and Kellman [45,69] that the doubly excited resonant states can be interpreted in terms of the collective ro-vibrational motions of a highly nonrigid X - Y - X molecule, with the X's electrons and Y the nucleus. The bending vibrational quanta of the resonant states is defined by v = N - K - 1 and the rotational angular momentum along the molecule-fixed axis (internal axis of the two-electron atoms) is given by the approximate quantum number T. All the three resonances associated with different thresholds mentioned above have zero bending quanta and zero rotational angular momentum along the internal axis. Therefore, their widths are in the same order of magnitude and follow a similar behavior in changing the screening parameter.

The investigations on physical quantities other than energy and width would yield more information in understanding the evolution of resonant states in screening environment. Such work is available by Ordóñez-Lasso et al. [44], who have presented a detailed study on the interelectronic angle $\arccos(\cos(\theta_{12}))$ for He resonances at different screening parameters. In their calculation, all the angles would ultimately approach 90° with increasing λ to the critical point beyond which the resonances will be no longer exist. In Figs. 6(a)and 6(b), we compare our results calculated by using the complex-scaled CI wave functions with those of Ordóñez-Lasso *et al.* [44] for the lowest six ${}^{1}P^{o}$ resonances associated with the $\text{He}^+(N = 2)$ threshold. It is interestingly found that the interelectronic angles of (2-1), (2-3), and (2-6) resonances in Fig. 6(a) belonging to $2[0,1]^+$ series are moving away from 90° with increasing λ , which is opposite to the prediction of Ordóñez-Lasso et al. [44]. Although the general trends for the (2-2), (2-4), and (2-5) resonances in Fig. 6(b) are the same in both calculations, the results are quantitatively different. Recalling that our results are in good agreement with the prediction of Eiglsperger *et al.* [68] at $\lambda = 0$, we have also performed a calculation by using the Feshbach

projection method [70] with the B-spline CI basis [32,58] for further examination. It is clearly shown that our two individual methods based on different basis sets get almost same results at all λ investigated here which, further assures the reliability of the present results. Recalling the changes of interelectronic angle in the bound states—that they are all approaching 90° when the states are close to the bound limits-the angles in the resonant states may have different behaviors due to their asymptotically divergent wave functions in different configurations. Due to the fact that the $He^+(2s)$ and (2p) states are not degenerate in the screening environment and some of the resonant states would exceed the $He^+(2s)$ threshold and transform into resonances owing shape characters, the critical points for the existence of these resonances are not asserted in this work. Another interesting phenomenon is that the interelectronic angles of (2-4) and (2-5) resonances displayed in Fig. 6(b) show a strong interference effect at small values of λ . We present a tentative explanation that this is due to the near-degenerate energies for these two resonances. As shown in the embedded figure, the (2-4) and (2-5) resonances have much closer energies than others at small λ . When λ increases to larger values, the two resonances are well separated and the interference effect becomes weaker. At present, it is still unknown that how the near-degenerate resonances affect each other in the screening environment.

The results for resonances associated with He⁺(N = 3 and 4) thresholds are shown in Figs. 6(c) and 6(d), respectively. These relatively lower-lying resonances associated with a certain threshold approach 90°, except the (4-2) resonance, which exceeds 90° to smaller angles. Similarly, such phenomenon may be due to the near-degenerate energies between the (4-2) and (4-3) resonances at $\lambda = 0.06-0.08$. The interference effects in relatively higher-lying resonances associated with a specified or different thresholds are expected to be more complicated due to the close proximity of large numbers of resonances in the energy range near the thresholds.

Besides $\langle \cos(\theta_{12}) \rangle$, we have also calculated $\langle \mathbf{p}_1 \cdot \mathbf{p}_2 \rangle$ for the ¹*P*^o resonances investigated here and the results are shown in Fig. 7. No comparisons can be made at present even in the pure Coulomb case. From Fig. 7(a) we can see that the interference effect existing between the interelectronic angles of (2-4) and

FIG. 6. (Color online) Variation of $\arccos(\cos(\theta_{12}))$ for the He ¹*P*^o resonant states associated with the He⁺(N = 2-4) thresholds against the screening parameter λ . (a), (b) N = 2; (c) N = 3; (d) N = 4. Present results are compared with the calculations of Lin *et al.* [58], Ordóñez-Lasso *et al.* [44], and Eiglsperger *et al.* [68].

(2-5) resonances are also visible in $\langle \mathbf{p}_1 \cdot \mathbf{p}_2 \rangle$, although in a relatively small magnitude. The most interesting phenomenon in the variation of $\langle \mathbf{p}_1 \cdot \mathbf{p}_2 \rangle$ against the screening parameter is that the lowest resonance associated with $He^+(N = 2)$ and 3) thresholds and the lowest two with the $\text{He}^+(N = 4)$ threshold have the positive expectation values first decreasing and then slightly increasing, whereas the rest of others have values approaching zero. With further examination on these resonances one can find they are all intrashell resonances with positive values of K and, consequently, can be more likely interpreted as a symmetric, linearly moving X-Y-X molecule in view of the picture of Herrick and Kellman [45,69]. Because the magnitude of momentum (i.e., $\langle \mathbf{p_1}^2 \rangle = \langle 2\mu T_1 \rangle$) for each electron is always decreasing with increasing λ , we can only deduce that the movement of the two electrons in these states are increasingly synchronous in a same direction. Analyzing the absolute magnitude of $\langle p_1 \cdot p_2 \rangle$ is difficult because it contains both radial and angular correlations in momentum space. Further investigations on other quantities, such as $\langle p_{12} \rangle = \langle |\mathbf{p_1} - \mathbf{p_2}| \rangle$, describing the magnitude of relative momentum between two electrons [71], $\langle \cos(\bar{\theta}_{12}) \rangle$ the angle subtended between two momentum vectors of electrons [72], and $\rho(p_1, p_2)$ the density of system wave function in momentum space [73], will be welcomed in the future to shed more light on the evolution of resonant states in screening environment.

IV. CONCLUSIONS

In this work, we have applied the variational and complexscaling methods together with the Slater-type CI basis functions to investigate the bound and resonant states of two-electron systems embedded in screening environment. Two expansion methods, Taylor expansion and Gegenbauer expansion, are introduced to analytically deal with the twoelectron SCP matrices in both the real and complex formalism. The former has great advantages in fast computation of the matrix elements at small screening parameters, while the latter is applicable in arbitrary screening conditions. Convergences of Taylor expansion at different λ are examined. The computations of expectation values for different physical quantities

FIG. 7. (Color online) Variation of $\langle \mathbf{p}_1 \cdot \mathbf{p}_2 \rangle$ for the He ${}^{1}P^{o}$ resonant states associated with the He⁺(N = 2-4) thresholds against the screening parameter λ . (a) N = 2; (b) N = 3; (c) N = 4.

by using the complex-scaled resonance wave function are introduced.

Variations of the bound-state energies for He ground and several singly excited states in ${}^{1}S^{e}$ and ${}^{1}P^{o}$ symmetries are investigated. Our results are in systematic agreement with previous accurate predictions by using correlated basis functions. For the ground states, the evolutions of physical quantities such as $\langle r_1^n \rangle$, $\langle r_{12}^n \rangle$, $\langle r_{<} \rangle$, $\langle r_1 \cdot r_2 \rangle$, $\langle \mathbf{p_1} \cdot \mathbf{p_2} \rangle$, $\langle \cos(\theta_{12}) \rangle$, and $-\langle V \rangle / \langle T \rangle$ are calculated in the entire screening range where the ground state exists. The accuracy of these results is expected to be in the same degree as that in the pure Coulomb situation.

The doubly excited resonant states of the He atom associated with the $\text{He}^+(N = 2, 3, \text{ and } 4)$ thresholds are calculated by using the complex-scaling method at different screening parameters. The energy and width are in good agreement with other theoretical calculations when they are available, whereas the average interelectronic angles $\arccos(\cos(\theta_{12}))$ are quite different from those by the Feshbach projection method with the Hylleraas basis. The accuracy of the present work is ensured by performing an independent Feshbach projection calculation with the B-spline CI basis. The behaviors of the interelectronic angle for resonant states in a screening environment are found to be different from those for bound states due to their asymptotically divergent wave functions and complicated configuration interactions. Strong interference effects exist between resonances with near-degenerate energies. Additionally, we have calculated the quantity $\langle \mathbf{p}_1 \cdot \mathbf{p}_2 \rangle$ for the resonant states as a function of λ . Its variation may partially reflects the electron correlations of resonant states on momentum properties.

The computational methods introduced in this work can be fairly applied to the two-electron systems with arbitrary nuclear charge and mass (e.g., H^- , Ps^- , and Li^+) confined in generalized-form SCPs, such as the exponential-cosine SCP [74–77] and the finite oscillator potential [78,79]. The former has been widely used to describe the multiparticle cooperative effects in dense quantum plasmas, while the latter has important applications in modeling the Coulomb interactions of charged particles confined in quantum dots.

Finally, we would like to emphasize that, although the present work is applicable to the two-electron atoms embedded in plasmas modeled by SCP, both the experimental observations and the theoretical predictions of the bound states, resonances, and spectra properties of atoms in a real plasma are more complicated than those in vacuum space. Experimental measurement requires not only the production of a weakly coupled plasma environment, but also the precise control of the plasma parameters, such as Debye length, plasma temperature, and number density. For the theoretical side, finding proper model potentials to describe the screening effects between different species and accurately solving the Hamiltonian of such a system are necessary. In fact, there are many elementary processes in a real plasma, such as the radiative transitions, collisional excitations and ionizations, autoionization, as well as the microscopic electric field created by fluctuations. So many processes can occur that the experimental identification of those processes in a particular situation is a major challenge [80]. However, once such identification can be made, the energies of the atomic states can be directly measured from the radiative transition spectra, and the resonance structures can be viewed from the electron-ion scattering cross sections or photoionization cross sections. On the other hand, the theoretical reference data can be used as the diagnostic tool to determine the plasma parameters, especially the Debye length, which, in turn, would lead to estimation of the temperature and

number density of the plasma. With continuous development in both experimental techniques and theoretical investigations, it is believed that the measurement of individual atomic process in plasmas and the theoretical calculations in a more realistic plasma environment will be available in the future.

ACKNOWLEDGMENTS

Financial support by the Ministry of Science and Technology of Taiwan (R.O.C.) is gratefully acknowledged.

APPENDIX

For convenience, we use the same notations used in Ref. [15], i.e.,

$$R^{L+\frac{1}{2}}_{\Delta}(i,j,k,l) = I^{n,n'}_{L+\frac{1}{2}}(\lambda,\xi,\xi'),$$
(A1)

where

$$n = n_i + n_k - L - 1, \quad \xi = \xi_i + \xi_k,$$

$$n' = n_j + n_l - L - 1, \quad \xi' = \xi_j + \xi_l.$$
(A2)

The general idea to get the analytical solution of this integration is to integrate the inner part of K(z) and the outer part of I(z), one after another. We first calculate the inner integral

$$\rho_{L+\frac{1}{2}} = \int_{r'}^{\infty} dr \Big[r^{n+L+\frac{1}{2}} e^{-\xi r} K_{L+\frac{1}{2}}(\lambda r) \Big].$$
(A3)

By substituting the exact formula of K(z),

$$K_{n+\frac{1}{2}}(z) = \sqrt{\frac{\pi}{2z}} e^{-z} \sum_{k=0}^{n} \frac{(n+k)!}{k!(n-k)!(2z)^{k}},$$
 (A4)

into Eq. (A3) and using the definition of the incomplete Γ function

$$\Gamma(n,x) = \int_{x}^{\infty} t^{n-1} e^{-t} dt, \qquad (A5)$$

one has

$$\begin{split} \rho_{L+\frac{1}{2}} &= \frac{\sqrt{\pi}}{(2\lambda)^{L+\frac{1}{2}}} \sum_{k=0}^{L} \frac{(2L-k)!(2\lambda)^{k}}{(L-k)!k!} \frac{1}{(\xi+\lambda)^{n+k+1}} \\ &\times \Gamma[(n+k+1),(\xi+\lambda)r'] \\ &= \frac{\sqrt{\pi}e^{-(\xi+\lambda)r'}}{(2\lambda)^{L+\frac{1}{2}}(\xi+\lambda)^{n+1}} \left\{ \sum_{i=0}^{n} \frac{[(\xi+\lambda)r']^{i}}{i!} \mathcal{Q}_{0}^{Ln} \left(\frac{2\lambda}{\xi+\lambda} \right) \\ &+ (1-\delta_{L0}) \sum_{i=1}^{L} \frac{[(\xi+\lambda)r']^{n+i}}{(n+i)!} \mathcal{Q}_{i}^{Ln} \left(\frac{2\lambda}{\xi+\lambda} \right) \right\}, \end{split}$$
(A6)

where

$$Q_i^{Ln}(z) = \sum_{k=i}^{L} \frac{(2L-k)!(n+k)!}{(L-k)!} \frac{z^k}{k!}, \quad 0 \le i \le L.$$
(A7)

The result of $\rho_{L+\frac{1}{2}}$ is the same as Eq. (40) in Ref. [15] except that an additional minus appears in the latter, which we believe should be removed.

In the next step of calculating the outer integral,

$$\tau_{L+\frac{1}{2}}^{m} = \frac{\sqrt{\pi}}{(2\lambda)^{L+\frac{1}{2}}} \int_{0}^{\infty} dr \left[r^{m+L+\frac{1}{2}} e^{-(\xi+\xi'+\lambda)r} I_{L+\frac{1}{2}}(\lambda r) \right],$$
(A8)

we make a transformation

$$I_{\nu}(z) = i^{-\nu} J_{\nu}(iz),$$
 (A9)

where J(z) is the Bessel function of the first kind. Equation (A8) now becomes

$$\tau_{L+\frac{1}{2}}^{m} = \frac{\sqrt{\pi}}{(2\lambda)^{L+\frac{1}{2}}} i^{-(L+\frac{1}{2})} \\ \times \int_{0}^{\infty} dr \Big[r^{m+L+\frac{1}{2}} e^{-(\xi+\xi'+\lambda)r} J_{L+\frac{1}{2}}(i\lambda r) \Big].$$
(A10)

By using the definite integral

$$\int_{0}^{\infty} dx [x^{\mu-1} e^{-\alpha x} J_{\nu}(\beta x)]$$

$$= \frac{\left(\frac{\beta}{2\alpha}\right)^{\nu} \Gamma(\nu+\mu)}{\alpha^{\mu} \Gamma(\nu+1)} {}_{2}F_{1}$$

$$\times \left(\frac{\nu+\mu}{2}, \frac{\nu+\mu+1}{2}; \nu+1; -\frac{\beta^{2}}{\alpha^{2}}\right) \quad (A11)$$

and making the substitutions

$$\alpha = \xi + \xi' + \lambda, \quad \beta = i\lambda,$$

$$\mu = L + m + \frac{3}{2}, \quad \nu = L + \frac{1}{2},$$
(A12)

• •

we have

$$\tau_{L+\frac{1}{2}}^{m} = \frac{\sqrt{\pi}}{(2)^{2L+1}} \frac{1}{(\xi+\xi'+\lambda)^{2L+2+m}} \frac{\Gamma(2L+2+m)}{\Gamma(L+\frac{3}{2})} {}_{2}F_{1}$$

$$\times \left[L+1+\frac{m}{2}, L+\frac{3}{2}+\frac{m}{2}; L+\frac{3}{2}; \frac{\lambda^{2}}{(\xi+\xi'+\lambda)^{2}} \right]$$

$$= \frac{(\xi+\xi'+\lambda)^{m}}{[(\xi+\xi')(\xi+\xi'+2\lambda)]^{L+m+1}} \frac{(2L+1+m)!L!}{(2L+1)!} {}_{2}F_{1}$$

$$\times \left[-\frac{m}{2}, \frac{1-m}{2}; L+\frac{3}{2}; \frac{\lambda^{2}}{(\xi+\xi'+\lambda)^{2}} \right], \quad (A13)$$

with a restriction of $n \leq m \leq n + n' + L$, where ${}_2F_1(a,b;c;z)$ is the Gauss hypergeometric function.

It is interesting to note that one of the first two variables of the hypergeometric function is always a negative integer. In this case, the infinite summation of the hypergeometric function becomes a finite one,

$${}_{2}F_{1}(-m,b;c;z) = \sum_{n=0}^{m} \frac{(-m)_{n}(b)_{n}}{(c)_{n}} \frac{z^{n}}{n!}, \quad |z| \leq 1, \quad (A14)$$

where

$$(x)_n = 1 \cdot x \cdots (x + n - 1), \text{ and } (x)_0 = 1.$$
 (A15)

The result of $\tau_{L+\frac{1}{2}}^{m}$ obtained in Ref. [15] can simply be reproduced by using a transformation of the Gauss hypergeometric function [54].

Combining Eqs. (A6) and (A13), the final expression for the two-dimensional integral of (A1) is given by

$$I_{L+\frac{1}{2}}^{n,n'}(\lambda,\xi,\xi') = \frac{1}{(\xi'+\lambda)^{n'+1}} Q_0^{Ln'} \left(\frac{2\lambda}{\xi'+\lambda}\right) \sum_{i=0}^{n'} \frac{(\xi'+\lambda)^i}{i!} \tau_{L+\frac{1}{2}}^{n+i} + \frac{(1-\delta_{L0})}{(\xi'+\lambda)^{n'+1}} \sum_{i=0}^L \frac{(\xi'+\lambda)^{n'+i}}{(n'+i)!} Q_i^{Ln'} \left(\frac{2\lambda}{\xi'+\lambda}\right) \tau_{L+\frac{1}{2}}^{n+n'+i}, \quad (A16)$$

which is the same as Eq. (10) in Ref. [15], except that a factor $(\xi' + \lambda)^{-(n'+1)}$ was missed in their second term on the right-hand side.

- [1] Y. D. Jung, Phys. Plasmas 5, 3781 (1998).
- [2] S. Kar and Y. K. Ho, New J. Phys. 7, 141 (2005).
- [3] F. Pont and P. Serra, Phys. Rev. A 79, 032508 (2009).
- [4] A. N. Sil, S. Canutob, and P. K. Mukherjee, Adv. Quantum Chem. 58, 115 (2009).
- [5] S. B. Zhang, J. G. Wang, and R. K. Janev, Phys. Rev. Lett. 104, 023203 (2010).
- [6] I. Nagy, Phys. Rev. A 83, 044503 (2011).
- [7] P. K. Mondal, N. N. Dutta, G. Dixit, and S. Majumder, Phys. Rev. A 87, 062502 (2013).
- [8] J. Carbonell, F. de Soto, and V. A. Karmanov, Few-Body Syst. 54, 2255 (2013).
- [9] M. Shi, Q. Liu, Z. M. Niu, and J. Y. Guo, Few-Body Syst. 55, 135 (2014).
- [10] Y. D. Kwon, Phys. Rev. B 73, 165210 (2006).
- [11] M. Genkin and E. Lindroth, Phys. Rev. B 81, 125315 (2010).
- [12] Y. Akinaga and S. Ten-no, Chem. Phys. Lett. 462, 348 (2008).
- [13] Y. Akinaga and S. Ten-no, Int. J. Quantum Chem. 109, 1905 (2009).
- [14] M. Seth and T. Ziegler, J. Chem. Theory Comput. 8, 901 (2012).
- [15] J. F. Rico, R. López, G. Ramírez, and I. Ema, Theor. Chem. Acc. 132, 1304 (2013).
- [16] F. J. Rogers, H. C. Graboske, and D. J. Harwood, Phys. Rev. A 1, 1577 (1970).
- [17] C. S. Lam and Y. P. Varshni, Phys. Rev. A 4, 1875 (1971).
- [18] K. M. Roussel and R. F. O'Connell, Phys. Rev. A 9, 52 (1974).
- [19] R. L. Greene and C. Aldrich, Phys. Rev. A 14, 2363 (1976).
- [20] B. Saha, P. K. Mukherjee, and G. H. F. Diercksen, Astron. Astrophys. 396, 337 (2002).
- [21] C. S. Lam and Y. P. Varshni, Phys. Rev. A 27, 418 (1983).
- [22] Z. Wang and P. Winkler, Phys. Rev. A 52, 216 (1995).
- [23] P. K. Mukherjee, J. Karwowski, and G. H. F. Diercksen, Chem. Phys. Lett. 363, 323 (2002).
- [24] S. T. Dai, A. Solovyova, and P. Winkler, Phys. Rev. E 64, 016408 (2001).
- [25] B. Saha, T. K. Mukherjee, P. K. Mukherjee, and G. H. F. Diercksen, Theor. Chem. Acc. 108, 305 (2002).
- [26] T. Hashino, S. Nakazaki, T. Kato, and H. Kashiwabara, Phys. Lett. A 123, 236 (1987).
- [27] S. Dutta, J. K. Saha, S. Bhattacharyya, P. K. Mukherjee, and T. K. Mukherjee, Phys. Scr. 89, 015401 (2014).
- [28] S. Kar and Y. K. Ho, Phys. Rev. A 71, 052503 (2005).
- [29] S. Kar and Y. K. Ho, Int. J. Quantum Chem. 106, 814 (2006).
- [30] S. Kar and Y. K. Ho, Int. J. Quantum Chem. 107, 353 (2007).
- [31] P. Serra and S. Kais, J. Phys. B: At. Mol. Opt. Phys. 45, 235003 (2012).

- [32] Y. C. Lin, C. Y. Lin, and Y. K. Ho, Phys. Rev. A 85, 042516 (2012).
- [33] L. U. Ancarani and K. V. Rodriguez, Phys. Rev. A 89, 012507 (2014).
- [34] A. Basu, J. Phys. B: At. Mol. Opt. Phys. 43, 115202 (2010).
- [35] A. Basu, Eur. Phys. J. D 65, 405 (2011).
- [36] S. B. Zhang, J. G. Wang, and R. K. Janev, Phys. Rev. A 81, 032707 (2010).
- [37] S. B. Zhang, J. G. Wang, R. K. Janev, and X. J. Chen, Phys. Rev. A 83, 032724 (2011).
- [38] S. Kar and Y. K. Ho, Chem. Phys. Lett. 402, 544 (2005).
- [39] S. Kar and Y. K. Ho, Phys. Rev. A 72, 010703 (2005).
- [40] S. Kar and Y. K. Ho, J. Phys. B: At. Mol. Opt. Phys. 39, 2445 (2006).
- [41] S. Chakraborty and Y. K. Ho, Eur. Phys. J. D 49, 59 (2008).
- [42] L. G. Jiao and Y. K. Ho, Int. J. Quantum Chem. 113, 2569 (2013).
- [43] L. G. Jiao and Y. K. Ho, Phys. Rev. A 87, 052508 (2013).
- [44] A. F. Ordóñez-Lasso, J. C. Cardona, and J. L. Sanz-Vicario, Phys. Rev. A 88, 012702 (2013).
- [45] D. R. Herrick, Adv. Chem. Phys. 52, 1 (1983).
- [46] C. D. Lin, Phys. Rev. Lett. **51**, 1348 (1983).
- [47] W. P. Reinhardt, Annu. Rev. Phys. Chem. 33, 223 (1982).
- [48] Y. K. Ho, Phys. Rep. 99, 1 (1983).
- [49] N. Moiseyev, Phys. Rep. 302, 212 (1998).
- [50] T. Kato, Commun. Pure Appl. Math. 10, 151 (1957).
- [51] P. Winkler, Int. J. Quantum Chem. 110, 3129 (2010).
- [52] O. Čertík and P. Winkler, Int. J. Quantum Chem. 113, 2012 (2013).
- [53] J. F. Perkins, J. Chem. Phys. 48, 1985 (1968).
- [54] I. S. Gradshteyn and I. M. Ryzhik, in *Table of Integrals, Series, and Products*, 6th ed., edited by A. Jeffrey and D. Zwillinger (Academic Press, New York, 2000).
- [55] A. Buchleitner, B. Gremaud, and D. Delande, J. Phys. B: At. Mol. Opt. Phys. 27, 2663 (1994).
- [56] A. Bürgers and J. M. Rost, J. Phys. B: At. Mol. Opt. Phys. 29, 3825 (1996).
- [57] C. F. Fischer, T. Brage, and P. Jönsson, *Computational Atomic Structure* (Institute of Physics, Bristol, Philadelphia, 1997).
- [58] Y. C. Lin, C. Y. Lin, and Y. K. Ho (unpublished).
- [59] G. W. F. Drake and Z. C. Yan, Chem. Phys. Lett. 229, 486 (1994).
- [60] T. Koga, H. Matsuyama, and A. J. Thakkar, Chem. Phys. Lett. 512, 287 (2011).
- [61] G. W. F. Drake and Z. C. Yan, Phys. Rev. A 46, 2378 (1992).
- [62] G. W. F. Drake, in Atomic, Molecular, and Optical Physics Handbook, edited by G. W. F. Drake (AIP, New York, 1996), Vol. 11.

- [63] P. E. Grabowski and D. F. Chernoff, Phys. Rev. A 84, 042505 (2011).
- [64] J. L. Krause, J. D. Morgan, and R. S. Berry, Phys. Rev. A 35, 3189 (1987).
- [65] J. W. Hollett and P. M. W. Gill, J. Chem. Theory Comput. 8, 1657 (2012).
- [66] A. Bürgers, D. Wintgen, and J. M. Rost, J. Phys. B: At. Mol. Opt. Phys. 28, 3163 (1995).
- [67] J. M. Rost, K. Schulz, M. Domke, and G. Kaindl, J. Phys. B: At. Mol. Opt. Phys. 30, 4663 (1997).
- [68] J. Eiglsperger, M. Schönwetter, B. Piraux, and J. M. Nero, At. Data Nucl. Data Tables 98, 120 (2012).
- [69] M. E. Kellman and D. R. Herrick, Phys. Rev. A 22, 1536 (1980).
- [70] A. Temkin, in *Atomic, Molecular, and Optical Physics Handbook*, edited by G. W. F. Drake (AIP, New York, 1996), Vol. 25.

- [71] D. R. T. Keeble and K. E. Banyard, J. Phys. B: At. Mol. Opt. Phys. **30**, 13 (1997).
- [72] T. Koga and H. Matsuyama, Chem. Phys. Lett. 375, 565 (2003).
- [73] B. Talukdar, A. Sarkar, S. N. Roy, and P. Sarkar, Chem. Phys. Lett. 381, 67 (2003).
- [74] D. Singh and Y. P. Varshni, Phys. Rev. A 28, 2606 (1983).
- [75] A. Ghoshal and Y. K. Ho, Phys. Rev. A 79, 062514 (2009).
- [76] A. K. Roy, Int. J. Quantum Chem. 113, 1503 (2013).
- [77] A. Bhattacharya, M. Z. M. Kamali, A. Ghoshal, and K. Ratnavelu, Phys. Plasmas 20, 083514 (2013).
- [78] P. Kimani, P. Jones, and P. Winkler, Int. J. Quantum Chem. 108, 2763 (2008).
- [79] S. Chakraborty and Y. K. Ho, Phys. Rev. A 84, 032515 (2011).
- [80] J. Weisheit, in Atomic, Molecular, and Optical Physics Handbook, edited by G. W. F. Drake (AIP, New York, 1996), Vol. 82.