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photon statistics, entropy generation, and stochastic motion
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We study the implications of quantum fluctuations of a dispersive medium, under steady rotation, either in or
out of thermal equilibrium with its environment. A rotating object exhibits a quantum instability by dissipating its
mechanical motion via spontaneous emission of photons, as well as internal heat generation. Universal relations
are derived for the radiated energy and angular momentum as trace formulas involving the object’s scattering
matrix. We also compute the quantum noise by deriving the full statistics of the radiated photons out of thermal
and/or dynamic equilibrium. The (entanglement) entropy generation is quantified and the total entropy is shown
to be always increasing. Furthermore, we derive a Fokker-Planck equation governing the stochastic angular
motion resulting from the fluctuating backreaction frictional torque. As a result, we find a quantum limit on the
uncertainty of the object’s angular velocity in steady rotation. Finally, we show in some detail that a rotating
object drags nearby objects, making them spin parallel to its axis of rotation. A scalar toy model is introduced
to simplify the technicalities and ease the conceptual complexities and then a detailed discussion of quantum
electrodynamics is presented.
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I. INTRODUCTION AND SUMMARY

Fluctuation-induced phenomena have been widely explored
in equilibrium where a global temperature exists and the
medium (consisting of one or more objects) is static. Out
of equilibrium, quantum and thermal fluctuations can give
rise to a rich set of phenomena. A special case of interest
is stationary nonequilibrium where there is a temperature
gradient, or a medium in steady motion. Energy radiation,
friction, and dissipation are among the most common themes
in this realm.

Here we explore both thermal and and dynamic nonequilib-
rium with an emphasis on the latter. Specifically, when neutral
objects are set in motion, they interact with quantum fluc-
tuations in the background environment in a time-dependent
fashion that may excite photons from the vacuum and lead to
quantum radiation. The creation of photons by moving mirrors
in one dimension was first discussed by Moore [1]. Accelerated
neutral boundaries radiate energy and thus experience a back-
reaction force, or quantum friction [1–12]. Recent experiments
mimicking such dynamical Casimir effects rely on quantum
interference devices for rapidly changing boundary conditions
of a cavity [13].

While a substantial amount of literature is devoted to the
dynamical Casimir effect in the context of ideal mirrors with
perfect boundary conditions [14–19], dielectric and dispersive
materials have also been studied in several cases [20,21].
In general, the latter is more complicated since a quantum
system is usually described by a Hamiltonian, which is
lacking for a lossy system. A path-integral formulation is also
not trivial since the physical system is out of equilibrium,
necessitating the more complicated formalism developed by
Schwinger and Keldysh [22,23]; several applications of this

*Present address: Joint Quantum Institute, NIST and University of
Maryland, College Park, Maryland 20742, USA.

formalism to quantum friction are investigated in Refs. [24,25].
Interestingly, dispersive objects experience quantum friction
even when they move at a constant relative velocity: Two
parallel plates moving laterally with respect to each other
experience a (noncontact) frictional force [26,27]. Noncontact
friction is usually treated within the framework of the Rytov
formalism, which is grounded in application of the fluctuation-
dissipation theorem to electrodynamics [28]. Recently, it was
shown that a quantum analog of Cherenkov effect appears
when two planar objects are in relative motion beyond a
threshold velocity set by the speed of light inside the medium
[29]; this effect was originally discovered by Ginzburg and
Frank [30]. A recent work [31] also explores quantum friction
beyond Cherenkov velocity. There are discrepancies between
the reported results, which need to be further investigated.

While a constant translational motion requires at least two
bodies (otherwise it is trivial due to Lorentz symmetry), a
single spinning object can experience friction [32], a phe-
nomenon closely connected to superradiance first introduced
by Zel’dovich [33]. He argued that a rotating object amplifies
certain incident waves and speculated that this would lead to
spontaneous emission when quantum mechanics is considered.
In the context of general relativity, the Penrose process
provides a mechanism similar to superradiance to extract
energy from a rotating black hole [34], which also leads to
quantum spontaneous emission [35]. This radiation, however,
is different in nature from Hawking radiation, which is due to
the existence of event horizons [36]. One can also find similar
effects for a superfluid where a rotating object experiences
friction even at zero temperature [37].1

In this article we expand on a previous work [39] dealing
with quantum fluctuations of a rotating object. We treat

1For another proposal related to Casimir-like forces in a slowly
moving superfluid, see Ref. [38].
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vacuum fluctuations in the presence of a dispersive object
under rotation exactly, except for the assumption of small
enough velocities to avoid complications of relativity, thus
going beyond the approximate treatments of previous works
in Refs. [32,40]. By incorporating the Green’s function
techniques into the Rytov formalism [28], we show that a
rotating object spontaneously emits photons.

Since we aim to present in detail computations leading to the
results briefly described in Ref. [39], this paper is necessarily
heavy in technical content. Given that we also derive a
number of results (pertaining to counting statistics, entropy,
and stochastic motion), it is important that the mathematical
formalism does not obscure their conceptual simplicity. As
such, in the remainder of the Introduction we summarize the
important results, in the order in which they appear in the
main text.

We consider a solid of revolution rotating around its
axis of symmetry at a rate �. For the sake of definiteness,
we assume that the object is at a finite temperature T

immersed in a zero-temperature vacuum. Generalization to a
finite environment temperature is straightforward. The rotating
object is characterized by its scattering amplitude S, which,
according to the symmetries of the problem, is diagonal in
frequency ω and the angular momentum along the rotation
axis (in units of �) m. We use α as a shorthand for all
quantum numbers including ω and m and denote Iα as
the operator corresponding to the current, or the number of
radiated photons, in a partial wave α.

(i) A dispersive object under rotation is unstable due to
quantum fluctuations. We show that the object spontaneously
emits photons at the rate

dNα

dωdt
= Nα = 〈Iα〉 = n(ω − �m,T )(1 − |Sα|2), (1)

where n(ω,T ) = 1/(e�ω/kT − 1) is the Bose-Einstein distri-
bution function at temperature T . Note the shift in frequency
due to rotation. This effect persists at zero temperature,

lim
T →0

Nα = �(�m − ω)(|Sα|2 − 1), (2)

pointing to its quantum nature. The scattering matrix is in fact
superunitary |Sα| > 1 when ω < �m, hence superradiance.

(ii) The rate of energy and angular momentum radiation,
and heat generation are obtained by integrating the current
multiplied by the corresponding quantum number and can be
expressed as trace formulas. The energy radiation, for example,
can be written as

P =
∫

dω

2π
�ω Tr[n(ω − �l̂z,T )(1 − SS†)]. (3)

The angular momentum radiation and heat generation can
be computed by replacing �ω → �m and �ω → �(�m − ω),
respectively. The loss of angular momentum manifests itself
in a quantum friction torque that opposes the rotation of the
object. Initially at zero temperature, the object loses energy
and angular momentum and heats up at the same time. The
energy conservation is respected as the mechanical energy due
to rotation is converted into radiation and heat; see Sec. II B 2
for a detailed discussion.

(iii) We go beyond the averaged value of the radiation and
compute the fluctuations of the (fluctuation-induced) radiation,

i.e., higher moments of the current-current correlators. We find
the cumulants of factorial moments as

κp = 〈
Îp

α

〉
c
= (p − 1)!N p

α , (4)

with the subscript c indicating the connected component of
the p-point function. Remarkably, the average current Nα also
determines all higher moments of fluctuations.

(iv) Photon statistics can be derived from the knowledge
of higher-moment fluctuations. The probability that n photons
are radiated in a mode α is given by

Pα(n) = N n
α

(Nα + 1)n+1
. (5)

(v) As the result of radiation, entropy is increased in the
environment. The entropy generation can be obtained from
photon statistics as

S ≡ dS

dt
= kB

∑∫
α

[(Nα + 1) ln(Nα + 1) − Nα lnNα]. (6)

The symbol
∑∫

indicates an integral over frequency as well
as a sum over other quantum numbers. This entropy can
be interpreted as the entanglement entropy between the
object and the environment consisting of radiated photons;
see Sec. II D.

(vi) A freely rotating object slows down as the result of
the quantum friction torque M and also undergoes a stochastic
motion due to the fluctuational variance of the torque VarM ,

M = �

∑∫
α

mNα,

VarM = �
2
∑∫

α

m2Nα(Nα + 1). (7)

The equation of rotation is then a Langevin equation (I being
the moment of inertia)

I�̇(t) = −M(�(t)) + η(t ; �(t)). (8)

The noise η(t ; �(t)) has zero mean, is independent at different
times, and correlated for equal times via

〈η(t ; �(t))〉 = 0,

〈η(t ; �(t))η(t ′; �(t ′))〉 = VarM(�(t))δ(t − t ′). (9)

Equivalently, a Fokker-Planck equation describes the probabil-
ity distribution as a function of angular velocity; for a detailed
discussion, see Sec. I E. Even at zero temperature, we find a
quantum limit on how sharply the angular momentum can be
defined for a single object in steady rotation,

I
� =
√

I
VarM(�0)

∂M/∂�0
∝

√
�I�0. (10)

Thus the uncertainty in the angular momentum is proportional
to the geometrical mean of � and the object’s angular
momentum (and not � itself).

(vii) A rotating object makes nearby bodies orbit around
its center and also spin parallel to its rotations axis. For the
details, see Sec. II F.

Our starting point is the Rytov formalism [28], which
relates fluctuations of the electromagnetic field to fluctuating
sources within the material bodies, and in turn to the material’s
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TABLE I. Comparison of scalar and electromagnetic formulations for a static medium: the Lagrangian in free space, the current density
in vacuum, the Lagrangian terms due to the linear response of the medium and fluctuating sources, and the fluctuation-dissipation relation for
scalar and electromagnetic fields, respectively. Here a(ω) = � coth(�ω/2kBT ).

Formulation Scalar EM

Free Lagrangian ω2

c2 |�ω|2 − |∇�ω|2 |Eω|2 − c2

ω2 |∇×Eω|2
Current density Im �∗

ω∇�ω
c2

ω2 Im E∗
ω×(∇×Eω)

Medium’s Lagrangian [ε(ω) − 1] ω2

c2 |�ω|2 [ε(ω) − 1]|Eω|2
Random source Lagrangian −i ω

c
�∗

ω�ω E∗
ω · Kω

Fluctuation-dissipation 〈�ω(x)�∗
ω(y)〉 = a(ω)Im ε(ω)δ(x − y) 〈Kω(x) ⊗ K∗

ω(y)〉 = a(ω)Im ε(ω)δ(x − y)I

dispersive properties, via the fluctuation-dissipation theorem.
While our main focus is moving objects, we find it useful to
first consider thermal nonequilibrium where the object and
the environment are at different temperatures. For the sake
of simplicity and clarity, we start with a toy model based
on a scalar field in Sec. II and postpone the full discussion
of electrodynamics to Sec. III. Readers interested only in
the electromagnetic case may wish to skip the pedagogical
Sec. II. While qualitative results are similar in the two cases,
electromagnetism is distinguished by its vector nature, which
gives rise to two different polarizations. For the reader’s
convenience, the analogy between scalar and electromagnetic
fields and static vs rotating media is summarized in Tables I
and II.

II. A TOY MODEL: A DIELECTRIC OBJECT
INTERACTING WITH A SCALAR FIELD

We consider a scalar field that interacts with an object
characterized by a response, or dielectric, function ε. The
response function is in principle a function of both frequency
and position and fully characterizes the object’s dispersive
properties. The field equation for this model in the frequency
domain reads (

∇2 + ω2

c2
ε(ω,x)

)
�(ω,x) = 0, (11)

with ε being 1 in the vacuum and a frequency-dependent
function inside the object.

In order to describe quantum2 (and thermal) fluctuations,
one can consider the field as a stochastic entity whose
fluctuations are governed by a random source. From this
perspective, quantum fluctuations are cast into a Langevin-like

2We shall refer to the quanta of the scalar field as photons.

equation (similar to the random force in the theory Brownian
motion). For the electromagnetic field, the Rytov formalism
provides such a stochastic formulation [28]. We introduce a
similar approach for the scalar field theory, the central subject
of this section. The field equation coupled to a (random) source
� is given by

−
(

� + ω2

c2
ε(ω,x)

)
�(ω,x) = − iω

c
�ω(x), (12)

where the source satisfies a δ-function correlation function in
space

〈�ω(x)�∗
ω(y)〉 = a(ω)Im ε(ω,x)δ(x − y), (13)

with

a(ω) = 2�

(
n(ω,T ) + 1

2

)
= � coth

(
�ω

2kBT

)
. (14)

Note that source fluctuations are related to the imaginary part
of the response function in harmony with the fluctuation-
dissipation theorem (FDT). At a finite temperature T , the Bose-
Einstein distribution function n(ω,T ) = [exp(�ω/kBT )−1]−1

captures thermal fluctuations; the additional 1/2 is due to
quantum zero-point fluctuations.

The field is related to the source via the Green’s function
G, defined as

−
(

� + ω2

c2
ε(ω,x)

)
G(ω,x,z) = δ(x − z). (15)

TABLE II. Comparison of scalar and electromagnetic formulations for a rotating medium: The last three rows of Table I (pertaining to the
interior of the medium) are modified under steady rotation. Note that ω′ = ω − �m is the shifted frequency in the comoving frame rotating at
the rate �.

Formulation Scalar EM

Medium’s Lagrangian [ε(ω′) − 1] ω′2
c2 |�ω|2 [ε(ω′) − 1]|Eω|2

Random source Lagrangian −i ω′
c
�∗

ω�ω [E∗
ω + i

ω
v×(∇×E∗

ω)] · Kω

Fluctuation-dissipation 〈�ω(x)�∗
ω(y)〉 = a(ω′)Im ε(ω′)δ(x − y) 〈Kω(x) ⊗ K∗

ω(y)〉 = a(ω′)Im ε(ω′)δ(x − y)I
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In equilibrium (uniform temperature with static objects), the
field correlation function is obtained as

〈�(ω,x)�∗(ω,y)〉

= ω2

c2

∫ ∫
all space

dz dw G(ω,x,z)G∗(ω,y,w)〈�ω(z)�∗
ω(w)〉

= ω2

c2
a(ω)

∫
all space

dz G(ω,x,z)Im ε(ω,z)G∗(ω,y,z)

= a(ω)Im G(ω,x,y). (16)

Note that the second line in Eq. (16) follows from ω2

c2 Im ε =
−Im G−1 according to Eq. (15). This equation manifests the
FDT by relating field fluctuations to the imaginary part of the
Green’s function. However, Eq. (16) requires the system to be
in equilibrium while Eq. (13) is formulated locally and makes
no assumption about global properties of the system such as
overall equilibrium. Therefore, we shall employ Eq. (13) to
study nonequilibrium systems.

In the following sections we explore the interplay between
geometry, motion, and temperature. While our main interest
is the consequences of fluctuations in the context of moving
objects, we make a detour to study quantum and thermal
fluctuations for a static object. Out of thermal equilibrium,
the object is at a temperature different from that of the
environment. The techniques we develop in the following
section are useful when we consider moving objects in or
out of thermal equilibrium. For simplicity, we consider a disk
in two-dimensional space; generalization to realistic objects is
discussed in the context of electromagnetism.

In the following, we make the convention that c = 1 unless
stated otherwise.

A. Field fluctuations for static objects

According to the Rytov formalism, field fluctuations are
induced by random sources that fluctuate according to the
object’s local properties (encoded by the imaginary part of
the response function) and temperature (through the Bose-
Einstein factor). It is then natural to divide the space into
the object and the environment (vacuum) and to compute the
source fluctuations in each region separately.

1. Vacuum fluctuations

In this section we consider field fluctuations due to random
sources only in the vacuum. The scalar field is coupled to
fluctuating sources outside the object as

− [� + ω2ε(ω,x)]�(ω,x) =
{

0, |x| < R

−iω�ω(x), |x| > R,
(17)

with R being the radius of the disk. Source fluctuations,
according to the Rytov formalism, are determined by

〈�ω(x)�∗
ω(y)〉 = aout(ω)Im εD(ω)δ(x − y), (18)

where the points x and y are outside the object, aout corresponds
to the temperature of the environment, and εD represents
the response functions in the vacuum. It might seem that
this function is 1 and Im εD = 0, hence there are no source
fluctuations outside the object. However, even in empty space,

we need sources to give rise to zero-point fluctuations. Indeed,
as one has to integrate over infinite volume, the limit of
Im εD → 0 should be taken with care. The corresponding field
correlation function outside the object is given by

〈�(ω,x)�∗(ω,y)〉out fluc

= ω2aout(ω)Im εD(ω)
∫

|z|>R

dz G(ω,x,z)G∗(ω,y,z). (19)

Note that the Green’s functions are evaluated outside the
object. Let (r,φ) and (ξ,ψ) be the polar coordinates of x and
y, respectively. The (retarded) Green’s function can be cast as
a sum over partial waves in the cylindrical basis as

G(ω,x,y) =
∞∑

m=−∞

i

8

[
H (2)

m (ωr) + Sm(ω)H (1)
m (ωr)

]
× eimφH (1)

m (ωξ )e−imψ, R < r < ξ, (20)

where H (1,2)
m are the Hankel functions of the first and second

kind and Sm(ω) is the scattering matrix. Furthermore, we have
assumed that the point y is located at a larger radius from the
origin without loss of generality. In empty space S = 1 and
we recover the free Green’s function as

G(ω,x,y) =
∞∑

m=−∞

i

4
Jm(ωr)eimφH (1)

m (ωξ )e−imψ, r < ξ.

To compute the integral in Eq. (19), one should integrate over
R < |z| < ∞; however, we take the limit that Im εD → 0 and
only a singular contribution, due to the integral over |z| → ∞,
survives. We can then safely choose the domain of integration
as |z| > r,ξ . We stress that in the intermediate steps, the
argument of the Hankel function should be modified to

√
εD ωr

with the limit εD → 1 taken in the end. A little algebra yields

〈�(ω,x)�∗(ω,y)〉out fluc

= 1

16
aout(ω)

∞∑
m=−∞

[
H (2)

m (ωr) + Sm(ω)H (1)
m (ωr)

]
eimφ

× [
H

(2)
m (ωξ ) + Sm(ω)H (1)

m (ωξ )
]
eimψ . (21)

(The bar indicates complex conjugation.) The correlation
function is then a bilinear sum over incoming plus scattered
waves. In fact, in the absence of the object, this equation
reduces to a bilinear sum over Bessel functions

〈�(ω,x)�∗(ω,y)〉empty space

= �

2

(
n(ω,T ) + 1

2

) ∞∑
m=−∞

Jm(ωr)Jm(ωξ )eim(φ−ψ)

= �

2

(
n(ω,T ) + 1

2

)
J0(ω|x − y|)

= �

2

(
n(ω,T ) + 1

2

) ∫ 2π

0

dα

2π
eik·(x−y), (22)

where k is the wave vector with |k| = ω and ∠k = α. Being a
complete basis, the Bessel functions can be recast into another
basis such as planar waves in Eq. (22). In other words, quantum
fluctuations in (empty) space can be written as a uniformly
weighted sum over a complete set of functions. In the presence
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of the object, vacuum fluctuations are organized into a sum
over incoming plus scattered waves as in Eq. (21).

2. Inside fluctuations

Next we turn to study the source fluctuations inside the
object:

− [� + ω2ε(ω,x)]�(ω,x) =
{

−iω�ω(x), |x| < R

0, |x| > R,
(23)

with

〈�ω(x)�∗
ω(y)〉 = ain(ω)Im ε(ω,x)δ(x − y), (24)

where the sources’ arguments are inside the object and ain(ω)
is defined with respect to the object’s temperature. Similar to
the previous section, the field correlation function for x and y
outside the object can be computed via Green’s functions

〈�(ω,x)�∗(ω,y)〉in fluc

= ω2ain(ω)
∫

|z|<R

dz G(ω,x,z)Im ε(ω,z)G∗(ω,y,z), (25)

where ε is a possibly position-dependent response function.
The Green’s function in this equation involves a point inside
and another outside the object. As the two points (inside and
outside the object) cannot coincide, the Green’s function satis-
fies a homogeneous equation (11) inside and a free (Helmholtz)
equation outside. Hence, we can expand the Green’s function
as

G(ω,x,x′) =
∞∑

m=−∞

i

8
fω,m(r)eimφ

[
AH (1)

m (ωξ ) + BH (2)
m (ωξ )

]
×e−imψ, r < R < ξ, (26)

where the prefactor is chosen for future convenience. Here
fω,m(ω) is the regular (at the origin) solution to3

− [� + ω2ε(ω,r)]fω,m(r)eimφ = 0,

− (� + ω2)H (1,2)
m (ωr)eimφ = 0. (27)

The coefficients A and B and the normalization of the
function f are determined by matching the Green’s functions
approaching a point on the boundary from inside and outside
the object

G(ω,x,y)||x|→R− = G(ω,x,y)||x|→R+ . (28)

Comparing Eqs. (20) and (26), we find

G(ω,x,y) =
∞∑

m=−∞

i

8
fω,m(r)eimφH (1)

m (ωξ )e−imψ,

r < R < ξ, (29)

3For simplicity, we have assumed that the dielectric function is
rotationally symmetric. This assumption is not essential for a static
object, but is essential for rotating objects.

where the function f is constrained by continuity equations as

fω,m(R) = H (2)
m (ωR) + Sm(ω)H (1)

m (ωR),[
∂

∂r
fω,m(r) = ∂

∂r

[
H (2)

m (ωr) + Sm(ω)H (1)
m (ωr)

]]
r=R

. (30)

In short, the differential equations (27) plus the boundary
conditions in Eqs. (30) and the regularity of f at the origin
determine both the function f and the elements of the S

matrix. We then expand the Green’s function in Eq. (25) in
terms of partial waves from Eq. (29). Keeping in mind that
ρ ≡ |z| < r,ξ , we find

〈�(ω,x)�∗(ω,y)〉in fluc

= 1

64
ω2ain(ω)

∞∑
m=−∞

H (1)
m (ωr)e−imφH

(1)
m (ωξ )e−imψ

× 2π

∫ R

0
dρ ρfω,m(ρ)Im ε(ω,ρ)fω,m(ρ). (31)

By virtue of the field equation, the integral in the last line of this
equation can be converted to an expression on the boundary
of the object: The conjugate of the function f satisfies
the conjugated wave equation with ε → ε∗. By subtracting
the conjugated from the original equation, one can see that the
integrand is equal to a total derivative. The integral then
becomes

1

−2iω2
W (fω,m(R),fω,m(R)), (32)

with W being the Wronskian with respect to the radius. The
continuity relations of Eq. (30) can be exploited to compute
the Wronskian

W (fω,m(R),fω,m(R)) = − 4i

πR
[1 − |Sm(ω)|2], (33)

where we used the identity W (H (1)
m (x),H (2)

m (x)) = −4i/πx.
Rather remarkably, this equation shows that all the relevant
details of the inside solutions f can be encoded in the scattering
matrix, i.e., fluctuations inside the object affect the correlation
function only through the scattering matrix S. Combining the
previous steps, we arrive at the (outside) correlation function
due to the inside source fluctuations,

〈�(ω,x)�∗(ω,y)〉in fluc = 1

16
ain(ω)

∞∑
m=−∞

[1 − |Sm(ω)|2]

×H (1)
m (ωr)eimφH

(1)
m (ωξ )eimψ .

(34)

The correlation function is a bilinear sum over outgoing (first
kind of Hankel) functions; this is reasonable as the sources in
the object must produce outgoing waves in the vacuum. The
coefficient is, however, more interesting: It depends on the
scattering matrix through 1 − |S|2 and vanishes for a nonlossy
object, i.e., when the scattering matrix is unitary |S| = 1. We
shall revisit this point later when we study radiation out of
thermal or dynamic equilibrium.
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3. Thermal radiation

In this section we employ the results from the previous
sections to compute the radiation out of thermal equilibrium
when the object is at rest, though at a temperature T different
from that of the environment T0. However, we first show
that the equilibrium behavior is consistent with the FDT. At
T = T0, the distribution functions ain(ω) = aout(ω) ≡ a(ω) are
equal. A sum over Eqs. (21) and (34) yields (for x and y outside
the body)

〈�(ω,x)�∗(ω,y)〉
= 〈�(ω,x)�∗(ω,y)〉out fluc + 〈�(ω,x)�∗(ω,y)〉in fluc

= a(ω)Im
∞∑

m=−∞

i

8

[
H (2)

m (ωr) + Sm(ω)H (1)
m (ωr)

]
×eimφH (1)

m (ωξ )e−imψ

= a(ω)Im G(ω,x,y), (35)

in agreement with the FDT.
Out of thermal equilibrium, the Poynting vector quantifies

the radiation flux from the object into the environment. In our
model for the scalar field, the radial component of the Poynting
vector is given by

〈∂t�(t,x)∂r�(t,x)〉 = 1

π

∫ ∞

0
dω ω Im 〈�(ω,x)∂r�

∗(ω,x)〉.
(36)

The total radiation rate is obtained by integrating over a closed
surface enclosing the object. We compute the contribution
due to inside and outside source fluctuations separately by
inserting the corresponding correlation functions in Eq. (36).
The radiated energy per unit time is then

Pin fluc/out fluc = ± 1

4π

∞∑
m=−∞

∫ ∞

0
dω ωain/out(ω)[1−|Sm(ω)|2],

(37)

with the upper (lower) sign corresponding to inside (out-
side) fluctuations, where we have used the expression for
the Wronskian of Hankel functions. Note that the signs indicate
that the flux due to the inside sources is outgoing while the
vacuum fluctuations induce an incoming flux. In the absence of
loss, i.e., when |S| = 1, there is no flux in either direction since
the object lacks an exchange mechanism with the environment.
In equilibrium, detailed balance prevails and there is no net
radiation. One can also see that the reality of the correlation
function in Eq. (35) guarantees that the corresponding Poynt-
ing vector in Eq. (36) vanishes. Out of thermal equilibrium,
the total radiation to the environment is given by

P =
∞∑

m=−∞

∫ ∞

0

dω

2π
�ω[n(ω,T ) − n(ω,T0)][1 − |Sm(ω)|2].

(38)

We have expressed the radiation in terms of the Bose-Einstein
distribution number n(ω,T ). Clearly the net flux is in a
direction opposite to the temperature gradient. The relation
between the thermal emission and the absorptivity 1 − |S|2,

characterized by the deviation of the scattering matrix from
unitarity, is Kirchhoff’s law [41,42]. In the blackbody limit,
the object perfectly absorbs an incoming wave and does not
reflect back, leading to the vanishing of the scattering matrix S.
This is possible only if the dielectric function slightly deviates
from 1 (otherwise it leads to a finite scattering amplitude) with
Im ε � 1. While an infinite medium can be a perfect absorber
at all frequencies and wave numbers, a compact object can
act as a blackbody only in certain frequency regimes. At high
temperatures the thermal radiation is dominated by large fre-
quencies so we can assume Im ε ωR � 1. Within these limits,
it can be shown that the scattering matrix is almost unitary
for |m| > ωR while it is approximately zero when |m| < ωR.
Therefore, the sum over m at a fixed ω gives a factor of 2ωR

proportional to the circumference of the disk in harmony with
the blackbody radiation and Stefan-Boltzmann law [43].

In the following sections, we apply the techniques that we
have developed here to rotating objects.

B. Field fluctuations for moving objects

We first devise a Lagrangian from which Eq. (11) follows
for a static object and then, with the guidance of Lorentz
invariance, generalize it to a moving object. Schematically,
the Lagrangian can be written as4

L = 1
2ε(∂t�)2 − 1

2 (∇�)2

= 1
2 [(∂t�)2 − (∇�)2] + 1

2 (ε − 1)(∂t�)2. (39)

The second line breaks the Lagrangian into two parts: The
first term is merely the free Lagrangian (in empty space)
while the second term contributes only within the material,
hence defining the interaction of the field with the object. In
generalizing to moving objects, the free Lagrangian remains
invariant. The interaction, however, should be defined with
respect to the rest frame of the object. The latter is cast into a
covariant form so that it reduces to the familiar expression in
the rest frame

L = 1
2 (∂t�)2 − 1

2 (∇�)2 + 1
2 (ε′ − 1)(Uμ∂μ�)2, (40)

with U being the four-velocity [or three-velocity in (2+1)-
dimensional space-time] of the object. Note that � is scalar,
i.e., �′(t ′,x′) = �(t,x) with the (unprimed) primed coordi-
nates defined in the (laboratory) comoving frame. Also the
dielectric function ε′ = ε(ω′,x′) is naturally defined in the
comoving frame and should be transformed to the coordinates
in the laboratory frame. Equation (40) introduces a minimal
coupling between the object’s motion and the scalar field
in the background. For an object in uniform motion, this
Lagrangian is obtained by an obvious Lorentz transformation.
One might think that this equation should be further elaborated
for an accelerating object. However, if the acceleration rate is
small compared to the object’s internal frequencies (plasma
frequency, for example) the motion can be implemented by
a local Lorentz transformation, hence Eq. (40). The field

4The response function may be nonlocal in time; the Lagrangian
merely serves as a guide to obtain the field equation.
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equation is deduced from the Lagrangian as[� − ∂2
t − (ε′ − 1)(Uμ∂μ)2

]
�(t,x) = 0.

This is the homogenous field equation in the presence of
a moving object. We should also incorporate the coupling
to random sources for applications of the Rytov formalism
since the source is naturally defined in the comoving frame;
a similar argument suggests a minimal coupling by adding

L = −� Uμ∂μ� to the Lagrangian. The governing equation
for the scalar field is then

− [� − ∂2
t − (ε′ − 1)(Uμ∂μ)2

]
�(t,x) = Uμ∂μ�(t,x), (41)

which reduces to Eq. (12) for an object at rest. Here we have
defined �′(t ′,x′) ≡ �(t,x). Source fluctuations are distributed
according to Eq. (13) but with respect to the comoving frame

〈�′
ω′(x′)�′∗

ω′ (y′)〉 = a(ω′)Im ε(ω′,x′)δ(x′ − y′), (42)

with primed quantities defined in the moving frame. The two
sets of coordinates are related via

t ′ = t, r ′ = r, φ′ = φ − �t. (43)

We shall limit ourselves only to objects moving at veloc-
ities small compared to the speed of light, in which case
U ≈ (1,v) with v being the local velocity. Rotating at an
angular frequency �, v = � × x, Eq. (41) becomes

−[� − ∂2
t − (ε′ − 1)(∂t + �∂φ)2]�(t,x)

= (∂t + �∂φ)�(t,x). (44)

Let us expand the random source �(t,x) in the laboratory frame
as

�(t,x) =
∫

dω

2π
e−iωt�ω(x) =

∑
m

∫
dω

2π
e−iωt+imφ�ω,m(r).

(45)

Similarly, we define �′
ω′,m′ in the comoving frame with ω′

and m′ being conjugate to the time and angular variables in
the same frame. The coordinate transformations in Eq. (43)
along with the definition �′(t ′,x′) ≡ �(t,x) yield �ω,m(r) =
�′

ω−�m,m(r). Therefore, fluctuations in the comoving
frame (42) translate to

〈�ω,m(r)�∗
ω,m(ξ )〉=a(ω − �m)Im ε(ω − �m,r)

r−1δ(r − ξ )

2π

(46)

in the laboratory frame. This equation is indeed similar to
source fluctuations in a static object with ω being replaced by
ω − �m. In other words, zero-point fluctuations in the object
are centered at a frequency shifted from that of the vacuum.

Having formulated field equations and their corresponding
source fluctuations, we compute correlation functions in the
next section.

1. Field correlations

Similar to Sec. II A, we compute the field correlation
functions separately for source fluctuations outside and inside
the object. The treatment of the vacuum (outside) fluctuation
is entirely identical to the case of a static object described
by Eq. (21), while the scattering matrix is generally different
when rotating.

For inside source fluctuations, the argument should be
modified slightly. Let us define the (new) functions f as
solutions to the wave equation inside the object[� − ∂2

t − (ε′ − 1)(∂t + �∂φ)2
]
e−iωt eimφfω,m(r) = 0. (47)

The Green’s function for one point inside and the other outside
the object takes a form similar to the static case

G(ω,x,y) =
∞∑

m=−∞

i

8
fω,m(r)eimφH (1)

m (ωξ )e−imψ,

r < R < ξ, (48)

with the function f satisfying continuity relations similar to
Eq. (30) with Sm(ω) replaced by S−m(ω).5 The field correlation
function is then related to source fluctuations as

〈�(ω,x)�∗(ω,y)〉in fluc

= 1

64

∞∑
m=−∞

(ω − �m)2ain(ω − �m)H (1)
m (ωr)

× eimφH
(1)
m (ωξ )eimψ2π

∫ R

0
dρ ρ fω,m(ρ)

× Im ε(ω − �m,ρ)fω,m(ρ), (49)

where we have used Eq. (46). As before, we can exploit the
wave equation to convert the integral in the preceding equation
to a boundary term. The correlation function can be then cast
in terms of the scattering matrix as

〈�(ω,x)�∗(ω,y)〉in fluc

= 1

16

∞∑
m=−∞

ain(ω − �m)[1 − |Sm(ω)|2]

× H (1)
m (ωr)eimφH

(1)
m (ωξ )eimψ . (50)

This equation is similar to the expression for a static object
(34), with the important difference that the distribution a is a
function of a shifted frequency defined from the point of view
of the rotating frame.

2. Radiation, spontaneous emission, and superradiance

In a Gaussian theory, two-point correlation functions define
the complete structure of fluctuations and can be used to
compute force, torque, or radiation. Specifically, the energy
radiation per unit time is obtained by the integral of 〈∂t�∂r�〉
over a surface enclosing the object. For a rotating object, the
correlation functions derived in the previous section yield

P =
∞∑

m=−∞

∫ ∞

0

dω

2π
�ω[nin(ω − �m) − nout(ω)]

× [1 − |Sm(ω)|2]. (51)

5With time-reversal invariance, the Green’s function G(ω,x,y) is
symmetric in its spatial arguments G(ω,x,y) = G(ω,y,x). For a
rotating object, time reversal is no longer a symmetry; however, time
reversal followed by reversing the angular velocity forms a symmetry
that yields G(ω,r,φ,ξ,ψ) = G(ω,ξ, − ψ,r, − φ). The negative sign
carries through to the sign of the angular momentum m.
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Similarly the torque, or the rate of angular momentum radi-
ation, is given by integrating 〈∂t�∂φ�〉 over the surface. We
find an expression similar to Eq. (51) by replacing �ω by �m,

M =
∞∑

m=−∞

∫ ∞

0

dω

2π
�m[nin(ω − �m) − nout(ω)]

× [1 − |Sm(ω)|2]. (52)

The function nin is singular at ω = �m; however, at this
frequency Im ε(ω − �m) = Im ε(0) = 0, which results in no
loss. Therefore, 1 − |S|2 is zero at ω = �m removing the
singularity and rendering the above expressions well defined.
We stress that, at zero temperature, Eqs. (51) and (52) should
be understood only to the leading order in �R/c as com-
puting higher orders in this quantity requires a more careful
treatment of the field equations in higher orders of velocity. At
T = T0 = 0, the sum over partial waves is restricted to positive
m, where the leading contribution comes from m = 1, while
higher values of m give the leading radiation at multipolarity
m. At a finite temperature, the contribution due to higher partial
values can be important and even dominant, in which case they
should be included. In the rest of this paper, summation over all
partial waves should be understood in similar terms. Neverthe-
less, the more general input-output formalism precisely gives
Eqs. (51) and (52) without any approximations regarding the
velocity of the rotating object [44], hence their validity goes
beyond the analysis provided here.

Let us consider the limit of zero temperature so that thermal
radiation can be neglected. In this limit n(ω) = −�(−ω), that
is, the distribution function vanishes for positive frequency but
becomes 1 for negative frequencies. This distribution defines
a vacuum state in which all positive-energy states are empty
and, figuratively, all negative-energy states are occupied. Now
the distribution function pertaining to inside fluctuations is
defined with respect to a frequency shifted by a multiple of
rotation frequency and thus can find negative values even when
ω is positive. The difference of the Bose-Einstein distributions
contributes in a frequency window of [0,�m]. Therefore, even
at zero temperature, a rotating object emits photons and loses
energy; the number of photons emitted at frequency ω(>0)
and partial wave m is given by

Nm(ω) ≡ dNm(ω)

dωdt
= �(�m − ω)[|Sm(ω)|2 − 1]. (53)

The corresponding radiated energy or angular momentum is
obtained by integrating over photon number multiplied by �ω

or �m, respectively. It follows from Eq. (53) that a (physically
acceptable) positive outflux of photons requires a superunitary
scattering matrix |Sm(ω)| > 1. Indeed, Zel’dovich argued that
classical waves should amplify upon scattering from a rotating
object exactly for frequencies in a range 0 < ω < �m, a phe-
nomenon that is called superradiance [33]. While spontaneous
emission by a rotating object is a purely quantum effect,
superradiance can be understood entirely within classical
mechanics: A system is lossy if the imaginary part of its
response function is positive (negative) for positive (negative)
frequencies. For a rotating object, Im ε(ω′) has the same sign as
ω′ = ω − �m, the frequency defined in the comoving frame;
however, for (positive) ω smaller than �m, the argument of the
dielectric function is negative and thus the object amplifies the

corresponding incident waves, hence superradiance. In fact,
incoming waves in the superradiating regime extract energy
from a rotating object and slow it down.

Superradiance and spontaneous emission are intimately
related. When the object is at rest, it absorbs energy by
getting excited to a higher level and deexcites by emitting a
photon. For a rotating body, this picture breaks down, that
is, the object can emit a photon while being excited to a
higher level: The energy of the emitted photon is �ω > 0
in the laboratory frame; however, a rotating observer sees
the same particle at a shifted frequency ω′ = ω − �m. In the
superradiant regime where ω < �m, the frequency is negative
in the comoving frame, hence the object has gained (positive)
energy. This gain should be interpreted as heat generated inside
the body. The energy conservation still holds because the
energy of the emitted photon as well as heat is extracted
from the rotational energy of the object. This observation
is also at the heart of the superradiance phenomenon when
incoming waves are enhanced upon scattering from a rotating
object. The above argument shows that spontaneous emission
conserves the energy and thus is (energetically) possible. In
fact, as the object spontaneously emits photons (and heats up),
it also slows down unless kept in steady motion by an external
agent. In the context of general relativity, the Penrose process
provides a similar mechanism to extract energy from a rotating
black hole [34], which also leads to spontaneous emission [35].

We define E and E′ as the energy of the object in the
laboratory frame and the rotating frame, respectively. The
two are related by E′ = E − �L, where L is the angular
momentum of the object [45]. Hence, the heat generated per
unit time Q ≡ dE′/dt is given by

Q ≡ dE′

dt
= dE

dt
− �

dL

dt
= �M − P. (54)

In order to maintain a steady rotation, one should exert a
constant torque M . The work done is equal to the radiated
energy plus heat �M = P + Q. Note that the object loses
energy to the environment dE/dt = −P < 0 as well as
angular momentum dL/dt = −M < 0. The rate of the energy
gain in the object’s rest frame can be obtained from Eqs. (51)
and (52) as

Q =
∞∑

m=−∞

∫ ∞

0

dω

2π
�(�m − ω)Nm(ω). (55)

At zero temperature, the photon number production (53) has
nonzero support only for 0 < ω < �m and thus the heat
generation is manifestly positive. In brief, the object heats
up while it loses energy (E decreases) if not connected to an
infinite thermal bath. This suggests that the heat capacity from
the point of view of the laboratory frame is negative; however,
thermodynamic quantities are well defined in the comoving
frame where the energy E′ increases, hence the heat capacity
is indeed positive.

We have argued that spontaneous emission is energeti-
cally possible, consistent with the energy conservation. This
process also generates heat inside the object and photons
in the environment, hence entropy is increasing. Notice
that the line of argument can be reversed: A phenomenon
that satisfies requirements of energy conservation and is
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thermodynamically favored due to entropy production should
occur. This observation completes the link between superra-
diance and spontaneous emission; see also Refs. [33,46]. In
Sec. II D we study the statistics of radiated photons in some
detail. In particular, we compute the entropy generation due to
the creation of photons.

3. Radiation: Rotating disk

In this section we study quantum radiation by a rotating disk
of radius R described by a spatially uniform but frequency-
dependent dielectric function ε(ω). Of course, the results
provided here have little overlap with the real world. Readers
who are interested in the specifics of a real dielectric material
coupled to electromagnetism may skip directly to Sec. III D.
We find solutions to the field equation inside and outside
the object and match them on the boundary to compute the
scattering amplitude. When linear velocities are small, Eq. (44)
for the field equation [with the source term on the right-hand
side (RHS) set to zero] yields[� − ∂2

t − (ε′ − 1)(∂t + �∂φ)2
]
�(t,x) = 0. (56)

A solution characterized by frequency ω and the angular
momentum m, i.e., of the form � = f (r)e−iωt eimφ , casts this
equation into [

1

r
∂rr∂r − m2

r2
+ ω̃2

m

]
f (r) = 0. (57)

Here we have defined a new m-dependent (possibly complex)
frequency ω̃m as

ω̃2
m = (ε′ − 1)(ω − �m)2 + ω2, (58)

which is a constant for a fixed ω and m and position indepen-
dent ε′ = ε(ω′) = ε(ω − �m). Therefore, the equation that
governs the field dynamics inside the object is a Helmholtz
equation whose regular solutions are Bessel J functions, with
the frequency replaced by ω̃m. Note that both the order and
the argument of the Bessel functions depend on m, the latter
through ω̃m. We define a scattering ansatz as

�(ω,x) =
{

Vm(ω)Jm(ω̃mr)eimφ, r < R

H (2)
m (ωr)eimφ + Sm(ω)H (1)

m (ωr)eimφ, r > R,

(59)

with the outside solutions being a linear combination of
incoming and (with the scattering matrix as the amplitude)
outgoing waves. The scattering matrix can be easily obtained
by matching boundary conditions

Sm(ω) = −∂RJm(ω̃mR)H (2)
m (ωR) − Jm(ω̃mR)∂RH (2)

m (ωR)

∂RJm(ω̃mR)H (1)
m (ωR) − Jm(ω̃mR)∂RH

(1)
m (ωR)

.

(60)

When ε is real, i.e., for a lossless material, the denominator
is merely the complex conjugate of the numerator and the
scattering is unitary. Conversely, if ε has an imaginary part
the scattering matrix is nonunitary. For a lossy object at rest,
Im ω̃m = |ω|Im √

ε > 0 (for positive frequency) and |S|2 < 1.
For a spinning object, Im ω̃m ∝ Im ε′ ∝ sgn(ω − �m), hence
the scattering matrix is subunitary for ω > �m but superuni-
tary |S|2 > 1 in the superradiating range ω < �m.

One can now compute the radiation from the S matrix.
Assuming that the object’s linear velocity is small, the radiation
is strongest at frequencies comparable to �, thus the first
partial wave m = 1 suffices and the Bessel J functions can
be expanded. The scattering matrix deviates from unitarity (by
restoring units of c) as

|S1(ω)|2 − 1 ≈ −π

8

ω2(ω − �)2R4

c4
Im ε(ω − �). (61)

This expression is manifestly negative for ω > � but positive
when ω < � for any causal ε. One can then compute various
quantities of interest such as torque, heat generation, and
radiation. In particular, energy radiation per unit time is given
by Eq. (51) as

P ≈ �R4

16c4

∫ �

0
dω ω3(ω − �)2|Im ε(ω − �)|. (62)

For a specific dielectric function, the radiation can be computed
explicitly.

C. Higher dimensions, nonscalar field theories,
and trace formulas

The above results can be readily generalized to higher
dimensions. For a cylinder extended along the third dimension,
quantum radiation is given by

P =
∫ ∞

0

dω

2π
�ω

∞∑
m=−∞

∫ ω

−ω

Ldkz

2π
[nin(ω − �m) − nout(ω)]

×[1 − |Smkz
(ω)|2], (63)

where L is the length of the cylinder and kz is the wave vector
along the z direction. Note that |kz| is bounded by ω (we have
set c = 1), corresponding to propagating waves as opposed to
evanescent waves that affect short distances from the cylinder
but do not contribute to the radiation at infinity.

If the rotating object is not translationally symmetric in the z

direction (while rotationally symmetric), the scattering matrix
is no longer diagonal in kz, leading to a more complicated
analog of Eq. (63). Nevertheless, the S matrix can always be
diagonalized in some basis. Indeed, one can write a general
trace formula for the quantum radiation that is independent of
a particular basis,

P =
∫ ∞

0

dω

2π
�ω Tr{[nin(ω − �l̂z) − nout(ω)](1 − SS†)},

(64)

where we trace over all the propagating modes. In this
equation, l̂z = 1

i
∂
∂φ

is the angular momentum operator (in
units of �) projecting out the rotational index m. The
scattering matrix S is written in a general basis-free notation.
Equation (64) is not specific to scalar fields or translation-
ally symmetric objects but also holds for arbitrary shapes
(though rotationally symmetric) and electromagnetism; the
latter requires tracing over polarizations too. We present a
general derivation of Eq. (64) in Sec. III in the context of
electrodynamics.
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D. Photon statistics and entropy generation

Heretofore we have studied in some detail an object out of
thermal or dynamic equilibrium with the environment, where
it is shown that the object emits photons. In this section we
turn to a different aspect of this problem, namely, the statistics
of radiated photons.

We first note that the field correlation function receives
contributions from photons as well as zero-point and (at finite
temperature) thermal fluctuations and can be broken up as

〈��〉 = 〈��〉nonrad + 〈��〉rad. (65)

The first term on the RHS is the nonradiative term

〈�(ω,x)�∗(ω,y)〉nonrad = � coth

(
�ω

2kBT

)
Im G(ω,x,y).

(66)

This expression is purely real and thus does not contribute
to the radiation. Equation (66) is similar to the fluctuation-
dissipation relation in equilibrium; cf. Eq. (16). However, out
of equilibrium, the total correlation function receives another
contribution that cannot be written in the above form. For a
disk rotating at a rate �, possibly at a finite temperature T ,
the radiation term can be deduced from the total correlation
function (see Sec. IIB1) and using the above definition
we find

〈�(ω,x)�∗(ω,y)〉rad = �

8

∞∑
m=−∞

n(ω − �m,T )[1 − |Sm(ω)|2]

× H (1)
m (ωr)eimφH

(1)
m (ωξ )eimψ . (67)

This term is entirely composed of outgoing fields as expected.
In the remainder of this section, we focus on the ensemble of
radiated photons.

Radiation can be quantified by the photon current, or
the number of photons radiated per unit time. Different
frequencies and partial waves are statistically independent,
thus we consider the current of a single mode of frequency ω

and angular momentum m,

Iω,m = 2πr

i
[�∗

m(ω,x)∂r�m(ω,x) − c.c.], (68)

where the field is expanded over partial waves as �(ω,x) =∑
m �m(ω,x). When averaged over the radiation field, this

expression reproduces Eq. (53) for a rotating object at T = 0
or, more generally, at a finite T ,

Nm(ω) = 〈Iω,m〉 = n(ω − �m,T )[1 − |Sm(ω)|2]. (69)

We are interested in higher statistical moments for which we
have to compute the corresponding correlation functions of
currents. Since fluctuations are Gaussian distributed, current
correlation functions can be reduced to a product of two-point
functions of fields according to Wick’s theorem.

We compute the fluctuations of the current at the radiation
zone far away from the object [keeping in mind that the
radiation field in Eq. (67) is strictly outgoing], in which
limit the radial derivative acting on � gives a factor of iω/c.
Therefore, far from the object, the current defined in Eq. (68)

can be cast as

Iω,m = lim
r→∞

4πωr

c
�∗

m(ω,x) �m(ω,x); (70)

this expression is useful in evaluating n-point correlation
functions.

We can also define the probability distribution function
P (n), with n being the number of photons per mode emitted
in a time duration t . We drop the subscript indices as
the statistics can be computed independently for each mode.
The probability distribution is related to current correlators by
the Glauber-Kelley-Kleiner formula [47,48]

P (n) = 1

n!
〈I ne−I 〉rad. (71)

We introduce a generating function F (η),

eF (η) = 〈eηI 〉, (72)

which allows us to compute the probability distribution from
the generating function as

P (n) = lim
η→−1

1

n!

dn

dηn
eF (η). (73)

Taylor expanding F in η generates the cumulants of factorial
moments as [49]

F (η) =
∞∑

p=1

κpηp

p!
. (74)

For a single object discussed above, the current I in
Eq. (70) is a bilinear term in the field � and its conjugate.
Diagrammatically, we can represent I as a vertex with an
incoming and an outgoing line corresponding to �∗ and �,
respectively. From Eq. (72) it is then clear that the cumulants
κp are given by

κp = 〈Ip〉c, (75)

with the subscript c indicating that the connected component
of the p-point function should be computed. A little thought
shows that the connected correlation function in the preceding
equation yields

κp = (p − 1)!N p, (76)

with N = 〈I 〉 being the average current per mode. The
generating function is then

F (η) = − ln(1 − ηN ) or eF (η) = 1

1 − ηN . (77)

These equations indicate that the counting distribution P (n) is
solely determined from the mean value of the radiation. This
strong version of Kirchhoff’s law is due to Bekenstein and
Schiffer [50]; see also Ref. [49]. Here F can also be interpreted
as a one-loop effective action in a background defined by
ηI . Adopting this point of view, Eqs. (75) and (77) follow
immediately. The probability distribution is easily deduced
from Eqs. (73) and (77) as

P (n) = N n

(N + 1)n+1
. (78)

This equation completely determines photon number statistics
[50]. In particular, it yields the average and the variance of the
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number of radiated photons per mode per unit time as

〈I〉 = N , Var I ≡ 〈(I − 〈I〉)2〉 = N (N + 1). (79)

Having the full statistics, we can compute the entropy of
radiated photons as

S

kB

= −
∞∑

n=0

P (n) ln P (n)

= (N + 1) ln(N + 1) − N lnN . (80)

In fact, this equation describes the entropy of a bosonic system
out of equilibrium [51]. If the occupation number N obeys
the Bose-Einstein distribution, Eq. (80) indeed produces the
entropy of a gas of thermal bosons.

Quantum or thermal radiation from a single object consists
of photons across the whole spectrum. Therefore, we should
sum over all frequencies and quantum numbers∑

ω,m

→ t

∫
dω

2π

∑
m

,

where t is the time interval under consideration. The entropy
from Eq. (80) is then linearly increasing over time, giving rise
to a constant rate of entropy generation (restoring ω and m) as

S ≡ dS

dt
= kB

∑
m

∫ ∞

0

dω

2π
{[Nm(ω) + 1] ln[Nm(ω) + 1]

−Nm(ω) lnNm(ω)}. (81)

In the blackbody limit (for a perfectly absorbing object at rest),
we recover the entropy associated with Planckian radiation.
For a finite-size object (comparable with thermal wavelength),
the spectrum approaches that of the graybody radiation
where one should include the dependence on absorptivity
r ≡ 1 − |S|2. Equation (81) then depends on temperature, the
object’s length scale, and material properties in a complicated
way. Additionally, the object loses energy and thus contributes
negatively to entropy generation as Sobject = −P/T , with P
being the (mean) power. The total entropy increase per mode
is then

Stotal

kB

=
(

r

ex − 1
+ 1

)
ln

(
r

ex − 1
+ 1

)

− r

ex − 1
ln

r

ex − 1
− xr

ex − 1
, (82)

where x = �ω/kBT and r is the absorptivity of the corre-
sponding mode. It can be shown that this expression is positive
for all 0 � r � 1 as expected.

Equation (81) can be understood as the entanglement
entropy between the object and the environment consisting
of radiated photons. In Ref. [52] Klich and Levitov suggested
that the entanglement entropy can be obtained from the full
quantum statistics, or the quantum noise. Specifically, the
entanglement entropy generation at a quantum point contact
(allowing electrons to transport between two leads) in the pres-
ence of a dc voltage V was found to be dS

dt
= − eV

h
[D ln D +

(1 − D) ln(1 − D)], with D being the transmission [53]. This
expression is completely determined by the fluctuation of the
electric current, thus providing a link between quantum noise
and entanglement entropy [52]. Equation (81) indeed gives

the bosonic analog of the results in Ref. [52], where the two
leads should be thought of as the object and the environment.
With the above picture in mind, Eq. (82) offers an alternative
interpretation: While the thermodynamic entropy of the object
[the last term in Eq. (82)] decreases as the object loses energy,
the sum of the entanglement entropy and the thermodynamic
entropy always increases, indicating that the former indeed
should be interpreted as entropy.

We are mainly interested in a rotating object at zero
temperature with the radiation given by Eq. (53). Defining
σ ≡ |S|2, the entropy generation due to radiation from a
rotating object is given by [with Nm(ω) = σm(ω) − 1]

S = kB

∞∑
m=1

∫ �m

0

dω

2π
{σm(ω) ln σm(ω) − [σm(ω) − 1]

× ln[σm(ω) − 1]}. (83)

Similar to thermal radiation, there is another contribution to
entropy due to the object itself. In this case, however, the latter
is also increasing in time since the object heats up. Hence, as
we have argued in Sec. IIB2, a rotating object tends to emit
radiation for purely thermodynamic reasons.

Before concluding this section, we note that Eq. (83) can
also be written as a trace formula similar to the expression
(64) for the energy radiation, which should be valid in higher
dimensions and other field theories including electrodynamics.

E. Diffusion equation for rotation

We now examine the angular fluctuations of a spinning
object as the result of the backreaction force due to the
radiation. Specifically, we find the probability distribution as
a function of the angular velocity for a macroscopic object
spinning freely or under a constant torque. Our discussion
here applies to both zero temperature, which is dominated by
zero-point quantum fluctuations, and finite temperature.

We first consider an object freely rotating at an angular
frequency �0. The radiation by the object carries away angular
momentum parallel to the axis of rotation, resulting in a
decrease in angular velocity. We shall assume that the time
duration under consideration t is much longer that 1/�0

such that the radiated photons have definite frequencies. For
simplicity, we first take this time sufficiently small such that the
angular velocity does not change significantly. The frictional
torque is obtained from the radiation current by �mI summed
(integrated) over all quantum numbers, so the average change
in angular velocity is

I (�0 − �(t)) = �t
∑
m

∫ ∞

0

dω

2π
mNm(ω) ≡ �tM̄(�0), (84)

where I is the moment of inertia around the rotation axis
and M̄ = M/�, the torque in units of �, can be read off from
Eq. (52) with nout = 0. Note that the dependence of the torque
on the angular velocity �0 is made explicit. The variance of the
angular momentum can be obtained from the corresponding
variance of the current as

VarI�(t) = �
2t

∑
m

∫ ∞

0

dω

2π
m2Nm(ω)[Nm(ω) + 1]

≡ �
2tM̄2(�0), (85)
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where M̄2 is defined for future reference. Exploiting the
methods of the previous section, higher moments can be
readily computed. For long times, however, the central limit
theorem guarantees that the statistics is entirely determined
by the mean and the variance of the distribution provided
that the radiated photons are statistically independent. An
extension of this theorem due to Lyapunov gives the statistical
distribution even for long times when the initial angular
velocity has changed significantly. The Lyapunov central
limit theorem requires the random variables to be statistically
independent but not necessarily identically distributed. With
this assumption, the average of the random variables converges
to a normal distribution with a mean value given by the sum
of each variable’s mean and a variance as the sum of all the
variances [54]. Equations (84) and (85) then take the forms

I (�0 − �(t)) = �

∫ t

dt ′M̄(�(t ′)),

VarI�(t) = �
2
∫ t

dt ′M̄2(�(t ′)), (86)

which describe the deterministic decrease in the angular
velocity as well as its uncertainty. Notice that the integrand
in the above equations depends on the instantaneous value of
the angular velocity. We stress that the above discussion is
based on the adiabaticity of motion, namely, the rate at which
the angular velocity �(t) changes is taken to be much smaller
that �(t) itself.

The rotating object undergoes a stochastic motion due to
the inherent quantum (and, at finite temperature, also thermal)
fluctuations. Equivalently, the equation of motion can be cast
into a Langevin equation subject to noise as

I�̇(t) = −�M̄(�(t)) + η(t ; �(t)). (87)

The noise η(t ; �(t)) has zero mean

〈η(t ; �(t))〉 = 0, (88)

is independent at different times, and its covariance is

〈η(t ; �(t))η(t ′; �(t ′))〉 = �
2M̄2(�(t))δ(t − t ′). (89)

The δ-function correlation in time implies that the radiated
photons are not correlated over long times (�1/�). One can
easily check that Eq. (86) follows directly from the Langevin
equation (87). This equation is reminiscent of the Brownian
motion for a particle due to its thermal motion where the angu-
lar velocity plays the role of the displacement. The Brownian
motion is the prototype of the fluctuation-dissipation condition
where the response function is related to the fluctuations in
equilibrium. Equation (87) is rather distinct due to the fact that
noise is evaluated out of equilibrium as the object rotates, hence
the explicit dependence of the noise on �(t).6 Nevertheless, we
can deduce the distribution in angular velocity and its evolution
just as one can find the probability distribution for a particle’s
position in a thermal bath. The Fokker-Planck equation offers
a systematic derivation of the distribution function [55], which

6In the fluctuation-dissipation theorem, the noise is usually taken to
be independent of the position and velocity of the particle within the
linear-response regime.

we denote by P(�,t), making explicit the dependence on the
angular velocity as a function of time. The master equation
governing the probability distribution is

∂P

∂t
+ ∂

∂�

[
�

I
M̄(�)P + �

2

I 2

∂

∂�
[M̄2(�)P]

]
= 0. (90)

Notice that this equation reproduces the average and the
variance in Eq. (86) provided that the probability distribution
is sharply peaked around the instantaneous average angular
velocity. In other words, for an object starting to spin with
a definite angular frequency, i.e., a δ function as δ(� − �0),
the time evolution of the probability distribution is, at long
times, governed by a Gaussian function with the average and
the variance given above.

In the presence of an external torque M0 = �M̄(�0) that
tries to keep the object at a constant angular velocity �0, the
Fokker-Planck equation is modified as

∂P

∂t
+ ∂

∂�

[
�

I
[M̄(�) − M̄(�0)]P + �

2

I 2

∂

∂�
[M̄2(�)P]

]
= 0. (91)

In the steady state where the probability distribution is constant
in time, we find

�

I
[M̄(�) − M̄(�0)]P + �

2

I 2

∂

∂�
[M̄2(�)P] = 0. (92)

This equation can be solved exactly to obtain

P(�) = C

M̄2(�)
exp

[
−I

�

∫ �

0
d�′ M̄(�′) − M̄(�0)

M̄2(�′)

]
, (93)

where the normalization constant C is determined by the
condition

∫ ∞
0 d�P(�) = 1. For an object with a large

moment of inertia, the distribution is sharply peaked near �0.
In this case, the distribution function becomes a Gaussian in
� as

P(�) ≈
√

2π
 exp

[
− (� − �0)2

2(
�)2

]
, (94)

with

I
� =
√

�I
M̄2(�0)

∂M̄/∂�0
. (95)

This equation sets a quantum limit on how close to an
eigenstate the angular velocity of a spinning object (driven by
a constant torque) can be. Being in a regime that the angular
velocity is small compared to other frequency scales, one can
assume that the scattering matrix only slightly deviates from
unity such that Nm(ω) � 1. At zero temperature, the leading
contribution in �R/c is given by m = 1. One can see from
Eqs. (84) and (85) that M̄2 ≈ M̄; hence, Eq. (95) becomes

I
� =
√

�I
1

∂ ln M̄/∂�0
∝

√
�I�0. (96)

This relation follows from the fact that usually M̄(�0) is a
power law in �0; we will discuss this in more detail for
the electromagnetic case in Sec. III D. This means that the
uncertainty in the angular momentum of a single object is not
proportional to �, but to the geometrical mean of � and the
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total angular momentum, which is much greater than �. Note
that any infinitesimal dissipation gives rise to the uncertainty
in Eq. (96) independent of the details and strength of loss.

F. Test object: Torque and tangential force

In this section, we consider a second, or a test, object in the
vicinity of the rotating body and study the interaction between
the two. Such an interaction goes beyond the Casimir-Polder
force [56] between two polarizable objects due to the presence
of the radiation field near the test object. As we argue below,
the latter is the dominant contribution to the force when the
two objects are far apart. Let the objects be two disks of radii R
and a separated by a distance d. We shall assume that d � R,a

and that the test object is at rest. Our starting point is Eq. (65),
where the correlation function is broken into nonradiative and
radiative parts: The former is related to the imaginary part of
the Green’s function via Eq. (66), while the latter is given by

Eq. (67). We shall assume that the two objects are separated
far enough that a single-reflection computation of the radiation
field off of the second object suffices.

It is useful to expand the radiation field around this object in
order to compute its scattering. Hence, we introduce translation
matrices relating wave functions around two different origins,
through

H (1)
m (ωr1)eimφ1 =

∞∑
n=−∞

H
(1)
n−m(ωd)Jn(ωr2)einφ2 , (97)

with (r2,φ2) being the coordinates with respect to the center
of the second object. Upon scattering off the test object, the
amplitude of the outgoing waves is given by the object’s S

matrix designated as S,

Jm(ωr)eimφ = 1
2

[
H (2)

m (x) + H (1)
m (x)

]
eimφ

→ 1
2

[
H (2)

m (ωr) + Sm(ω)H (1)
m (ωr)

]
eimφ. (98)

We can then write the scattering off of the second object as

〈�(ω,x)�∗(ω,y)〉scat = �

32

∞∑
m=1

n(�m − ω,T )[1 − |Sm(ω)|2]

( ∞∑
n=−∞

H
(1)
n−m(ωd)

[
H (2)

n (ωr) + Sn(ω)H (1)
n (ωr)

]
einφ

)

×
( ∞∑

p=−∞
H

(1)
p−m(ωd)

[
H

(2)
p (ωξ ) + Sp(ω)H (1)

p (ωξ )
]
eipψ

)
. (99)

Next we compute the torque exerted on the test object by the
radiation field of the rotating body. Note that we have neglected
the nonradiative term in Eq. (65) because it is given by the
imaginary part of the Green’s function, which can be reduced
to a potential energy. The two objects being symmetric, the
energy function is indifferent to a rotation of the disk and thus
makes no contribution to the torque. The radiation field, on
the other hand, exerts a torque that is the integral of 〈∂φ�∂r�〉
over a closed contour around the test object. Note that ∂φ → in

and ∂r combine into the Wronskian of Bessel H functions
of the first and second kind. A little algebra yields, in the
first-reflection approximation,

M2←1 = �

8π

∑
m>0,n

n

∫ ∞

0
dω n(ω − �m,T )[1 − |Sm(ω)|2]

×∣∣H (1)
n−m(ωd)

∣∣2
[1 − |Sn(ω)|2]. (100)

The subscript indicates that the torque is exerted due to the
radiation field of the first on the second object. As explained
above, for a slowly rotating object at zero temperature, we
may restrict to m = 1. Further, n = 1 is dominant at large
separation. We then find the torque at T = 0 as

M2←1 = �

8π

∫ �

0
dω[|S1(ω)|2 − 1]|H (1)

0 (ωd)|2[1−|S1(ω)|2].

(101)

At close separations, one should include higher-order reflec-
tions. In the opposite extreme of large separations �d/c � 1,

the torque falls off with distance as

M2←1 ∼ �c

4π2d

∫ �

0
dω

1

ω
[|S1(ω)|2 − 1][1 − |S1(ω)|2],

(102)

where we have made the factors of c explicit. Note that a
nonvanishing torque requires the test object to be lossy, i.e.,
|S1(ω)| < 1.

One can also compute the force exerted on the test
object. Let the two objects be separated along the x axis.
Geometrically, they are symmetric with respect to the axis
connecting them, nevertheless, a tangential force arises in the
perpendicular direction along the y axis due to the radiation
field. This force can be computed from the expectation value
of the stress tensor

Tij = ∂i�∂j� + 1
2δij ((∂t�)2 − (∇�)2). (103)

To compute the force parallel to the y axis, one should integrate
the expectation value of the stress tensor over a closed contour
around the test object:

Fy = r

∫ 2π

0
dφ 〈Tij 〉r̂i ŷj

= r

∫ 2π

0
dφ

〈
1

2
sin φ

(
(∂t�)2 + (∂r�)2 − 1

r2
(∂φ�)2

)

+ cos φ
1

r
∂r�∂φ�

〉
. (104)
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Again, nonradiative terms do not contribute on the basis of
symmetry. We can compute the tangential force explicitly;
however, the algebra is rather long and the result is not very
illuminating for our toy model of scalar fields. We postpone
the discussion of the force to Sec. III C in the context of
electromagnetism.

III. ELECTRODYNAMICS

In this section we generalize the methods and techniques
developed in application to a scalar field to electromagnetism.
The vector character of the latter complicates mathematical
expressions, but the underlying concepts are identical to
Sec. II, with the techniques straightforwardly extended to
electrodynamics. We start from electromagnetic fluctuations
and the corresponding correlation functions in the context
of static objects and generalize them to spinning objects.
Throughout this section we consider objects of arbitrary shape
(rotationally symmetric in the case of spinning bodies) in
a general basis of partial waves in three dimensions. We
derive general trace formulas for the quantum and thermal
radiation from a single object. We shall also explicitly keep
the dependence on c.

A. Static objects

Quantum fluctuations of the electromagnetic field can be
formulated in a number of ways. In a lossy medium such as
a dielectric object, there are subtle complications requiring a
careful treatment [57–60]. A convenient starting point for our
purposes is the Rytov formalism [28], which relates quantum
fluctuations of the fields to those of the sources and currents.
For a dielectric object (with no magnetic response μ = 1),
Maxwell equations in the presence of sources are

∇×E = i
ω

c
B,

∇×B = −iε(ω)
ω

c
E − i

ω

c
K, (105)

or equivalently(
∇×∇× − ω2

c2
ε(ω)I

)
E = ω2

c2
K. (106)

Then, according to the Rytov formalism, source fluctuations
are related to the imaginary part of the local dielectric function
by

〈K(ω,x) ⊗ K∗(ω,y)〉 = a(ω)Im ε(ω,x)δ(x − y)I, (107)

where the distributions a and n are defined as before. Current
fluctuations are independent at different points (hence the δ

function in space) and also independent for different vector
components, hence the 3×3 unit matrix I. The corresponding
fluctuations of the electromagnetic (EM) field can be described
in terms of the sources from Eq. (106) via the EM Green’s
function E = ω2

c2

∫
GK. We are mainly interested in the

EM-field fluctuations outside the object from which we can
compute the quantum radiation. As we have discussed in
the previous section, field fluctuations receive contributions
both from the fluctuating sources within the object and from
fluctuations (zero point and at finite temperature, thermal)

in the vacuum outside the object. In the following, we first
consider source fluctuations outside the object.

The dyadic EM Green’s function is defined by(
∇×∇× − ω2

c2
ε(ω)I

)
G(ω,x,z) = Iδ(x − z). (108)

In an appropriate coordinate system (ξ1,ξ2,ξ3), the outgoing
wave Green’s function (in empty space) can be broken up
along the coordinate ξ1 as [61,62]

G(ω,x,z) = i

⎧⎨
⎩

∑
α

Eout
ᾱ (ω,x) ⊗ Ereg

α (ω,z), ξ1(x) > ξ1(z)∑
α

Ereg
α (ω,x) ⊗ Eout

ᾱ (ω,z), ξ1(x) < ξ1(z),

(109)

where Eout(in) is the outgoing (incoming) electric field
normalized as

i

2

∮
d� · {[∇×Eout/in

α (ω,z)
] × Eout/in∗

β (ω,z)

+ Eout/in
α (ω,z)×∇×Eout/in∗

β (ω,z)
} = ±δαβ, (110)

∮
d� · {[∇×Eout/in

α (ω,z)
]×Ein/out∗

β (ω,z)

+ Eout/in
α (ω,z)×∇×Ein/out∗

β (ω,z)
} = 0, (111)

which can be derived by a vector form of the Green’s theorem;
see the Appendix. In other words, the vector field is normalized
such that the corresponding current is unity up to a sign. Also
Ereg defines a solution to the EM field regular everywhere in
space. The index α runs over partial waves and ᾱ indicates the
partial wave that is related to α by time reversal. In the presence
of an external object, the free Green’s function for both
points outside the object should be modified to incorporate
the scattering from the object [with ξ1(x) < ξ1(z)]

G(ω,x,z) = i

2

∑
α

[
Ein

α (ω,x) + Sα(ω)Eout
α (ω,x)

] ⊗ Eout
ᾱ (ω,z),

(112)

where Sα(ω) is the scattering matrix as a function of the
frequency ω and partial wave α. Note that we have assumed
that the scattering matrix is diagonal in partial waves.7 In
general, one should sum over all β such that Sβα �= 0 with the
rest of the derivation closely following the remainder of this
section. The incoming wave Ein is normalized to ensure that
the corresponding energy flux is −ω. When the object is not
present, Sα(ω) = 1 and Eq. (112) reduces to the free Green’s
function with Ereg

α = (Ein
α + Eout

α )/2. We stress that the Green’s
function in Eq. (112) is defined with both points outside the
object.

7We choose an appropriate coordinate system where Maxwell
equations are separable and take ξ1 to be constant on the object’s
surface.
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The EM-field correlation function due to the outside source
fluctuations is then given by

〈E(ω,x) ⊗ E∗(ω,y)〉out fluc

= ω4

c4

∫
dz〈G(ω,x,z)K(ω,z) ⊗ G∗(ω,y,z)K∗(ω,z)〉

= aout(ω)
ω4

c4
Im εD

∫
out

dzG(ω,x,z) · G∗(ω,y,z), (113)

where the dot product indicates the contraction of the second
subindex of the two dyadic functions. The last line in this
equation is obtained according to Eq. (107), where aout

corresponds to the distribution function at the environment
temperature and εD is the dielectric function of the vacuum
dust. The latter can be set to one only in the end as explained
in the previous section: The integral over infinite space brings
down a factor of 1/Im εD [42], while the integration over
any finite region vanishes as we take the limit Im εD → 0.
Therefore, we can choose the domain of integration over z such
that ξ1(z) > ξ1(x),ξ1(y). This allows us to use the partial-wave
expansion of the Green’s function in Eq. (112) to find

〈E(ω,x) ⊗ E∗(ω,y)〉out fluc

= ω4

4c4
aout(ω)

∑
α,β

[
Ein

α (ω,x) + Sα(ω)Eout
α (ω,x)

]
⊗ [

Ein∗
β (ω,y) + S∗

βEout∗
β (ω,y)

]
× Im εD

∫
out

dz Eout
ᾱ (ω,z) · Eout∗

β̄
(ω,z). (114)

Here and in subsequent parts, we frequently compute volume
integrals similar to the last line of this equation, which can be
cast as

Im εD

∫
out

dz Eout
ᾱ (ω,z) · Eout∗

β̄
(ω,z)

= 1

2i

∫
out

dz
[
εDEout

ᾱ (ω,z) · Eout∗
β̄

(ω,z)

− Eout
ᾱ (ω,z) · ε∗

DEout∗
β̄

(ω,z)
]

= c2

2iω2

∫
out

dz
{[∇×∇×Eout

ᾱ (ω,z)
] · Eout∗

β̄
(ω,z)

− Eout
ᾱ (ω,z) · ∇×∇×Eout∗

β̄
(ω,z)

}
,

where in the last line we have used the homogenous version of
Eq. (106) with the RHS set to zero. The volume integration can
be then recast as a surface integral with two boundaries, one at
the infinity and another at a finite distance from the object.
The infinitesimal imaginary part of the dielectric function
guarantees that outgoing functions are exponentially decaying
at large distances and thus the surface integral at infinity does
not contribute. We then obtain

Im εD

∫
out

dz Eout
ᾱ (ω,z) · Eout∗

β̄
(ω,z)

= ic2

2ω2

∮
d� · {[∇×Eout

ᾱ (ω,z)
]×Eout∗

β̄
(ω,z)

+ Eout
ᾱ (ω,z)×∇×Eout∗

β̄
(ω,z)

}
. (115)

Therefore, from Eq. (110), the correlation function of the EM
fields takes the form

〈E(ω,x) ⊗ E∗(ω,y)〉out fluc

= aout(ω)
ω2

4c2

∑
α

[
Ein

α (ω,x) + Sα(ω)Eout
α (ω,x)

]
⊗ [

Ein∗
α (ω,y) + S∗

α(ω)Eout∗
α (ω,y)

]
. (116)

The radiation due to the outside fluctuations can be computed
by integrating over the Poynting vector S = c E×B of the
corresponding correlation function

Pout fluc =
∫ ∞

0

dω

2π

∮
d� · ic2

ω
〈(∇ × E)

×E∗ + E×∇×E∗〉out fluc

=
∫ ∞

0

dω

2π

∑
α

[−1 + |Sα(ω)|2]aout(ω)
iω

4

∮
d�

· [(∇×Eout
α

)×Eout∗
α + Eout

α ×∇×Eout∗
α

]
= 1

4π

∫ ∞

0
dω ωaout(ω)

∑
α

[−1 + |Sα(ω)|2], (117)

where we used Eqs. (110) and (111).
The field correlation function induced by the inside fluc-

tuations can be computed similarly. In this case, however, we
need the Green’s function with one point inside the object.
Following an argument similar to the scalar case, we note that
as the two points do not coincide, the Green’s function satisfies
a homogeneous equation inside with respect to the smaller
coordinate while it satisfies the free EM equation outside the
object in the larger coordinate. Hence, we can expand the
Green’s function as [with ξ1(z) < ξ1(x)]

G(ω,x,z) = i

2

∑
α

[
AEout

ᾱ (ω,x) + BEin
ᾱ (ω,x)

] ⊗ Fα(ω,z),

(118)

where the prefactor i/2 is chosen for convenience, A and B

are constants to be determined, and Fα is defined as the regular
(at the origin) solution to the EM equation inside the object(

∇×∇× − ω2

c2
ε(ω,x)I

)
Fα(ω,x) = 0. (119)

We can determine the coefficients A and B and the normal-
ization of F by matching the Green’s functions approaching a
point on the boundary from inside and outside the object

G(ω,x,y)|y→�− = G(ω,x,y)|y→�+ , ξ1(x) > ξ1(y), (120)

where � represents the boundary. Comparing the two Green’s
functions given by Eqs. (112) and (118), we find (A = 1,

B = 0)

G(ω,x,z) = i

2

∑
α

Eout
ᾱ (ω,x) ⊗ Fα(ω,z), (121)

where Fα and the S-matrix element Sα are determined by
the continuity of the Green’s function, which requires parallel
components of electric and magnetic (the latter because μ = 1)
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fields to match at the boundary

Fα(ω,z)‖ = [
Ein

α (ω,z) + Sα(ω)Eout
α (ω,z)

]
‖,

[∇×Fα(ω,z)]‖ = [∇×Ein
α (ω,z) + Sα(ω)∇×Eout

α (ω,z)
]
‖.

(122)

The correlation function due to the inside fluctuations is then
given by

〈E(ω,x) ⊗ E∗(ω,y)〉in fluc

= ain(ω)
ω4

4c4

∑
α,β

Eout
ᾱ (ω,x)

⊗ Eout∗
β̄

(ω,y)
∫

in
dz Fα(z) · Im ε(ω,z)F∗

β(z), (123)

where a is the distribution function defined at the object’s
temperature. Again exploiting the wave equation for F, the
volume integral can be cast as a surface term∫

in
dz Fα(z) · Im ε(ω,z)F∗

β(ω,z)

= c2

2iω2

∮
d� · {[∇×Fα(ω,z)]×F∗

β(ω,z)

+ Fα(ω,z)×∇×F∗
β(ω,z)}. (124)

The continuity equations can be used to evaluate the surface
integral∫

in
dz Fα(ω,z) · Im ε(ω,z)F∗

β(ω,z) = c2

ω2
δαβ(1 − |Sα(ω)|2).

(125)

The field correlation function then becomes8

〈E(ω,x) ⊗ E∗(ω,y)〉in fluc

= ain(ω)
ω2

4c2

∑
α

[1 − |Sα(ω)|2]Eout
α (ω,x) ⊗ Eout∗

α (ω,y).

(126)

The radiation power due to the inside fluctuations can be
computed from the corresponding correlation function as

Pin fluc = 1

4π

∫ ∞

0
dω ωain(ω)

∑
α

[1 − |Sα(ω)|2]. (127)

The total radiation per unit time is given by

P = 1

4π

∫ ∞

0
dω ω(ain(ω) − aout(ω))

∑
α

[1 − |Sα(ω)|2]

=
∫ ∞

0

dω

2π
�ω(n(ω,T ) − n(ω,T0))

∑
α

[1 − |Sα(ω)|2],

(128)

where in the last line the radiation is expressed in terms of the
Bose-Einstein distribution function. In brief, we have derived

8We have changed α → ᾱ; note that |Sᾱ| = |Sα| due to time-reversal
symmetry.

Kirchhoff’s law in the context of electrodynamics [41,42] and
the partial waves also include electromagnetic polarizations.
Notice that Eq. (128) is independent of the coordinate system
and the shape of the object. In a general basis that the scattering
matrix is not diagonal, the sum over α is replaced by a double
sum over incoming and outgoing modes as∑

α,β

[δβα − |Sβα(ω)|2] = Tr[I − S†(ω)S(ω)], (129)

which is cast as a manifestly invariant (trace) formula in the
last line.

B. Moving objects

For bodies in uniform motion, the equations in the previous
section are applied in the rest frame of the object and
then transformed to describe the EM-field fluctuations in the
appropriate laboratory frame. With all contributions of the field
correlation functions in a single frame, one can then compute
various physical quantities of interest, such as forces, or energy
transfer from one object to another or to the vacuum. For
nonuniform motion, we assume that the same equations apply
locally to the instantaneous rest frame of the body [63]. This
assumption should be valid as long as the rate of acceleration is
less than typical internal frequencies characterizing the object,
which are normally quite large. The EM wave equation for
a moving medium can be inferred from a Lagrangian. A
dielectric object is described by

L = 1
2ε′E′2 − 1

2 B′2, (130)

where E′ and B′ are the EM fields in the comoving frame
related to the EM fields in the laboratory frame as

E′ = E + v
c

× B, B′ = B − v
c

× E, (131)

to lowest order in velocity. Note that ε′ = ε(ω′,x′) is the
dielectric function defined in the moving frame similarly
defined in Sec. II. The Lagrangian can be cast as

L = L0 + 1
2 (ε′ − 1)E′2,

where L0 = 1
2 E′2 − 1

2 B′2 is the free Lagrangian. Notice that
L0 is invariant under the transformation in Eq. (131) to first
order in v/c, i.e., L0 = 1

2 E2 − 1
2 B2 + O(v2/c2), while the

second term is related to the EM field in the laboratory frame by
Eq. (131). The modified Maxwell equations are then obtained
from the Lagrangian as[

∇×∇× − ω2

c2
I − ω2

c2
D̃(ε′ − 1)D

]
E = 0, (132)

where

D = I + 1

iω
v×∇×, D̃ = I + 1

iω
∇×v×.

(133)

The coupling with the (fluctuating) currents can be formulated
by adding to the Lagrangian


L = K′ · E′, (134)

where K′ is defined in the moving frame. This equation follows
from the assumption that a local current density is coupled
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to the electric field in the instantaneous rest frame of the
corresponding point in the moving object; see the discussion
in Sec. II B. The inhomogeneous EM equation in the presence
of random currents follows from the Lagrangian as[

∇×∇× − ω2

c2
I − ω2

c2
D̃(ε′ − 1)D

]
E = ω2

c2
D̃K′. (135)

Again we should compute field correlation functions due
to the outside and inside current fluctuations separately. The
former can be easily deduced from Eq. (116) simply by
inserting the scattering matrix for a rotating object

〈E(ω,x) ⊗ E∗(ω,y)〉out fluc

= aout(ω)
ω2

4c2

∑
αm

[
Ein

αm
(ω,x) + Sαm

(ω)Eout
αm

(ω,x)
]

⊗ [
Ein∗

αm
(ω,y) + S∗

αm
(ω)Eout∗

αm
(ω,y)

]
, (136)

where the partial-wave index αm includes m, the eigenvalue of
the angular momentum along the z direction (in units of �).

The inside fluctuations, on the other hand, are defined with
respect to the rest frame of the object

〈K′(ω′,x′) ⊗ K′∗(ω′,y′)〉 = ain(ω′)Im ε(ω′,x′)δ(x′ − y′)I.

(137)

Consider K′
ω′m′(t ′,x′), a fluctuation of the current characterized

by the angular momentum m′ and frequency ω′ in the rotating
frame; we do not make the dependence of the current K on
other quantum numbers explicit as its fluctuations depend
only on ω and m as it will become clear shortly. For the
sake of notational convenience, we define K(t,x) ≡ K′(t ′,x′),
which captures current fluctuations in the laboratory-frame
coordinates. Note that the two sets of reference frame are
related by Eq. (43) and supplemented by z = z′ along the
symmetry axis of the object. One can then see that the partial
wave m is invariant with respect to the reference frame while
the frequency is shifted as

ω′ = ω − �m.

This modifies the spectral density of source fluctuations simply
by replacing the frequency in ε and a by ω − �m. Therefore,
the inside source fluctuations from the point of view of the
laboratory-frame observer are given by

〈Km(ω,x) ⊗ K∗
m(ω,y)〉

= aT (ω − �m)Im ε(ω − �m,r,z)
δ(rx − ry)δ(zx − zy)

2πr
I.

(138)

Henceforth, we shall use the same notation G for the Green’s
function in the presence of a moving object corresponding to
Eq. (132). The EM-field correlation function is given by

〈E(ω,x) ⊗ E∗(ω,y)〉in fluc

= ω4

c4

∫
in

dz 〈G(ω,x,z)D̃K(ω,z) · G∗(ω,y,z)D̃
∗
K∗(ω,z)〉.

(139)

We can expand the Green’s function similarly to the previous
section as

G(ω,x,z) = i

2

∑
αm

Eout
ᾱm

(ω,x) ⊗ Fαm
(ω,z), (140)

where F is a solution to the modified EM equation inside the
dielectric object[

∇×∇× − ω2

c2
I − ω2

c2
D̃(ε′ − 1)D

]
F = 0 (141)

and satisfies boundary conditions similar to Eq. (122), albeit
with the scattering matrices for a rotating object9

Fαm
(ω,z)‖ = [

Ein
αm

(ω,z) + Sᾱm
(ω)Eout

αm
(ω,z)

]
‖,

[∇×Fαm
(ω,z)]‖ = [∇×Ein

αm
(ω,z) + Sᾱm

(ω)∇×Eout
αm

(ω,z)
]
‖.

(142)

The correlation function of the EM fields is then given by

〈E(ω,x) ⊗ E∗(ω,y)〉in fluc

= ω4

4c4

∑
αm,βm

ain(ω − �m)Eout
ᾱm

(ω,x) ⊗ Eout∗
β̄m

(ω,y)

×
∫

in
dzDFαm

(ω,z) · Im ε(ω − �m,z)D∗F∗
βm

(ω,z).

(143)

The volume integral can be computed similarly to that of the
previous subsection. We write the second line of the preceding
equation as

1

2i

∫
in

dz[(ε′ − 1)DFαm
(ω,z) · D∗F∗

βm
(ω,z)

−DFαm
(ω,z) · (ε′∗ − 1)D∗F∗

βm
(ω,z)]

= 1

2i

∫
in

dz{[D̃(ε′ − 1)DFαm
(ω,z)] · F∗

βm
(ω,z)

− Fαm
(ω,z) · D̃∗

(ε′∗ − 1)D∗F∗
βm

(ω,z)}

= c2

2iω2

∫
in

dz{[∇×∇×Fαm
(ω,z)] · F∗

βm
(ω,z)

− Fαm
(ω,z) · ∇×∇×F∗

βm
(ω,z)}

= c2

2iω2

∮
d� · {[∇×Fαm

(ω,z)]×F∗
βm

(ω,z)

+ Fαm
(ω,z)×∇×F∗

βm
(ω,z)}, (144)

where in the step from the second to the third line, we have
used Eq. (132). Using the continuity relations, the last line

9Note that the scattering matrix is given for ᾱ. This is because the
Green’s function in the presence of a moving object is no longer
symmetric with respect to its spatial arguments but satisfies a rather
different symmetry; see the discussion in Sec. IIB1. If Eq. (112)
defines the Green’s function with ξ1(x) < ξ1(z), then G(ω,z,x) =
i

2

∑
α Eout

ᾱ (ω,z) ⊗ [Ein
α (ω,x) + Sᾱ(ω)Eout

α (ω,x)].
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gives ∫
in

dzDFαm
(ω,z) · Im ε(ω − �m,z)D∗F∗

βm
(ω,z)

= c2

ω2
δαmβm

(1 − |Sᾱm
|2), (145)

which is the analog of Eq. (125) for moving objects. The
EM-field correlation function corresponding to the inside
fluctuations is then obtained as

〈E(ω,x) ⊗ E∗(ω,y)〉in fluc

= ω2

4c2

∑
αm

ain(ω − �m)(1 − |Sαm
|2)Eout

αm
(ω,x)

⊗ Eout∗
αm

(ω,y). (146)

The total radiation per unit time can be obtained by integrating
over the Poynting vector as

P = 1

4π

∫ ∞

0
dω ω

∑
αm

[ain(ω − �m) − aout(ω)]

× [1 − |Sαm
(ω)|2]

=
∫ ∞

0

dω

2π
�ω

∑
αm

[n(ω − �m,T ) − n(ω,T0)]

× [1 − |Sαm
(ω)|2]. (147)

At zero-temperature everywhere, n(ω − �m,0) − n(ω,0) =
−�(�m − ω) and the quantum radiation happens in the
superradiating regime; see the discussion in Sec. IIB2. Again
we note that our derivation leading to Eq. (147) is not specific
to a coordinate system and shape as long as the object is a
solid of revolution with the angular momentum m being a
good quantum number. In a general basis where the scattering
matrix is not diagonal (except in m), we have

P =
∫ ∞

0

dω

2π
�ω

∑
αm,βm

[n(ω − �m,T ) − n(ω,T0)]

× [δβmαm
− |Sβmαm

(ω)|2]

=
∫ ∞

0

dω

2π
�ω Tr{[n(ω − �l̂z,T ) − n(ω,T0)]

× [I − S†(ω)S(ω)]}, (148)

where l̂z is the angular momentum operator. This equation casts
the quantum (and thermal) radiation from a rotating object
into a trace formula applicable to any shape with rotational
symmetry. For detailed discussions on thermal radiation and
the heat transfer for arbitrary objects, see Ref. [64].

C. A test object in the presence of a rotating body

In this section we study the interaction of the radiation field
from a rotating body with a test object at rest and assume
that both objects are dielectric spheres. The overall EM-field
correlation function is given by the sum of Eqs. (136) and
(146) as

〈E ⊗ E∗〉 = 〈E ⊗ E∗〉in fluc + 〈E ⊗ E∗〉out fluc. (149)

In the following we consider the limit of zero temperature in
both the object and the environment. The generalization to
finite temperature is straightforward. Similar to Sec. II, the
correlation function in Eq. (149) can be recast as

〈E ⊗ E∗〉 = 〈E ⊗ E∗〉nonrad + 〈E ⊗ E∗〉rad, (150)

where we have broken up the correlation function into radiative
(due to propagating photons) and nonradiative (due to zero-
point fluctuations) parts. The latter is given by

〈E(ω,x) ⊗ E∗(ω,y)〉nonrad = � sgn(ω)ImG(ω,x,y), (151)

where G is the Green’s function in the presence of a rotating
object. This equation is reminiscent of the FDT in equilibrium;
the term on the RHS is purely real and thus does not contribute
to the radiation, but leads to a Casimir-like force between
the rotating body and nearby objects. The radiative term in the
correlation function can be obtained from Eqs. (149) and (150)
as

〈E(ω,x) ⊗ E∗(ω,y)〉rad ≈ �ω2

2c2

∑
αm

�(�m − ω)(|Sαm
|2 − 1)

× Eout
αm

(ω,x) ⊗ Eout∗
αm

(ω,y) (152)

and contributes to the Poynting vector in the superradiating
regime 0 < ω < �m.

To find the interaction with a test object, we only consider
the radiative term in the correlation function for two reasons.
First, radiation pressure exerts a force falling off more slowly
with the separation distance compared to the nonradiative part.
Second, nonradiative fluctuations give rise to a potential energy
depending only on the separation distance akin to the Casimir
energy. The test object being spherical, the corresponding
tangential force or torque due to the corresponding term in
Eq. (150) is identically zero.

The radiation from a (nonmagnetic) rotating sphere is
dominated by the lowest (electric) partial wave (l = 1,

m = 1,P = E) in which case Eq. (152) yields

〈E(ω,x) ⊗ E∗(ω,y)〉rad = �ω2

2c2
�(� − ω)(|S11E|2 − 1)

× Eout
11E(ω,x) ⊗ Eout∗

11E (ω,y). (153)

The partial waves in Eq. (152) are defined in spherical basis as

Eout
lmM (ω,x) =

√
ω/c√

l(l + 1)
∇×h

(1)
l

(
ωr

c

)
Ylm(θ,φ)x,

Eout
lmE(ω,x) = −i

√
c/ω√

l(l + 1)
∇×∇×h

(1)
l

(
ωr

c

)
Ylm(θ,φ)x,

(154)

where Ylm is usual spherical harmonic function and h
(1)
l is the

spherical Hankel function of the first kind. The normalization
is chosen to ensure the conditions in Eqs. (110) and (111).

In order to find the scattering from the second object, we
expand the EM field around its origin located at a separation
d on the x axis. To the lowest order in frequency, we have

Eout
11E(ω,x) = U11E,11EEreg

11E(ω,x̃)+U10M,11EEreg
10M (ω,x̃) + · · ·,

(155)
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where x̃ is defined with respect to the new origin. The
regular functions are defined by replacing the spherical Hankel
function h

(1)
l in Eq. (154) by the spherical Bessel function jl .

The translation matrices are given by [62]

U11E,11E = h
(1)
0

(
ωd

c

)
, U10M,11E =

√
2ωd

4c
h

(1)
0

(
ωd

c

)
.

(156)

Next we consider the scattering from the test object

Ereg
lmP (ω,x̃) → 1

2

[
Ein

lmP (ω,x̃) + SlmP Eout
lmP (ω,x̃)

]
, (157)

where SlmP is the corresponding scattering matrix. We then
find the EM-field correlation function upon one scattering from
the test object as

〈E(ω,x̃) ⊗ E∗(ω,ỹ)〉rad

= �ω2

8c2
�(� − ω)(|S11E |2 − 1)

{
U11E,11E

[
Ein

11E(ω,x̃) + S11EEout
11E(ω,x̃)

] + U10M,11E

[
Ein

10M (ω,x̃) + S10MEout
10M (ω,x̃)

]}
⊗ {

U11E,11E

[
Ein

11E(ω,ỹ) + S11EEout
11E(ω,ỹ)

] + U10M,11E

[
Ein

10M (ω,ỹ) + S10MEout
10M (ω,ỹ)

]}
. (158)

Having the correlation functions, we can compute physical
quantities of interest. In computing the torque, the partial
waves (1,1,E) and (1,0,M) decouple; however, the latter does
not contribute since its angular momentum along the z axis is
zero. We then find that the torque falls off as 1/d2 with the
separation distance as

M ∼ �

8π

∫ �

0
dω(|S11E |2 − 1)|U11E,11E|2(1 − |S11E|2)

= �c2

8πd2

∫ �

0
dω

1

ω2
(|S11E |2 − 1)(1 − |S11E |2). (159)

For small particles whose polarizability are α1 and α2 for
rotating and static bodies, respectively, we find

M = 8�c2

9πd2

∫ �

0
dω ω4|Im α1(ω − �)|Im α2(ω). (160)

Computing the force is more complicated since the two
partial waves mix and one has to find their overlap via the
Maxwell stress tensor

Tij (ω) = Ei(ω)E∗
j (ω) + Bi(ω)B∗

j (ω) − 1
2 (E2 + B2)δij .

(161)

The y component of the force, perpendicular the x axis
connecting the two objects and the z axis along the rotation, is
obtained as

Fy =
∫

dω

2π

∫
r2d�r̂〈Tij 〉r̂i ŷj , (162)

with �r̂ being the solid angle corresponding to the unit
vector r̂ from the origin of the test object. A lengthy, though
straightforward, calculation leads to

Fy = �

4πc2

∫ �

0
dω ω2(|S11E|2 − 1)

× U10M,11EU11E,11ET10M,11ERe (−1 + S10MS11E),

(163)

where T10M,11E characterizes the stress tensor sandwiched be-
tween the two partial waves, whose dependence on frequency
is given by

T10M,11E = − πc

2
√

2ω
. (164)

For a nonmagnetic object, we can safely assume S10M ≈ 1
since its frequency dependence can be neglected compared to
S11E , hence

Fy = �

32πd

∫ �

0
dω(|S11E |2 − 1)(1 − Re S11E). (165)

Notice that the force falls off as the inverse separation distance
while the usual Casimir force decays much faster. For small
particles with polarizability α1 and α2, we find

Fy = �

9πd

∫ �

0
dω ω6|Im α1(ω − �)|Im α2(ω). (166)

D. Vacuum friction on a rotating object

For a rotating object, we have to solve a complicated
equation (141), but in the lowest order in velocity we can ne-
glect the explicit dependence on velocity and set D ≈ D̃ ≈ I,
changing the argument of the dielectric function as ε(ω) →
ε(ω − �m). Finally, at zero temperature, only frequencies
within the range [0,�] contribute. We examine the cases where
the object is a sphere or a right circular cylinder.

1. Sphere

Electromagnetic scattering from a sphere is most conve-
niently described in a basis (l,m,P ), where l corresponds to the
total angular momentum, m is the angular momentum along
the z axis, and P is the polarization. In the approximations
made here, the lowest partial wave l = 1 gives the leading
order, while larger l are suppressed by higher powers of the
(linear) velocity divided by the speed of light. We assume a
nonmagnetic object, thus the electric polarizability gives the
leading contribution to scattering matrix as

S1mE(ω) = 1 + i
4ω3

3c3
α(ω − �m), (167)

where α(ω) is the polarizability of a spherical object at low
frequencies (appropriate to the problem of a rotating object at
a small angular velocity) depending solely on the dielectric
function ε(ω), which is assumed to be a homogenous but
frequency-dependent function within the object. Note that, at
zero temperature, only m = 1 (and not m = 0,−1) contributes
to the radiation.
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a. Radiation. The rate of energy radiation to the vacuum is
obtained as

P ≈
∫ �

0

dω

2π
�ω(|S11E |2 − 1)

≈ 4�

3πc3

∫ �

0
dω ω4[−Im α(ω − �)], (168)

where we have kept only the leading term in powers of
frequency. For a dielectric sphere of radius R, the polarizability
is α(ω) = R3[ε(ω) − 1]/[ε(ω) + 2]; the radiation is then given
by [32]

P ≈ 4�R3

3πc3

∫ �

0
dω ω4

∣∣∣∣Im ε(ω − �) − 1

ε(ω − �) + 2

∣∣∣∣. (169)

Similarly, the frictional torque is obtained as

M ≈ 4�R3

3πc3

∫ �

0
dω ω3

∣∣∣∣Im ε(ω − �) − 1

ε(ω − �) + 2

∣∣∣∣. (170)

For a metallic particle, ε = 1 + i4πσ/ω and Im α ≈
3ωR3/4πσ . Hence, we find [32]

P = �R3�6

30π2c3σ
, M = �R3�5

20π2c3σ
. (171)

b. Entropy generation. Making the above approximation,
the rate of entropy generation is given by

S ≈ −kB

∫ �

0

dω

2π
(|S11E |2 − 1) ln(|S11E |2 − 1)

= kBN11E

∣∣∣∣ ln
R3�4

c3σ

∣∣∣∣, (172)

with N11E = R3�5

30π2c3σ
, where the second line is computed for a

metallic particle and N11E is the total number of photons with
the quantum number 11E radiated per unit time.

c. Uncertainty in angular momentum. For small angular
velocities, one can compute the uncertainty of angular mo-
mentum from Eq. (96). Notice that M ∝ �5, thus

I
� ≈
√

�I�0

5
. (173)

2. Cylinder

For a cylinder, the scattering matrices are more complicated
due to mixing between the two polarizations. A complete
basis for cylindrical waves is (m,kz,P ), with kz being the
wave vector parallel to the z axis and polarizations labeled by
P . In the limit of a thin or slowly rotating cylinder where
�R/c,ε�R/c � 1, the first partial wave m = 1 gives the
leading contribution while kz should be integrated over all
propagating waves. The corresponding scattering matrices are

S1kzMM (ω) = 1 + iπ

2

ε(ω − �) − 1

ε(ω − �) + 1

ω2

c2
R2,

S1kzEE(ω) = 1 + iπ

2

ε(ω − �) − 1

ε(ω − �) + 1
k2
zR

2, (174)

S1kzEM (ω) = S1kzME(ω) = iπ

2

ε(ω − �) − 1

ε(ω − �) + 1

ωkz

c
R2,

where the argument of the dielectric function is ω − �

corresponding to m = 1. Again we have assumed that the
object is described by a spatially constant but frequency-
dependent ε(ω).

Radiation. The energy radiation per unit time is obtained
as [39]

P ≈
∫ �

0

dω

2π
�ω

∫ ω/c

−ω/c

Ldkz

2π

∑
P,P ′∈{M,E}

[|S1kzPP ′(ω)|2 − δPP ′ ]

≈ 2�LR2

3πc3

∫ �

0
dω ω4

∣∣∣∣Im ε(ω − �) − 1

ε(ω − �) + 1

∣∣∣∣, (175)

where we have neglected terms of the order of R4. If the
cylinder has a small conductivity described by the dielectric
function ε = 1 + i4πσ/ω with σ � �, Eq. (175) yields

P = 8�LR2�4σ

c3
ln

�

σ
, (176)

in agreement with the results of Ref. [40].
In the opposite limit where � � σ , we find

P = �LR2�6

90π2c3σ
, M = �LR2�5

60π2c3σ
. (177)

The radiation from a rotating cylinder indeed takes a form
similar to that of a rotating sphere; however, while �R/c

is constrained to be small in the nonrelativistic limit, �L/c

is not.
The results for entropy generation and angular momentum

uncertainty also bear a close resemblance to a rotating sphere.
Specifically, with M ∼ �5, we find the same relation in
Eq. (173) for a rotating cylinder. One may speculate that this
result holds for any rotating object with an arbitrary geometry
as long as the angular velocity is small.

To get an estimate for the magnitude of radiation effects, we
consider a rapidly spinning nanotube of radius R and length L

and assume that �R/c is small. We then find that the rotation
slows down by an order of magnitude over a time scale of
τ ∼ (I/�)(c3/LR2�3). The moment of inertia of a nanotube
can be as small as 10−33 in SI units [65] (compare with
� ≈ 10−34). So even at small velocities, τ can be of the order
of a few hours.
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APPENDIX: GREEN’S THEOREM

The vector Green’s theorem reads

Ei(x) =
∮

d� · {[∇×Gi(x,z)]×E(z)

+ Gi(x,z)×[∇×E(z)]}, (A1)

where Ei is the i component of the electric field E that satisfies
the vector Helmholtz equation and Gi is a vector defined
from the dyadic Green’s function as (Gi)j = Gij . Also note
that the point x is enclosed by the boundary of the integration.
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We choose E = Ereg
β , a partial wave indexed by β, and also em-

ploy the definition of the Green’s function in Eq. (109) to find

[
Ereg

β (x)
]
i
= i

∑
α

[
Ereg

α (x)
]
i

∮
d� · {[∇×Eout

ᾱ (z)
]×Ereg

β (z)

+ Eout
ᾱ (z)×[∇×Ereg

β (z)
]}

. (A2)

The vector fields Ereg
α constitute a complete set, hence

i

∮
d� · {[∇×Eout

ᾱ (z)
]×Ereg

β (z) + Eout
ᾱ (z) × [∇×Ereg

β (z)
]}

= δαβ. (A3)

Using the definition of the regular wave functions, we arrive
at Eq. (110).
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[10] O. Méplan and C. Gignoux, Phys. Rev. Lett. 76, 408 (1996).
[11] M. Kardar and R. Golestanian, Rev. Mod. Phys. 71, 1233 (1999).
[12] M. G. Silveirinha and S. I. Maslovski, Phys. Rev. A 86, 042118

(2012).
[13] C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R.

Johansson, T. Duty, F. Nori, and P. Delsing, Nature (London)
479, 376 (2011); P. D. Nation, J. R. Johansson, M. P. Blencowe,
and F. Nori, Rev. Mod. Phys. 84, 1 (2012).

[14] A. Lambrecht, M.-T. Jaekel, and S. Reynaud, Phys. Rev. Lett.
77, 615 (1996).

[15] P. A. Maia Neto and L. A. S. Machado, Phys. Rev. A 54, 3420
(1996).

[16] M. Montazeri and M. F. Miri, Phys. Rev. A 77, 053815
(2008).

[17] D. F. Mundarain and P. A. Maia Neto, Phys. Rev. A 57, 1379
(1998).

[18] V. V. Dodonov and A. B. Klimov, Phys. Rev. A 53, 2664 (1996).
[19] M. Crocce, D. A. R. Dalvit, and F. D. Mazzitelli, Phys. Rev. A

64, 013808 (2001).
[20] G. Barton and C. Eberlein, Ann. Phys. (NY) 227, 222 (1993).
[21] A. Calogeracos and G. Barton, Ann. Phys. (NY) 238, 268

(1995).
[22] J. Schwinger, J. Math. Phys. 2, 407 (1961).
[23] L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964).
[24] C. D. Fosco, F. C. Lombardo, and F. D. Mazzitelli, Phys. Rev.

D 76, 085007 (2007).
[25] V. E. Mkrtchian and C. Henkel, Ann. Phys. (Berlin) 526, 87

(2014).
[26] J. B. Pendry, J. Phys.: Condens. Matter 9, 10301 (1997).
[27] A. I. Volokitin and B. N. J. Persson, J. Phys.: Condens. Matter

11, 345 (1999); ,Rev. Mod. Phys. 79, 1291 (2007).
[28] S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Priniciples

of Statistical Radiophysics 3: Elements of Random Fields
(Springer, Berlin, 1989).

[29] M. F. Maghrebi, R. Golestanian, and M. Kardar, Phys. Rev. A
88, 042509 (2013).

[30] V. L. Ginzburg and I. M. Frank, J. Phys. (USSR) 9, 353
(1945).

[31] M. G. Silveirinha, Phys. Rev. A 88, 043846 (2013).
[32] A. Manjavacas and F. J. Garcı́a de Abajo, Phys. Rev. Lett. 105,

113601 (2010); ,Phys. Rev. A 82, 063827 (2010).
[33] Y. B. Zel’dovich, JETP Lett. 14, 180 (1971).
[34] R. Penrose, Nuovo Cimento Riv. Ser. 1, 252 (1969).
[35] W. G. Unruh, Phys. Rev. D 10, 3194 (1974).
[36] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).
[37] A. Calogeracos and G. E. Volovik, JETP Lett. 69, 281 (1999).
[38] D. C. Roberts and Y. Pomeau, Phys. Rev. Lett. 95, 145303

(2005).
[39] M. F. Maghrebi, R. L. Jaffe, and M. Kardar, Phys. Rev. Lett.

108, 230403 (2012).
[40] Y. B. Zel’dovich, L. V. Rozhanskii, and A. A. Starobinskii,

Radiophys. Quantum Electron. 29, 761 (1986).
[41] C. W. J. Beenakker, Phys. Rev. Lett. 81, 1829 (1998).
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